forked from NVIDIA/cutlass
-
Notifications
You must be signed in to change notification settings - Fork 0
/
sm90_gemm_array_tma_warpspecialized_pingpong.hpp
948 lines (800 loc) · 43.9 KB
/
sm90_gemm_array_tma_warpspecialized_pingpong.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
/***************************************************************************************************
* Copyright (c) 2023 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************************************/
#pragma once
#include "cutlass/cutlass.h"
#include "cutlass/workspace.h"
#include "cutlass/fast_math.h"
#include "cutlass/kernel_hardware_info.hpp"
#include "cute/arch/cluster_sm90.hpp"
#include "cutlass/arch/reg_reconfig.h"
#include "cutlass/arch/mma_sm90.h"
#include "cutlass/epilogue/collective/detail.hpp"
#include "cutlass/gemm/gemm.h"
#include "cutlass/gemm/dispatch_policy.hpp"
#include "cutlass/gemm/kernel/gemm_universal_decl.h"
#include "cutlass/gemm/kernel/tile_scheduler.hpp"
#include "cutlass/gemm/group_array_problem_shape.hpp"
#include "cutlass/pipeline/pipeline.hpp"
#include "cute/tensor.hpp"
#include "cutlass/trace.h"
#include "cutlass/gemm/kernel/sm90_tile_scheduler.hpp"
#include "cutlass/gemm/kernel/sm90_tile_scheduler_group.hpp"
///////////////////////////////////////////////////////////////////////////////
namespace cutlass::gemm::kernel {
///////////////////////////////////////////////////////////////////////////////
template <
class ProblemShape_,
class CollectiveMainloop_,
class CollectiveEpilogue_,
class TileScheduler_
>
class GemmUniversal<
ProblemShape_,
CollectiveMainloop_,
CollectiveEpilogue_,
TileScheduler_,
cute::enable_if_t<cute::is_base_of_v<KernelPtrArrayTmaWarpSpecializedPingpong, typename CollectiveMainloop_::DispatchPolicy::Schedule>>
>
{
public:
//
// Type Aliases
//
using ProblemShape = ProblemShape_;
static_assert(rank(typename ProblemShape::UnderlyingProblemShape{}) == 3 or rank(typename ProblemShape::UnderlyingProblemShape{}) == 4,
"ProblemShape{} should be <M,N,K> or <M,N,K,L>");
static_assert(cute::is_base_of_v<KernelPtrArrayTmaWarpSpecializedPingpong, typename CollectiveMainloop_::DispatchPolicy::Schedule>);
static constexpr bool IsGdcEnabled = false;
// Mainloop derived types
using CollectiveMainloop = CollectiveMainloop_;
using TileShape = typename CollectiveMainloop::TileShape;
using TiledMma = typename CollectiveMainloop::TiledMma;
using ArchTag = typename CollectiveMainloop::ArchTag;
using ElementA = typename CollectiveMainloop::ElementA;
using StrideA = typename CollectiveMainloop::StrideA;
using InternalStrideA = typename CollectiveMainloop::InternalStrideA;
using ElementB = typename CollectiveMainloop::ElementB;
using InternalStrideB = typename CollectiveMainloop::InternalStrideB;
using StrideB = typename CollectiveMainloop::StrideB;
using DispatchPolicy = typename CollectiveMainloop::DispatchPolicy;
using Schedule = typename DispatchPolicy::Schedule;
using ElementAccumulator = typename CollectiveMainloop::ElementAccumulator;
using ClusterShape = typename DispatchPolicy::ClusterShape;
using MainloopArguments = typename CollectiveMainloop::Arguments;
using MainloopParams = typename CollectiveMainloop::Params;
// Epilogue derived types
using CollectiveEpilogue = CollectiveEpilogue_;
using ElementC = typename CollectiveEpilogue::ElementC;
using StrideC = typename CollectiveEpilogue::StrideC;
using InternalStrideC = typename CollectiveEpilogue::InternalStrideC;
using ElementD = typename CollectiveEpilogue::ElementD;
using StrideD = typename CollectiveEpilogue::StrideD;
using InternalStrideD = typename CollectiveEpilogue::InternalStrideD;
using EpilogueArguments = typename CollectiveEpilogue::Arguments;
using EpilogueParams = typename CollectiveEpilogue::Params;
static_assert(ArchTag::kMinComputeCapability >= 90);
static_assert(cute::is_void_v<TileScheduler_>,
"Ptr-Array Pingpong and Grouped Gemm Pingpong kernel only supports the default scheduler.");
static constexpr bool IsGroupedGemmKernel = !cute::is_same_v<InternalStrideA, StrideA>;
using TileScheduler = cute::conditional_t<IsGroupedGemmKernel,
typename detail::TileSchedulerSelector<
GroupScheduler, ArchTag,
TileShape, ClusterShape,
ProblemShape>::Scheduler,
typename detail::TileSchedulerSelector<
void, ArchTag, TileShape, ClusterShape>::Scheduler>;
using TileSchedulerArguments = typename TileScheduler::Arguments;
using TileSchedulerParams = typename TileScheduler::Params;
static constexpr uint32_t NumLoadWarpGroups = 1;
static constexpr uint32_t NumMmaWarpGroups = 2;
static constexpr uint32_t MaxThreadsPerBlock = CUTE_STATIC_V(size(TiledMma{})) + (NumMmaWarpGroups * NumThreadsPerWarpGroup);
