-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathresnet18.py
200 lines (172 loc) · 6.22 KB
/
resnet18.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
"""
Builds ResNet18 from scratch using PyTorch.
This does not build generalized blocks for all ResNets, just for ResNet18.
Paper => Deep Residual Learning for Image Recognition.
Link => https://arxiv.org/pdf/1512.03385v1.pdf
"""
import torch.nn as nn
import torch
from torch.nn import functional as F
from torch import Tensor
from typing import Type
class BasicBlock(nn.Module):
def __init__(
self,
in_channels: int,
out_channels: int,
stride: int = 1,
expansion: int = 1,
downsample: nn.Module = None
) -> None:
super(BasicBlock, self).__init__()
# Multiplicative factor for the subsequent conv2d layer's output channels.
# It is 1 for ResNet18 and ResNet34.
self.expansion = expansion
self.downsample = downsample
self.conv1 = nn.Conv2d(
in_channels,
out_channels,
kernel_size=3,
stride=stride,
padding=1,
bias=False
)
self.bn1 = nn.BatchNorm2d(out_channels)
self.relu = nn.ReLU(inplace=True)
# self.dropout = nn.Dropout(p=0.1)
self.conv2 = nn.Conv2d(
out_channels,
out_channels*self.expansion,
kernel_size=3,
padding=1,
bias=False
)
self.bn2 = nn.BatchNorm2d(out_channels*self.expansion)
def forward(self, x: Tensor) -> Tensor:
identity = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
# out = self.dropout(out)
# out = F.dropout(out, p=0.1, training=self.training)
out = self.conv2(out)
out = self.bn2(out)
if self.downsample is not None:
identity = self.downsample(x)
out += identity
out = self.relu(out)
# out = F.dropout(out, p=0.1, training=self.training)
return out
class ResNet(nn.Module):
def __init__(
self,
img_channels: int,
num_layers: int,
block: Type[BasicBlock],
num_classes: int = 1000
) -> None:
super(ResNet, self).__init__()
if num_layers == 18:
# The following `layers` list defines the number of `BasicBlock`
# to use to build the network and how many basic blocks to stack
# together.
layers = [2, 2, 2, 2]
self.expansion = 1
self.in_channels = 64
# All ResNets (18 to 152) contain a Conv2d => BN => ReLU for the first
# three layers. Here, kernel size is 7.
self.conv1 = nn.Conv2d(
in_channels=img_channels,
out_channels=self.in_channels,
kernel_size=7,
stride=2,
padding=3,
bias=False
)
self.bn1 = nn.BatchNorm2d(self.in_channels)
self.relu = nn.ReLU(inplace=True)
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.layer1 = self._make_layer(block, 64, layers[0])
self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
# self.dropout = nn.Dropout(p=0.1)
# self.conv_1 = nn.Conv2d(512,512, kernel_size=(5,3), stride=(1,1), padding=(0,1), bias=False)
# self.bn1 = nn.BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
# self.relu = nn.ReLU(inplace=True)
# self.conv_2 = nn.Conv2d(512, 512, kernel_size=(5, 3), stride=(1, 1), padding=(0, 1), bias=False)
# self.bn2 = nn.BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
# self.fc = nn.Linear(512*self.expansion, num_classes)
def _make_layer(
self,
block: Type[BasicBlock],
out_channels: int,
blocks: int,
stride: int = 1
) -> nn.Sequential:
downsample = None
if stride != 1:
"""
This should pass from `layer2` to `layer4` or
when building ResNets50 and above. Section 3.3 of the paper
Deep Residual Learning for Image Recognition
(https://arxiv.org/pdf/1512.03385v1.pdf).
"""
downsample = nn.Sequential(
nn.Conv2d(
self.in_channels,
out_channels*self.expansion,
kernel_size=1,
stride=stride,
bias=False
),
nn.BatchNorm2d(out_channels * self.expansion),
)
layers = []
layers.append(
block(
self.in_channels, out_channels, stride, self.expansion, downsample
)
)
self.in_channels = out_channels * self.expansion
for i in range(1, blocks):
layers.append(block(
self.in_channels,
out_channels,
expansion=self.expansion
))
return nn.Sequential(*layers)
def forward(self, x: Tensor) -> Tensor:
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
# x = self.dropout(x)
x = self.maxpool(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
# print("Layer4 input dim: ", x.shape)
x = self.layer4(x)
# The spatial dimension of the final layer's feature
# map should be (7, 7) for all ResNets.
# x = self.Conv()
# print('Dimensions of the last convolutional feature map: ', x.shape)
#
x = self.avgpool(x)
x = torch.flatten(x, 1)
# x = self.fc(x)
return x
# if __name__ == '__main__':
# tensor = torch.rand([1, 1, 500, 224])
# model = ResNet(img_channels=1, num_layers=18, block=BasicBlock, num_classes=1000)
# print(model)
#
#
#
# # Total parameters and trainable parameters.
# total_params = sum(p.numel() for p in model.parameters())
# print(f"{total_params:,} total parameters.")
# total_trainable_params = sum(
# p.numel() for p in model.parameters() if p.requires_grad)
# print(f"{total_trainable_params:,} training parameters.")