-
Notifications
You must be signed in to change notification settings - Fork 14
/
experiment_builder.py
383 lines (315 loc) · 20.1 KB
/
experiment_builder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
import tqdm
import os
import numpy as np
import sys
from utils.storage import build_experiment_folder, save_statistics, save_to_json
import time
import torch
class ExperimentBuilder(object):
def __init__(self, args, data, model, device):
"""
Initializes an experiment builder using a named tuple (args), a data provider (data), a meta learning system
(model) and a device (e.g. gpu/cpu/n)
:param args: A namedtuple containing all experiment hyperparameters
:param data: A data provider of instance MetaLearningSystemDataLoader
:param model: A meta learning system instance
:param device: Device/s to use for the experiment
"""
self.args, self.device = args, device
self.model = model
self.saved_models_filepath, self.logs_filepath, self.samples_filepath = build_experiment_folder(
experiment_name=self.args.experiment_name)
self.total_losses = dict()
self.state = dict()
self.state['best_val_acc'] = 0.
self.state['best_val_iter'] = 0
self.state['current_iter'] = 0
self.state['current_iter'] = 0
self.start_epoch = 0
self.max_models_to_save = self.args.max_models_to_save
self.create_summary_csv = False
experiment_path = os.path.abspath(self.args.experiment_name)
exp_name = experiment_path.split('/')[-1]
log_base_dir = 'logs'
os.makedirs(log_base_dir, exist_ok=True)
log_dir = os.path.join(log_base_dir, exp_name)
print(log_dir)
if self.args.continue_from_epoch == 'from_scratch':
self.create_summary_csv = True
elif self.args.continue_from_epoch == 'latest':
checkpoint = os.path.join(self.saved_models_filepath, "train_model_latest")
print("attempting to find existing checkpoint", )
if os.path.exists(checkpoint):
self.state = \
self.model.load_model(model_save_dir=self.saved_models_filepath, model_name="train_model",
model_idx='latest')
self.start_epoch = int(self.state['current_iter'] / self.args.total_iter_per_epoch)
else:
self.args.continue_from_epoch = 'from_scratch'
self.create_summary_csv = True
elif int(self.args.continue_from_epoch) >= 0:
self.state = \
self.model.load_model(model_save_dir=self.saved_models_filepath, model_name="train_model",
model_idx=self.args.continue_from_epoch)
self.start_epoch = int(self.state['current_iter'] / self.args.total_iter_per_epoch)
self.data = data(args=args, current_iter=self.state['current_iter'])
print("train_seed {}, val_seed: {}, at start time".format(self.data.dataset.seed["train"],
self.data.dataset.seed["val"]))
self.total_epochs_before_pause = self.args.total_epochs_before_pause
self.state['best_epoch'] = int(self.state['best_val_iter'] / self.args.total_iter_per_epoch)
self.epoch = int(self.state['current_iter'] / self.args.total_iter_per_epoch)
self.augment_flag = True if 'omniglot' in self.args.dataset_name.lower() else False
self.start_time = time.time()
self.epochs_done_in_this_run = 0
print(self.state['current_iter'], int(self.args.total_iter_per_epoch * self.args.total_epochs))
def build_summary_dict(self, total_losses, phase, summary_losses=None):
"""
Builds/Updates a summary dict directly from the metric dict of the current iteration.
:param total_losses: Current dict with total losses (not aggregations) from experiment
:param phase: Current training phase
:param summary_losses: Current summarised (aggregated/summarised) losses stats means, stdv etc.
:return: A new summary dict with the updated summary statistics information.
"""
if summary_losses is None:
summary_losses = dict()
for key in total_losses:
summary_losses["{}_{}_mean".format(phase, key)] = np.mean(total_losses[key])
summary_losses["{}_{}_std".format(phase, key)] = np.std(total_losses[key])
return summary_losses
def build_loss_summary_string(self, summary_losses):
"""
Builds a progress bar summary string given current summary losses dictionary
:param summary_losses: Current summary statistics
:return: A summary string ready to be shown to humans.