static constexpr uint32_t MinBlocksPerMultiprocessor = 1;
/// Register requirement for Load and Math WGs
static constexpr uint32_t LoadRegisterRequirement = 40;
static constexpr uint32_t MmaRegisterRequirement = 232;
// 1 stage ordered sequence between mainloop and epilogue producer load threads
using LoadWarpOrderBarrier = cutlass::OrderedSequenceBarrier<1,2>;
// Order Sequence barrier with two stages: one for Mainloop and one for Epilogue
static constexpr uint32_t StagesPerMathWarpGroup = 2;
using MathWarpGroupOrderBarrier = cutlass::OrderedSequenceBarrier<StagesPerMathWarpGroup, NumMmaWarpGroups>;
using MathWarpGroupOrderBarrierSharedStorage = cutlass::PipelineDetail::OrderedSequenceBarrierSharedStorage<
MathWarpGroupOrderBarrier::SequenceDepth,
MathWarpGroupOrderBarrier::SequenceLength>;
// Kernel level shared memory storage
struct SharedStorage {
struct TensorStorage : cute::aligned_struct<128, _1> {
using MainloopTensorStorage = typename CollectiveMainloop::TensorStorage;
using EpilogueTensorStorage = typename CollectiveEpilogue::TensorStorage;
MainloopTensorStorage mainloop;
EpilogueTensorStorage epilogue;
} tensors;
struct PipelineStorage : cute::aligned_struct<16, _1> {
using MainloopPipelineStorage = typename CollectiveMainloop::PipelineStorage;
using EpiLoadPipelineStorage = typename CollectiveEpilogue::PipelineStorage;
using MathWarpGroupOrderBarrierStorage = MathWarpGroupOrderBarrierSharedStorage;
alignas(16) MainloopPipelineStorage mainloop;
alignas(16) EpiLoadPipelineStorage epi_load;
alignas(16) typename LoadWarpOrderBarrier::SharedStorage load_order;
alignas(16) MathWarpGroupOrderBarrierStorage math_wg_order;
} pipelines;
struct TensorMapStorage : cute::aligned_struct<128, _1> {
using MainloopTensorMapStorage = typename CollectiveMainloop::TensorMapStorage;
using EpilogueTensorMapStorage = typename CollectiveEpilogue::TensorMapStorage;
alignas(128) MainloopTensorMapStorage mainloop;
alignas(128) EpilogueTensorMapStorage epilogue;
} tensormaps;
};
static constexpr int SharedStorageSize = sizeof(SharedStorage);
// Device side arguments
struct Arguments {
GemmUniversalMode mode{};
ProblemShape problem_shape{};
MainloopArguments mainloop{};
EpilogueArguments epilogue{};
KernelHardwareInfo hw_info{};
TileSchedulerArguments scheduler{};
};
// Kernel entry point API
struct Params {
GemmUniversalMode mode{};
ProblemShape problem_shape{};
MainloopParams mainloop{};
EpilogueParams epilogue{};
KernelHardwareInfo hw_info{};
TileSchedulerParams scheduler{};
void* workspace{nullptr};
};
//
// Methods
//
// Convert to underlying arguments. In this case, a simple copy for the aliased type.
static
Params
to_underlying_arguments(Arguments const& args, void* workspace) {
CUTLASS_TRACE_HOST("to_underlying_arguments():");
ProblemShape problem_shapes = args.problem_shape;
// Get SM count if needed, otherwise use user supplied SM count
int sm_count = args.hw_info.sm_count;
if (sm_count <= 0) {
CUTLASS_TRACE_HOST(" WARNING: Arguments do not include a valid SM count.\n"
" For optimal performance, populate the arguments KernelHardwareInfo struct with the SM count.");
sm_count = KernelHardwareInfo::query_device_multiprocessor_count(args.hw_info.device_id);
}
CUTLASS_TRACE_HOST("to_underlying_arguments(): Setting persistent grid SM count to " << sm_count);
KernelHardwareInfo hw_info{args.hw_info.device_id, sm_count};
// Calculate workspace pointers
uint8_t* workspace_ptr = reinterpret_cast<uint8_t*>(workspace);
size_t workspace_offset = 0;
void* scheduler_workspace = workspace_ptr;
workspace_offset += TileScheduler::template get_workspace_size<typename ProblemShape::UnderlyingProblemShape, ElementAccumulator>(
args.scheduler, typename ProblemShape::UnderlyingProblemShape{}, args.hw_info, NumMmaWarpGroups);
workspace_offset = round_nearest(workspace_offset, MinWorkspaceAlignment);
void* epilogue_workspace = workspace_ptr + workspace_offset;
workspace_offset += CollectiveEpilogue::get_workspace_size(problem_shapes, args.epilogue, sm_count);
workspace_offset = round_nearest(workspace_offset, MinWorkspaceAlignment);
void* mainloop_workspace = workspace_ptr + workspace_offset;
workspace_offset += CollectiveMainloop::get_workspace_size(problem_shapes, args.mainloop, sm_count);
workspace_offset = round_nearest(workspace_offset, MinWorkspaceAlignment);
// Precompute the sub tiles numbers in epilogue, pass into tile scheduler. Therefore it will be used
// in separate reduction scheme for streamk case, NumEpilogueSubTiles default value is 1, which means
// subtile will not be used, therefore separate reduction will not be enabled.
