-
Notifications
You must be signed in to change notification settings - Fork 27
/
xor32.rs
169 lines (148 loc) · 5.25 KB
/
xor32.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
//! Implements Xor32 filters as described in [Xor Filters: Faster and Smaller Than Bloom and Cuckoo Filters].
//!
//! [Xor Filters: Faster and Smaller Than Bloom and Cuckoo Filters]: https://arxiv.org/abs/1912.08258
use crate::{xor_contains_impl, xor_from_impl, Filter};
use alloc::{boxed::Box, vec::Vec};
#[cfg(feature = "serde")]
use serde::{Deserialize, Serialize};
#[cfg(feature = "bincode")]
use bincode::{Decode, Encode};
/// Xor filter using 32-bit fingerprints.
///
/// An `Xor32` filter uses <40 bits per entry of the set is it constructed from, and has a false
/// positive rate of effectively zero (1/2^32 =~ 1/4 billion). As with other probabilistic filters,
/// a higher number of entries decreases the bits per entry but increases the false positive rate.
///
/// An `Xor32` is constructed from a set of 64-bit unsigned integers and is immutable.
///
/// ```
/// # extern crate alloc;
/// use xorf::{Filter, Xor32};
/// # use alloc::vec::Vec;
/// # use rand::Rng;
///
/// # let mut rng = rand::thread_rng();
/// const SAMPLE_SIZE: usize = 1_000_000;
/// let keys: Vec<u64> = (0..SAMPLE_SIZE).map(|_| rng.gen()).collect();
/// let filter = Xor32::from(&keys);
///
/// // no false negatives
/// for key in keys {
/// assert!(filter.contains(&key));
/// }
///
/// // bits per entry
/// let bpe = (filter.len() as f64) * 32.0 / (SAMPLE_SIZE as f64);
/// assert!(bpe < 40., "Bits per entry is {}", bpe);
///
/// // false positive rate
/// let false_positives: usize = (0..SAMPLE_SIZE)
/// .map(|_| rng.gen())
/// .filter(|n| filter.contains(n))
/// .count();
/// let fp_rate: f64 = (false_positives * 100) as f64 / SAMPLE_SIZE as f64;
/// assert!(fp_rate < 0.0000000000000001, "False positive rate is {}", fp_rate);
/// ```
///
/// Serializing and deserializing `Xor32` filters can be enabled with the [`serde`] feature (or [`bincode`] for bincode).
///
/// [`serde`]: http://serde.rs
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
#[cfg_attr(feature = "bincode", derive(Encode, Decode))]
#[derive(Debug, Clone)]
pub struct Xor32 {
/// The seed for the filter
pub seed: u64,
/// The number of blocks in the filter
pub block_length: usize,
/// The fingerprints for the filter
pub fingerprints: Box<[u32]>,
}
impl Filter<u64> for Xor32 {
/// Returns `true` if the filter contains the specified key.
fn contains(&self, key: &u64) -> bool {
xor_contains_impl!(*key, self, fingerprint u32)
}
fn len(&self) -> usize {
self.fingerprints.len()
}
}
impl Xor32 {
/// Construct the filter from a key iterator. Can be used directly
/// if you don't have a contiguous array of u64 keys.
///
/// Note: the iterator will be iterated over multiple times while building
/// the filter. If using a hash function to map the key, it may be cheaper
/// just to create a scratch array of hashed keys that you pass in.
pub fn from_iterator<T>(keys: T) -> Self
where
T: ExactSizeIterator<Item = u64> + Clone,
{
xor_from_impl!(keys fingerprint u32)
}
}
impl From<&[u64]> for Xor32 {
fn from(keys: &[u64]) -> Self {
Self::from_iterator(keys.iter().copied())
}
}
impl From<&Vec<u64>> for Xor32 {
fn from(v: &Vec<u64>) -> Self {
Self::from_iterator(v.iter().copied())
}
}
impl From<Vec<u64>> for Xor32 {
fn from(v: Vec<u64>) -> Self {
Self::from_iterator(v.iter().copied())
}
}
#[cfg(test)]
mod test {
use crate::{Filter, Xor32};
use alloc::vec::Vec;
use rand::Rng;
#[test]
fn test_initialization() {
const SAMPLE_SIZE: usize = 1_000_000;
let mut rng = rand::thread_rng();
let keys: Vec<u64> = (0..SAMPLE_SIZE).map(|_| rng.gen()).collect();
let filter = Xor32::from(&keys);
for key in keys {
assert!(filter.contains(&key));
}
}
#[test]
fn test_bits_per_entry() {
const SAMPLE_SIZE: usize = 1_000_000;
let mut rng = rand::thread_rng();
let keys: Vec<u64> = (0..SAMPLE_SIZE).map(|_| rng.gen()).collect();
let filter = Xor32::from(&keys);
let bpe = (filter.len() as f64) * 32.0 / (SAMPLE_SIZE as f64);
assert!(bpe < 40., "Bits per entry is {}", bpe);
}
#[test]
#[ignore]
// Note: takes a long time (> 1 hour) to run, and has a high memory
// requirement (> 32 GB), due to a 1bn sample size of crypto-random
// numbers being generated on a single thread.
// The test actually passes with a 10^-16 false positive rate
// which probably means the 1bn sample size is still too small.
// The expected false positive rate should be 1/2^32=~1/(4 billion),
// but has not been tested / verified.
fn test_false_positives() {
const SAMPLE_SIZE: usize = 1_000_000_000;
let mut rng = rand::thread_rng();
let keys: Vec<u64> = (0..SAMPLE_SIZE).map(|_| rng.gen()).collect();
let filter = Xor32::from(&keys);
let false_positives: usize = (0..SAMPLE_SIZE)
.map(|_| rng.gen())
.filter(|n| filter.contains(n))
.count();
let fp_rate: f64 = (false_positives * 100) as f64 / SAMPLE_SIZE as f64;
assert!(
fp_rate < 0.0000000000000001,
"False positive rate is {}",
fp_rate
);
}
}