-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathquery.py
57 lines (44 loc) · 2.08 KB
/
query.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
import os
import argparse
import warnings
import langchain # type: ignore
from langchain_text_splitters import Language, RecursiveCharacterTextSplitter # type: ignore
from langchain_community.document_loaders import PyPDFLoader # type: ignore
from dotenv import load_dotenv # type: ignore
from langchain_community.vectorstores import FAISS # type: ignore
from langchain_openai import OpenAIEmbeddings # type: ignore
from langchain_community.document_loaders import TextLoader # type: ignore
from langchain_openai import OpenAIEmbeddings # type: ignore
from langchain_text_splitters import CharacterTextSplitter # type: ignore
from langchain_community.vectorstores import FAISS # type: ignore
def query(question):
"""
Takes in a question and returns an answer.
Args:
question (str): Question to be asked.
"""
load_dotenv()
OPENAI_API_KEY = os.environ.get('Open_AI_API_Key')
LANGCHAIN_API_KEY = os.environ.get('Lang_chain_API_Key')
path_to_pdf = "document/file_proposal.pdf" # Replace with your actual PDF path
# Load the document, split it into chunks, embed each chunk and load it into the vector store.
raw_documents = PyPDFLoader(path_to_pdf).load()
# Mute errors
with warnings.catch_warnings():
warnings.simplefilter("ignore")
# Split by chunks
text_splitter = CharacterTextSplitter(chunk_size=500, chunk_overlap=50)
documents = text_splitter.split_documents(raw_documents)
db = FAISS.from_documents(documents, OpenAIEmbeddings())
docs = db.similarity_search(question, k=1)
for doc in docs:
code_splitter = RecursiveCharacterTextSplitter()
python_docs = code_splitter.split_text(doc.page_content)
for code_chunk in python_docs:
print(str(doc.metadata["page"]) + ":", code_chunk)
print("\n")
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Ask a question.")
parser.add_argument("--question", required=True, help="ask question")
args = parser.parse_args()
query(args.question)