constexpr uint32_t NumEpilogueSubTiles = CollectiveEpilogue::get_store_pipe_increment(TileShape{});
TileSchedulerParams scheduler;
if constexpr (IsGroupedGemmKernel) {
scheduler = TileScheduler::to_underlying_arguments(
problem_shapes, TileShape{}, ClusterShape{}, hw_info, args.scheduler, scheduler_workspace, NumEpilogueSubTiles);
}
else {
scheduler = TileScheduler::to_underlying_arguments(
problem_shapes.get_host_problem_shape(), TileShape{}, ClusterShape{}, hw_info, args.scheduler, scheduler_workspace, NumEpilogueSubTiles);
}
return {
args.mode,
problem_shapes,
CollectiveMainloop::to_underlying_arguments(problem_shapes, args.mainloop, mainloop_workspace),
CollectiveEpilogue::to_underlying_arguments(problem_shapes, args.epilogue, epilogue_workspace),
hw_info,
scheduler,
workspace
};
}
static bool
can_implement(Arguments const& args) {
bool implementable = true;
if constexpr (IsGroupedGemmKernel) {
// Group GEMM currently only supports rank-3 problem shapes
implementable &= (args.mode == GemmUniversalMode::kGrouped && rank(typename ProblemShape::UnderlyingProblemShape{}) == 3);
} else {
implementable &= (args.mode == GemmUniversalMode::kArray && rank(typename ProblemShape::UnderlyingProblemShape{}) == 4);
}
if (!implementable) {
CUTLASS_TRACE_HOST(" CAN IMPLEMENT: Arguments or Problem Shape don't meet the requirements for Ptr Array Gemm or Grouped Gemm.\n");
return implementable;
}
implementable &= CollectiveMainloop::can_implement(args.problem_shape, args.mainloop);
implementable &= CollectiveEpilogue::can_implement(args.problem_shape, args.epilogue);
implementable &= TileScheduler::can_implement(args.scheduler);
return implementable;
}
static size_t
get_workspace_size(Arguments const& args) {
size_t workspace_size = 0;
constexpr uint32_t NumEpilogueSubTiles = CollectiveEpilogue::get_store_pipe_increment(TileShape{});
workspace_size += TileScheduler::template get_workspace_size<typename ProblemShape::UnderlyingProblemShape, ElementAccumulator>(
args.scheduler, typename ProblemShape::UnderlyingProblemShape{}, args.hw_info, NumMmaWarpGroups, NumEpilogueSubTiles);
workspace_size = round_nearest(workspace_size, MinWorkspaceAlignment);
// Get SM count if needed, otherwise use user supplied SM count
int sm_count = args.hw_info.sm_count;
if (sm_count <= 0) {
CUTLASS_TRACE_HOST(" WARNING: Arguments do not include a valid SM count.\n"
" For optimal performance, populate the arguments KernelHardwareInfo struct with the SM count.");
sm_count = KernelHardwareInfo::query_device_multiprocessor_count(args.hw_info.device_id);
}
workspace_size += CollectiveEpilogue::get_workspace_size(args.problem_shape, args.epilogue, sm_count);
workspace_size = round_nearest(workspace_size, MinWorkspaceAlignment);
workspace_size += CollectiveMainloop::get_workspace_size(args.problem_shape, args.mainloop, sm_count);
workspace_size = round_nearest(workspace_size, MinWorkspaceAlignment);
return workspace_size;
}
static cutlass::Status
initialize_workspace(Arguments const& args, void* workspace = nullptr, cudaStream_t stream = nullptr,
CudaHostAdapter* cuda_adapter = nullptr) {
Status status = Status::kSuccess;
uint8_t* workspace_ptr = reinterpret_cast<uint8_t*>(workspace);
size_t workspace_offset = 0;
constexpr uint32_t NumEpilogueSubTiles = CollectiveEpilogue::get_store_pipe_increment(TileShape{});
static constexpr uint32_t NumAccumulatorMtxs = 1;
status = TileScheduler::template initialize_workspace<typename ProblemShape::UnderlyingProblemShape, ElementAccumulator>(
args.scheduler, workspace_ptr + workspace_offset, stream, typename ProblemShape::UnderlyingProblemShape{}, args.hw_info, NumMmaWarpGroups, NumEpilogueSubTiles, NumAccumulatorMtxs, cuda_adapter);
workspace_offset += TileScheduler::template get_workspace_size<typename ProblemShape::UnderlyingProblemShape, ElementAccumulator>(
args.scheduler, typename ProblemShape::UnderlyingProblemShape{}, args.hw_info, NumMmaWarpGroups, NumEpilogueSubTiles);
workspace_offset = round_nearest(workspace_offset, MinWorkspaceAlignment);
if (status != Status::kSuccess) {
return status;
}
status = CollectiveEpilogue::initialize_workspace(args.problem_shape, args.epilogue, workspace_ptr + workspace_offset, stream, cuda_adapter);
workspace_offset += CollectiveEpilogue::get_workspace_size(args.problem_shape, args.epilogue, args.hw_info.sm_count);
workspace_offset = round_nearest(workspace_offset, MinWorkspaceAlignment);
status = CollectiveMainloop::initialize_workspace(args.problem_shape, args.mainloop, workspace_ptr + workspace_offset, stream, cuda_adapter);
workspace_offset += CollectiveMainloop::get_workspace_size(args.problem_shape, args.mainloop, args.hw_info.sm_count);
workspace_offset = round_nearest(workspace_offset, MinWorkspaceAlignment);
if (status != Status::kSuccess) {
return status;
}
return status;
}
// Computes the kernel launch grid shape based on runtime parameters
static dim3
get_grid_shape(Params const& params) {
// Given device SM count, set grid size s.t. we do not launch more thread blocks than we can run concurrently
TileSchedulerArguments args{};
if constexpr (!std::is_const_v<decltype(args.max_swizzle_size)>) {
args.max_swizzle_size = 1 << params.scheduler.log_swizzle_size_;
}
args.raster_order = params.scheduler.raster_order_ == TileScheduler::RasterOrder::AlongN ? TileScheduler::RasterOrderOptions::AlongN : TileScheduler::RasterOrderOptions::AlongM;
dim3 grid_shape;
if constexpr (IsGroupedGemmKernel) {
grid_shape = TileScheduler::get_grid_shape(params.scheduler, params.problem_shape, TileShape{}, ClusterShape{}, params.hw_info, args);
}
else {
grid_shape = TileScheduler::get_grid_shape(params.scheduler, params.problem_shape.get_host_problem_shape(), TileShape{}, ClusterShape{}, params.hw_info, args);
}
return grid_shape;
}
static dim3
get_block_shape() {
return dim3(MaxThreadsPerBlock, 1, 1);
}
CUTLASS_DEVICE
void
operator()(Params const& params, char* smem_buf) {
using namespace cute;
using X = Underscore;
// Any Tensor Op MMA Atom in the WGMMA ISA is arch conditional to sm90a.