"""
output_update = ""
for key, value in zip(list(summary_losses.keys()), list(summary_losses.values())):
if "loss" in key or "accuracy" in key:
value = float(value)
output_update += "{}: {:.4f}, ".format(key, value)
return output_update
def merge_two_dicts(self, first_dict, second_dict):
"""Given two dicts, merge them into a new dict as a shallow copy."""
z = first_dict.copy()
z.update(second_dict)
return z
def train_iteration(self, train_sample, sample_idx, epoch_idx, total_losses, current_iter, pbar_train):
"""
Runs a training iteration, updates the progress bar and returns the total and current epoch train losses.
:param train_sample: A sample from the data provider
:param sample_idx: The index of the incoming sample, in relation to the current training run.
:param epoch_idx: The epoch index.
:param total_losses: The current total losses dictionary to be updated.
:param current_iter: The current training iteration in relation to the whole experiment.
:param pbar_train: The progress bar of the training.
:return: Updates total_losses, train_losses, current_iter
"""
x_support_set, x_target_set, y_support_set, y_target_set, seed = train_sample
data_batch = (x_support_set, x_target_set, y_support_set, y_target_set)
if sample_idx == 0:
print("shape of data", x_support_set.shape, x_target_set.shape, y_support_set.shape,
y_target_set.shape)
losses, _ = self.model.run_train_iter(data_batch=data_batch, epoch=epoch_idx)
for key, value in zip(list(losses.keys()), list(losses.values())):
if key not in total_losses:
total_losses[key] = [float(value)]
else:
total_losses[key].append(float(value))
train_losses = self.build_summary_dict(total_losses=total_losses, phase="train")
train_output_update = self.build_loss_summary_string(losses)
pbar_train.update(1)
pbar_train.set_description("training phase {} -> {}".format(self.epoch, train_output_update))
current_iter += 1
return train_losses, total_losses, current_iter
def evaluation_iteration(self, val_sample, total_losses, pbar_val, phase):
"""
Runs a validation iteration, updates the progress bar and returns the total and current epoch val losses.
:param val_sample: A sample from the data provider
:param total_losses: The current total losses dictionary to be updated.
:param pbar_val: The progress bar of the val stage.
:return: The updated val_losses, total_losses
"""
x_support_set, x_target_set, y_support_set, y_target_set, seed = val_sample
data_batch = (
x_support_set, x_target_set, y_support_set, y_target_set)
losses, _ = self.model.run_validation_iter(data_batch=data_batch)
for key, value in zip(list(losses.keys()), list(losses.values())):
if key not in total_losses:
total_losses[key] = [float(value)]
else:
total_losses[key].append(float(value))
val_losses = self.build_summary_dict(total_losses=total_losses, phase=phase)
val_output_update = self.build_loss_summary_string(losses)
pbar_val.update(1)
pbar_val.set_description(
"val_phase {} -> {}".format(self.epoch, val_output_update))
return val_losses, total_losses
def test_evaluation_iteration(self, val_sample, model_idx, sample_idx, per_model_per_batch_preds, pbar_test):
"""
Runs a validation iteration, updates the progress bar and returns the total and current epoch val losses.
:param val_sample: A sample from the data provider
:param total_losses: The current total losses dictionary to be updated.
:param pbar_test: The progress bar of the val stage.
:return: The updated val_losses, total_losses
"""
x_support_set, x_target_set, y_support_set, y_target_set, seed = val_sample
data_batch = (
x_support_set, x_target_set, y_support_set, y_target_set)
losses, per_task_preds = self.model.run_validation_iter(data_batch=data_batch)
per_model_per_batch_preds[model_idx].extend(list(per_task_preds))
test_output_update = self.build_loss_summary_string(losses)
pbar_test.update(1)
pbar_test.set_description(
"test_phase {} -> {}".format(self.epoch, test_output_update))
return per_model_per_batch_preds
def save_models(self, model, epoch, state):
"""
Saves two separate instances of the current model. One to be kept for history and reloading later and another
one marked as "latest" to be used by the system for the next epoch training. Useful when the training/val
process is interrupted or stopped. Leads to fault tolerant training and validation systems that can continue
from where they left off before.
