-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathDMLMJ.m
156 lines (130 loc) · 4.91 KB
/
DMLMJ.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
function [L, params ] = DMLMJ(xTr, yTr, params)
%% Distance Metric Learning through Maximization of the getGeneralizedEigenvectors divergence
% INPUT
% xTr : input data (d x n)
% yTr : class label (n x 1)
% params:
% .kernel (If set to 1, a kerned method is applied, default = 0)
% .ker (Kernel type: 'rbf' or 'poly' will be applied, default = 'rbf')
% .knn (Number of neighbors, default = 5)
% .dim (Desired number of dimensionality, default = cross-validation)
% OUTPUT:
% L : A linear transformation
%
% Copyright by Bac Nguyen (bac.nguyencong@ugent.be)
%
%%
if (~exist('params', 'var'))
params = struct();
end
params = getDefaultParameters(params);
d = size(xTr, 1);
%% with kernel trick
% check the kernel option
if params.kernel ~= 0
if (strcmp(params.ker,'poly') )
fprintf('Sorry, not available yet!\n');
pause;
else
if (strcmp(params.ker, 'rbf') )
[sigma, d] = crossSigma(xTr, yTr, params);
params.sigma = sigma;
end
end
X = kernelmatrix('rbf', xTr, xTr, params.sigma);
% build the difference spaces
[S, D] = getDifferenceSpace(X, yTr, params);
else
%% without kernel trick
if isfield(params, 'dim') == 0
COV = cvpartition(yTr,'HoldOut',0.3);
d = crossvalidate(xTr(:,COV.training), yTr(COV.training),...
xTr(:, COV.test), yTr(COV.test), params);
else
d = params.dim;
end
% build the difference spaces
[S, D] = getDifferenceSpace(xTr, yTr, params);
end
% Estimate the covariance matrices
S = getSampleCov(S);
D = getSampleCov(D);
% Get the solution
L = getGeneralizedEigenvectors(D, S, d);
end
%% Auxiliar functions
% Return classification accuracy
function percent = knnValidate(L, xTr, yTr, xTe, yTe, knn)
X = L'* xTr;
Xt = L'* xTe;
preds = knnClassifier(X, yTr, knn, Xt);
percent = 100 * sum (preds == yTe) / length(yTe);
clear('preds', 'X', 'Xt');
end
% Do cross-validation to get stable sigma
function [sigma, d] = crossSigma(xTr, yTr, params)
fprintf('Crossvalidating sigma value for rbf kernel !!!\n');
k = 5; % number of fold cross-validation
[d, n]= size(xTr);
index = zeros(n, 1)==0;
rp = randperm(n);
sigma = 1;
act = 0;
knn = params.knn;
dbegin= 1;
dend = size(xTr,1);
if isfield(params, 'dim') == 1
dbegin= params.dim;
dend = params.dim;
end
for dim=dbegin:1:dend
for g = 2.^(-15:3); % values of sigma to try
temp = 0;
for i=1:k
test_start = ceil(n/k * (i-1)) + 1;
test_end = ceil(n/k * i);
index(rp(test_start:test_end)) = false;
% devide datasets
xtest = xTr(:, ~index);
ytest = yTr(~index);
xtrain = xTr(:, index);
ytrain = yTr(index);
% learning
X = kernelmatrix('rbf', xtrain, xtrain, g);
Xt = kernelmatrix('rbf', xtrain, xtest, g);
[S, D] = getDifferenceSpace(X, ytrain, params);
S = getSampleCov(S);
D = getSampleCov(D);
L = getGeneralizedEigenvectors(D, S, dim);
temp = temp + knnValidate(L, X, ytrain, Xt, ytest, knn);
index(rp(test_start:test_end)) = true;
end
temp = temp / k;
fprintf('Testing sigma = %.5f, obtained %.2f%c\n', g, temp, '%');
if (act < temp)
act = temp;
sigma = g;
d = dim;
end
end
end
fprintf('Best sigma = %.5f, d = %d obtained %.2f%c correct\n', sigma, d, act, '%');
end
% Do cross-validation to get stable dimension
function d = crossvalidate(xTr, yTr, xTe, yTe, params)
[S, D] = getDifferenceSpace(xTr, yTr, params);
S = getSampleCov(S);
D = getSampleCov(D);
L = getGeneralizedEigenvectors(D, S);
knn = params.knn;
act = 0;
d = size(L,1);
for i = size(L,1):-1:1
temp = knnValidate(L(:,1:i), xTr, yTr, xTe, yTe, knn);
if ( temp > act )
act = temp;
d = i;
end
end
fprintf('Best dimension is d = %d with %.2f%c correct\n', d, act, '%');
end