#if ! defined(__CUDA_ARCH_FEAT_SM90_ALL)
printf("ERROR : Arch conditional MMA instruction used without targeting sm90a compute capability. Aborting.\n");
#else
// Preconditions
static_assert(size(TiledMma{}) == 128, "Pingpong kernel must have TiledMMA operating using 128 threads.");
static_assert(NumMmaWarpGroups == 2, "Pingpong kernels currently only support NumMmaWarpGroups == 2");
if constexpr (cutlass::epilogue::collective::detail::sm90_is_ptr_array_tma_dispatch_policy_v<typename CollectiveEpilogue::DispatchPolicy>) {
static_assert(NumMmaWarpGroups == CollectiveEpilogue::NumEpilogueWarpGroups,
"Tiled MmA does not match expected warp groups performing the epilogue");
}
static_assert(cute::rank(InternalStrideA{}) == 3, "StrideA must be rank-3: [M, K, L]. If batch mode is not needed, set L stride to Int<0>.");
static_assert(cute::rank(InternalStrideB{}) == 3, "StrideB must be rank-3: [N, K, L]. If batch mode is not needed, set L stride to Int<0>.");
static_assert(cute::rank(InternalStrideC{}) == 3, "StrideC must be rank-3: [M, N, L]. If batch mode is not needed, set L stride to Int<0>.");
static_assert(cute::rank(InternalStrideD{}) == 3, "StrideD must be rank-3: [M, N, L]. If batch mode is not needed, set L stride to Int<0>.");
enum class WarpGroupRole {
Producer = 0,
Consumer0 = 1,
Consumer1 = 2
};
enum class ProducerWarpRole {
Mainloop = 0,
Warp1 = 1,
Epilogue = 2,
Warp3 = 3
};
// Kernel level shared memory storage
SharedStorage& shared_storage = *reinterpret_cast<SharedStorage*>(smem_buf);
int thread_idx = int(threadIdx.x);
int lane_idx = canonical_lane_idx();
int warp_idx = canonical_warp_idx_sync();
int warp_idx_in_warp_group = warp_idx % NumWarpsPerWarpGroup;
int warp_group_thread_idx = thread_idx % NumThreadsPerWarpGroup;
int mma_thread_idx = thread_idx % size(TiledMma{});
auto warp_group_idx = canonical_warp_group_idx();
auto warp_group_role = WarpGroupRole(warp_group_idx);
auto producer_warp_role = ProducerWarpRole(warp_idx_in_warp_group);
int lane_predicate = cute::elect_one_sync();
uint32_t block_rank_in_cluster = cute::block_rank_in_cluster();
// Note: Tma Descriptor Prefetch (from either const or param) is not applicable here
// Mainloop Load pipeline
using MainloopPipeline = typename CollectiveMainloop::MainloopPipeline;
typename MainloopPipeline::Params mainloop_pipeline_params;
if (warp_group_role == WarpGroupRole::Producer && producer_warp_role == ProducerWarpRole::Mainloop) {
mainloop_pipeline_params.role = MainloopPipeline::ThreadCategory::Producer;
}
if (warp_group_role == WarpGroupRole::Consumer0 || warp_group_role == WarpGroupRole::Consumer1) {
mainloop_pipeline_params.role = MainloopPipeline::ThreadCategory::Consumer;
}
mainloop_pipeline_params.is_leader = warp_group_thread_idx == 0;
mainloop_pipeline_params.num_consumers = NumThreadsPerWarpGroup;
mainloop_pipeline_params.transaction_bytes = params.mainloop.tma_transaction_bytes;
MainloopPipeline mainloop_pipeline(shared_storage.pipelines.mainloop, mainloop_pipeline_params, ClusterShape{});
// Epilogue Load pipeline
using EpiLoadPipeline = typename CollectiveEpilogue::LoadPipeline;
typename EpiLoadPipeline::Params epi_load_pipeline_params;
if (warp_group_role == WarpGroupRole::Producer && producer_warp_role == ProducerWarpRole::Epilogue) {
epi_load_pipeline_params.role = EpiLoadPipeline::ThreadCategory::Producer;
}
if (warp_group_role == WarpGroupRole::Consumer0 || warp_group_role == WarpGroupRole::Consumer1) {
epi_load_pipeline_params.role = EpiLoadPipeline::ThreadCategory::Consumer;
}
epi_load_pipeline_params.dst_blockid = cute::block_rank_in_cluster();
epi_load_pipeline_params.producer_arv_count = NumThreadsPerWarp;
epi_load_pipeline_params.consumer_arv_count = NumThreadsPerWarpGroup;
if constexpr (CollectiveEpilogue::RequiresTransactionBytes) {
epi_load_pipeline_params.transaction_bytes = params.epilogue.tma_transaction_bytes;
}
EpiLoadPipeline epi_load_pipeline(shared_storage.pipelines.epi_load, epi_load_pipeline_params);
// Epilogue Store pipeline
using EpiStorePipeline = typename CollectiveEpilogue::StorePipeline;
typename EpiStorePipeline::Params epi_store_pipeline_params;
epi_store_pipeline_params.always_wait = true;
EpiStorePipeline epi_store_pipeline(epi_store_pipeline_params);
typename LoadWarpOrderBarrier::Params params_load_order_barrier;
params_load_order_barrier.group_id = producer_warp_role == ProducerWarpRole::Mainloop ? 0 : 1;
params_load_order_barrier.group_size = NumThreadsPerWarp;
LoadWarpOrderBarrier load_order_barrier(shared_storage.pipelines.load_order, params_load_order_barrier);
typename MathWarpGroupOrderBarrier::Params params_math_wg_order_barrier;
// DMA Load WG will not participate in these Ordered Barrier syncs
params_math_wg_order_barrier.group_id = warp_group_idx - static_cast<int>(WarpGroupRole::Consumer0);
params_math_wg_order_barrier.group_size = NumThreadsPerWarpGroup; // Number of threads / participants in a group
MathWarpGroupOrderBarrier math_wg_order_barrier(shared_storage.pipelines.math_wg_order, params_math_wg_order_barrier);
// Initialize starting pipeline states for the collectives
// Epilogue store pipe is producer-only (consumer is TMA unit, waits via scoreboarding)
typename CollectiveMainloop::PipelineState mainloop_pipe_consumer_state;
typename CollectiveEpilogue::LoadPipelineState epi_load_pipe_consumer_state;
// For the DMA Load (producer) we start with an opposite phase
// i.e., we skip all waits since we know that the buffer is indeed empty
PipelineState mainloop_pipe_producer_state = cutlass::make_producer_start_state<MainloopPipeline>();
PipelineState epi_load_pipe_producer_state = cutlass::make_producer_start_state<EpiLoadPipeline>();
PipelineState epi_store_pipe_producer_state = cutlass::make_producer_start_state<EpiStorePipeline>();
auto cluster_wait_fn = [] () {
// We need this to guarantee that the Pipeline init is visible
// To all producers and consumer thread blocks in the Cluster
if constexpr (size(ClusterShape{}) > 1) {
cute::cluster_arrive_relaxed();
return [] () { cute::cluster_wait(); };
}
else {
__syncthreads();
return [] () {}; // do nothing
}
} ();
// Get the appropriate blocks for this thread block -- potential for thread block locality
TiledMma tiled_mma;
const auto blk_shape = TileShape{}; // (BLK_M,BLK_N,BLK_K)
const auto c_tile_count = CollectiveEpilogue::get_load_pipe_increment(blk_shape);
const auto d_tile_count = CollectiveEpilogue::get_store_pipe_increment(blk_shape);
TileScheduler scheduler{params.scheduler};
// In a warp specialized kernel, collectives expose data movement and compute operations separately
CollectiveMainloop collective_mainloop;
CollectiveEpilogue collective_epilogue(params.epilogue, shared_storage.tensors.epilogue);
// Wait for all thread blocks in the Cluster
cluster_wait_fn();
auto work_tile_info = scheduler.initial_work_tile_info(ClusterShape{});
if (not work_tile_info.is_valid()) {
// When problem shapes are only on device, the grid launched may be larger than the total number of blocks across groups
return;
}
// Optionally append 1s until problem shape is rank-4 in case it is only rank-3 (MNK)
auto problem_shape_MNKL = append<4>(params.problem_shape.get_problem_shape(work_tile_info.L_idx), work_tile_info.L_idx);
if (warp_group_role == WarpGroupRole::Consumer1) {
// Advance 2nd Math WG to the next work tile for the startup
const auto k_tile_count = TileScheduler::get_work_k_tile_count(work_tile_info, problem_shape_MNKL, blk_shape);
auto [next_work_tile_info, increment_pipe] = scheduler.fetch_next_work(work_tile_info);
work_tile_info = next_work_tile_info;
if (!work_tile_info.is_valid()) {
return;
}
// Advance 2nd Math WG pipeline states to the end of 1st Math WG
mainloop_pipe_consumer_state.advance(k_tile_count);
epi_load_pipe_consumer_state.advance(c_tile_count);
epi_store_pipe_producer_state.advance(d_tile_count);
problem_shape_MNKL = append<4>(params.problem_shape.get_problem_shape(work_tile_info.L_idx), work_tile_info.L_idx);
}
// Prepare and partition the input tensors. Expects a tuple of tensors where:
// get<0>(load_inputs) is the tma tensor A after local tiling so that it has shape (BLK_M,BLK_K,m,k,l)
// get<1>(load_inputs) is the tma tensor B after local tiling so that it has shape (BLK_N,BLK_K,n,k,l)
auto load_inputs = collective_mainloop.load_init(problem_shape_MNKL, params.mainloop);
static_assert(cute::tuple_size_v<decltype(load_inputs)> >= 2, "Output of load_init must have at least two elements (A, B)");
// Extract out partitioned A and B.
Tensor gA_mkl = get<0>(load_inputs);
Tensor gB_nkl = get<1>(load_inputs);
// Get pipeline stage increments from tensor shapes
auto k_tile_count = size<3>(gA_mkl);
if (warp_group_role == WarpGroupRole::Producer) {
cutlass::arch::warpgroup_reg_dealloc<LoadRegisterRequirement>();
// Mainloop Producer Warp
if (producer_warp_role == ProducerWarpRole::Mainloop) {
int32_t curr_batch = idx2crd(work_tile_info.L_idx, shape<4>(gB_nkl)); // Usually just returns work_tile_info.L_idx;
int32_t const mock_l_coord = 0;
int32_t const sm_idx = blockIdx.x + (blockIdx.y * gridDim.x);
int32_t const sm_count = params.hw_info.sm_count;
// Fetch a copy of tensormaps for the CTA
auto input_tensormaps = collective_mainloop.tensormaps_init(params.mainloop, shared_storage.tensormaps.mainloop, sm_count, sm_idx);
// Update tensormap for the initial batch for the CTA
if (work_tile_info.is_valid()) {
collective_mainloop.tensormaps_perform_update(
shared_storage.tensormaps.mainloop,
params.mainloop,
input_tensormaps,
problem_shape_MNKL,
curr_batch
);
// Ensure warp is converged before issuing tensormap fence release
__syncwarp();
// Entire warp must do this (i.e. it's aligned)
collective_mainloop.tensormaps_cp_fence_release(shared_storage.tensormaps.mainloop, input_tensormaps);
}
bool do_load_order_arrive = true;
bool did_batch_change = true;
while (work_tile_info.is_valid()) {
if (!TileScheduler::valid_warpgroup_in_work_tile(work_tile_info)) {
auto [next_work_tile_info, increment_pipe] = scheduler.fetch_next_work(work_tile_info);
work_tile_info = next_work_tile_info;
continue;
}
// Compute m_coord, n_coord, l_coord with the post-tiled m-shape and n-shape
auto m_coord = idx2crd(work_tile_info.M_idx, shape<2>(gA_mkl));
auto n_coord = idx2crd(work_tile_info.N_idx, shape<2>(gB_nkl));
auto blk_coord = make_coord(m_coord, n_coord, _, mock_l_coord);
// Get the number of K tiles to compute for this work as well as the starting K tile offset of the work.
auto work_k_tile_count = TileScheduler::get_work_k_tile_count(work_tile_info, problem_shape_MNKL, blk_shape);
auto work_k_tile_start = TileScheduler::get_work_k_tile_start(work_tile_info);
auto k_tile_iter = cute::make_coord_iterator(idx2crd(work_k_tile_start, shape<3>(gA_mkl)), shape<3>(gA_mkl));
if (did_batch_change) {
collective_mainloop.tensormaps_fence_acquire(input_tensormaps);
}
collective_mainloop.load(
params.mainloop,
mainloop_pipeline,
mainloop_pipe_producer_state,
load_inputs,
input_tensormaps,
blk_coord,
k_tile_iter, work_k_tile_count,
lane_idx,
block_rank_in_cluster,
shared_storage.tensors.mainloop
);
// Update starting pipeline state for the next tile
// Wait for the last TMA stage to complete loading, before issuing tensormap updates
mainloop_pipe_producer_state.advance(work_k_tile_count - 1);
// Signal for the epilogue load warp to begin
if (do_load_order_arrive) {
load_order_barrier.arrive();
do_load_order_arrive = false;
}
// Get next work tile
auto [next_work_tile_info, increment_pipe] = scheduler.fetch_next_work(work_tile_info);
work_tile_info = next_work_tile_info;
auto next_batch = idx2crd(work_tile_info.L_idx, shape<4>(gB_nkl)); // Usually just returns work_tile_info.L_idx
did_batch_change = next_batch != curr_batch;
if (work_tile_info.is_valid() && did_batch_change) {
curr_batch = next_batch;
if constexpr (IsGroupedGemmKernel) {
problem_shape_MNKL = append<4>(params.problem_shape.get_problem_shape(curr_batch), curr_batch);
}
// Purpose of this pipeline state is to make sure TMA loads have finished before doing descriptor updates
// Since this state is waiting for loads to finish, it must start in the inverted phase.
typename CollectiveMainloop::PipelineState mainloop_pipe_tma_consumer_state =
{mainloop_pipe_producer_state.index(), !mainloop_pipe_producer_state.phase(), mainloop_pipe_producer_state.count()};
mainloop_pipeline.consumer_wait(mainloop_pipe_tma_consumer_state);
collective_mainloop.tensormaps_perform_update(
shared_storage.tensormaps.mainloop,
params.mainloop,
input_tensormaps,
problem_shape_MNKL,
curr_batch
);
// Ensure warp is converged before issuing tensor replace
__syncwarp();
// Entire warp must do this (i.e. it's aligned)
collective_mainloop.tensormaps_cp_fence_release(shared_storage.tensormaps.mainloop, input_tensormaps);
}
// Advance the producer state for the last remaining stage that was being waited for above
mainloop_pipe_producer_state.advance(1);
} // Scheduler work fetch loop
// Make sure all Consumer Warp Groups have been waited upon
collective_mainloop.load_tail(mainloop_pipeline, mainloop_pipe_producer_state);
} // Mainloop Producer Warp End
// Epilogue Producer Warp
else if (producer_warp_role == ProducerWarpRole::Epilogue && collective_epilogue.is_producer_load_needed()) {
int32_t const sm_idx = blockIdx.x + (blockIdx.y * gridDim.x);
int32_t const sm_count = params.hw_info.sm_count;
auto epi_load_tensormap = get<0>(collective_epilogue.load_init(params.epilogue, shared_storage.tensormaps.epilogue, sm_count, sm_idx));
bool did_batch_change = true;
constexpr bool IsEpiLoad = true;
if (work_tile_info.is_valid()) {
collective_epilogue.tensormaps_perform_update<IsEpiLoad>(
shared_storage.tensormaps.epilogue,
params.epilogue,
epi_load_tensormap,
problem_shape_MNKL,
work_tile_info.L_idx,
0
);
// Converge before issuing tensormap fence release since fence is aligned
__syncwarp();
collective_epilogue.tensormaps_cp_fence_release<IsEpiLoad>(shared_storage.tensormaps.epilogue, epi_load_tensormap, lane_predicate, 0);
}
load_order_barrier.wait();
while (work_tile_info.is_valid()) {
int32_t curr_batch = work_tile_info.L_idx;
// Get next work tile
auto [next_work_tile_info, increment_pipe] = scheduler.fetch_next_work(work_tile_info);
if (TileScheduler::compute_epilogue(work_tile_info, params.scheduler)) {
if constexpr (IsGroupedGemmKernel) {
problem_shape_MNKL = append<4>(params.problem_shape.get_problem_shape(work_tile_info.L_idx), work_tile_info.L_idx);
}
// Compute m_coord, n_coord, l_coord with the post-tiled m-shape and n-shape
auto m_coord = idx2crd(work_tile_info.M_idx, shape<2>(gA_mkl));
auto n_coord = idx2crd(work_tile_info.N_idx, shape<2>(gB_nkl));
auto l_coord = idx2crd(work_tile_info.L_idx, shape<4>(gB_nkl));
auto blk_coord = make_coord(m_coord, n_coord, _, l_coord);
if (did_batch_change) {
collective_epilogue.tensormaps_fence_acquire<IsEpiLoad>(epi_load_tensormap);
}
bool wait = work_tile_info.is_valid() && curr_batch != next_work_tile_info.L_idx;
epi_load_pipe_producer_state = collective_epilogue.load(
epi_load_pipeline,
epi_load_pipe_producer_state,
problem_shape_MNKL,
blk_shape,
blk_coord,
tiled_mma,
lane_idx,
shared_storage.tensors.epilogue,
epi_load_tensormap,
work_tile_info.reduction_subtile_idx(),
wait
);
}
work_tile_info = next_work_tile_info;
did_batch_change = curr_batch != work_tile_info.L_idx;
if (work_tile_info.is_valid() && did_batch_change) {
if constexpr (IsGroupedGemmKernel) {
problem_shape_MNKL = append<4>(params.problem_shape.get_problem_shape(work_tile_info.L_idx), work_tile_info.L_idx);
}
// tensormap update
{
collective_epilogue.tensormaps_perform_update<IsEpiLoad>(
shared_storage.tensormaps.epilogue,
params.epilogue,
epi_load_tensormap,
problem_shape_MNKL,
work_tile_info.L_idx,
0
);
// Converge before issuing tensormap fence release since fence is aligned
__syncwarp();
collective_epilogue.tensormaps_cp_fence_release<IsEpiLoad>(shared_storage.tensormaps.epilogue, epi_load_tensormap, lane_predicate, 0);
}
}
} // Scheduler work fetch loop
// Make sure all Consumer Warp Groups have been waited upon
collective_epilogue.load_tail(epi_load_pipeline, epi_load_pipe_producer_state);
} // Epilogue Producer Warp End
} // Producer Warp Group End
else if (warp_group_role == WarpGroupRole::Consumer0 || warp_group_role == WarpGroupRole::Consumer1) {
cutlass::arch::warpgroup_reg_alloc<MmaRegisterRequirement>();
// Index of warp group within consumer warp groups
int consumer_warp_group_idx = warp_group_role == WarpGroupRole::Consumer0 ? 0 : 1;
int32_t const sm_idx = blockIdx.x + (blockIdx.y * gridDim.x);
int32_t const sm_count = params.hw_info.sm_count;
// Do we potentially issue tail arrives for TMA stores, if epilogue load is waiting for it
bool do_store_tail = false;
// Get a copy of tensormaps
auto epi_store_tensormap = get<0>(collective_epilogue.store_init(params.epilogue, shared_storage.tensormaps.epilogue, sm_count, sm_idx, consumer_warp_group_idx));
bool did_batch_change = true;
constexpr bool IsEpiLoad = false;
if (work_tile_info.is_valid()) {
if (warp_idx_in_warp_group == 0) {
collective_epilogue.tensormaps_perform_update<IsEpiLoad>(
shared_storage.tensormaps.epilogue,
params.epilogue,
epi_store_tensormap,
problem_shape_MNKL,
work_tile_info.L_idx,
consumer_warp_group_idx
);
// Converge before issuing tensormap fence release since fence is aligned
__syncwarp();
collective_epilogue.tensormaps_cp_fence_release<IsEpiLoad>(shared_storage.tensormaps.epilogue,
epi_store_tensormap,
lane_predicate,
consumer_warp_group_idx);
}
}
while (work_tile_info.is_valid()) {
if constexpr (IsGroupedGemmKernel) {
problem_shape_MNKL = append<4>(params.problem_shape.get_problem_shape(work_tile_info.L_idx), work_tile_info.L_idx);
}
int32_t curr_batch = work_tile_info.L_idx;
// Compute m_coord, n_coord, l_coord with the post-tiled m-shape and n-shape
auto m_coord = idx2crd(work_tile_info.M_idx, shape<2>(gA_mkl));
auto n_coord = idx2crd(work_tile_info.N_idx, shape<2>(gB_nkl));
auto l_coord = idx2crd(work_tile_info.L_idx, shape<4>(gB_nkl));
auto blk_coord = make_coord(m_coord, n_coord, _, l_coord);
auto work_k_tile_count = TileScheduler::get_work_k_tile_count(work_tile_info, problem_shape_MNKL, blk_shape);
// Allocate the accumulators for the (M,N) blk_shape
//
// MSVC CTAD breaks if we say "Tensor" here, so we use "auto" instead.
auto accumulators = partition_fragment_C(tiled_mma, take<0,2>(blk_shape)); // (MMA,MMA_M,MMA_N)
static_assert(cute::is_any_of_v<TileScheduler,
detail::PersistentTileSchedulerSm90Group<ProblemShape>,
detail::PersistentTileSchedulerSm90>);
if (TileScheduler::valid_warpgroup_in_work_tile(work_tile_info)) {
math_wg_order_barrier.wait();
collective_mainloop.mma(
mainloop_pipeline,
mainloop_pipe_consumer_state,
accumulators,
work_k_tile_count,
mma_thread_idx,
shared_storage.tensors.mainloop,
params.mainloop
);
math_wg_order_barrier.arrive();
// Make sure the math instructions are done and free buffers before entering the epilogue
collective_mainloop.mma_tail(
mainloop_pipeline,
mainloop_pipe_consumer_state,
work_k_tile_count
);
math_wg_order_barrier.wait();
// Update starting mainloop pipeline state for the next tile
mainloop_pipe_consumer_state.advance(work_k_tile_count);
}
// Perform reduction across splits, if needed
TileScheduler::fixup(
params.scheduler, work_tile_info, accumulators, NumMmaWarpGroups, consumer_warp_group_idx);
if (did_batch_change) {
collective_epilogue.tensormaps_fence_acquire<IsEpiLoad>(epi_store_tensormap);
}
if (TileScheduler::compute_epilogue(work_tile_info, params.scheduler)) {
// Epilogue and write to gD
auto [epi_load_pipe_consumer_state_next, epi_store_pipe_producer_state_next] =
collective_epilogue.store(
epi_load_pipeline,
epi_load_pipe_consumer_state,
epi_store_pipeline,
epi_store_pipe_producer_state,
problem_shape_MNKL,
blk_shape,
blk_coord,
accumulators,
tiled_mma,
mma_thread_idx,
shared_storage.tensors.epilogue,
epi_store_tensormap,
work_tile_info.reduction_subtile_idx()
);
epi_load_pipe_consumer_state = epi_load_pipe_consumer_state_next;
epi_store_pipe_producer_state = epi_store_pipe_producer_state_next;
do_store_tail = true;
}
// Get next work tile
auto [next_work_tile_info, increment_pipe] = scheduler.fetch_next_work(work_tile_info);
work_tile_info = next_work_tile_info;
// Skip a tile for pingpong
if (work_tile_info.is_valid()) {
if constexpr (IsGroupedGemmKernel) {
problem_shape_MNKL = append<4>(params.problem_shape.get_problem_shape(work_tile_info.L_idx), work_tile_info.L_idx);
}
work_k_tile_count = TileScheduler::get_work_k_tile_count(work_tile_info, problem_shape_MNKL, blk_shape);
mainloop_pipe_consumer_state.advance(work_k_tile_count);
// Go to next tile
auto [next_next_work_tile_info, next_increment_pipe] = scheduler.fetch_next_work(work_tile_info);
work_tile_info = next_next_work_tile_info;
increment_pipe = next_increment_pipe;
}
did_batch_change = curr_batch != work_tile_info.L_idx;
if (work_tile_info.is_valid() && did_batch_change) {
if constexpr (IsGroupedGemmKernel) {
problem_shape_MNKL = append<4>(params.problem_shape.get_problem_shape(work_tile_info.L_idx), work_tile_info.L_idx);
}
if (warp_idx_in_warp_group == 0) {
collective_epilogue.tensormaps_perform_update<IsEpiLoad>(
shared_storage.tensormaps.epilogue,
params.epilogue,
epi_store_tensormap,
problem_shape_MNKL,
work_tile_info.L_idx,
consumer_warp_group_idx
);
// Converge before issuing tensormap fence release since fence is aligned
__syncwarp();
collective_epilogue.tensormaps_cp_fence_release<IsEpiLoad>(shared_storage.tensormaps.epilogue,
epi_store_tensormap,
lane_predicate,
consumer_warp_group_idx);
}
}
// TMA store pipeline wait is only visible to TMA-issuing warp, so for multiple-consumer kernels
// we need to wait for all TMA stores to complete before issuing consumer order barrier arrives
// to ensure next math consumer doesn't overwrite smem of in-flight TMA stores of current consumer.
auto [epi_load_pipe_consumer_state_next_, epi_store_pipe_producer_state_next_] =
collective_epilogue.store_tail(
epi_load_pipeline,
epi_load_pipe_consumer_state,
epi_store_pipeline,
epi_store_pipe_producer_state
);
// Update starting load/store pipeline states for the next tile
// state has already been incremented by 1 tile in collective calls, advance once again for ping pong
epi_load_pipe_consumer_state = epi_load_pipe_consumer_state_next_;
epi_store_pipe_producer_state = epi_store_pipe_producer_state_next_;
epi_load_pipe_consumer_state.advance(c_tile_count);
epi_store_pipe_producer_state.advance(d_tile_count);
// Cue for next Math WG's Epilogue to start
math_wg_order_barrier.arrive();
} // Scheduler work fetch loop
} // Consumer Warp Groups End
#endif
}
};
///////////////////////////////////////////////////////////////////////////////
} // namespace cutlass::gemm::kernel