:param model: Current meta learning model of any instance within the few_shot_learning_system.py
:param epoch: Current epoch
:param state: Current model and experiment state dict.
"""
model.save_model(model_save_dir=os.path.join(self.saved_models_filepath, "train_model_{}".format(int(epoch))),
state=state)
model.save_model(model_save_dir=os.path.join(self.saved_models_filepath, "train_model_latest"),
state=state)
print("saved models to", self.saved_models_filepath)
def pack_and_save_metrics(self, start_time, create_summary_csv, train_losses, val_losses, state):
"""
Given current epochs start_time, train losses, val losses and whether to create a new stats csv file, pack stats
and save into a statistics csv file. Return a new start time for the new epoch.
:param start_time: The start time of the current epoch
:param create_summary_csv: A boolean variable indicating whether to create a new statistics file or
append results to existing one
:param train_losses: A dictionary with the current train losses
:param val_losses: A dictionary with the currrent val loss
:return: The current time, to be used for the next epoch.
"""
epoch_summary_losses = self.merge_two_dicts(first_dict=train_losses, second_dict=val_losses)
if 'per_epoch_statistics' not in state:
state['per_epoch_statistics'] = dict()
for key, value in epoch_summary_losses.items():
if key not in state['per_epoch_statistics']:
state['per_epoch_statistics'][key] = [value]
else:
state['per_epoch_statistics'][key].append(value)
epoch_summary_string = self.build_loss_summary_string(epoch_summary_losses)
epoch_summary_losses["epoch"] = self.epoch
epoch_summary_losses['epoch_run_time'] = time.time() - start_time
if create_summary_csv:
self.summary_statistics_filepath = save_statistics(self.logs_filepath, list(epoch_summary_losses.keys()),
create=True)
self.create_summary_csv = False
start_time = time.time()
print("epoch {} -> {}".format(epoch_summary_losses["epoch"], epoch_summary_string))
self.summary_statistics_filepath = save_statistics(self.logs_filepath,
list(epoch_summary_losses.values()))
return start_time, state
def evaluated_test_set_using_the_best_models(self, top_n_models):
per_epoch_statistics = self.state['per_epoch_statistics']
val_acc = np.copy(per_epoch_statistics['val_accuracy_mean'])
val_idx = np.array([i for i in range(len(val_acc))])
sorted_idx = np.argsort(val_acc, axis=0).astype(dtype=np.int32)[::-1][:top_n_models]
sorted_val_acc = val_acc[sorted_idx]
val_idx = val_idx[sorted_idx]
print(sorted_idx)
print(sorted_val_acc)
top_n_idx = val_idx[:top_n_models]
per_model_per_batch_preds = [[] for i in range(top_n_models)]
per_model_per_batch_targets = [[] for i in range(top_n_models)]
test_losses = [dict() for i in range(top_n_models)]
for idx, model_idx in enumerate(top_n_idx):
self.state = \
self.model.load_model(model_save_dir=self.saved_models_filepath, model_name="train_model",
model_idx=model_idx + 1)
with tqdm.tqdm(total=int(self.args.num_evaluation_tasks / self.args.batch_size)) as pbar_test:
for sample_idx, test_sample in enumerate(
self.data.get_test_batches(total_batches=int(self.args.num_evaluation_tasks / self.args.batch_size),
augment_images=False)):
#print(test_sample[4])
per_model_per_batch_targets[idx].extend(np.array(test_sample[3]))
per_model_per_batch_preds = self.test_evaluation_iteration(val_sample=test_sample,
sample_idx=sample_idx,
model_idx=idx,
per_model_per_batch_preds=per_model_per_batch_preds,
pbar_test=pbar_test)
# for i in range(top_n_models):
# print("test assertion", 0)
# print(per_model_per_batch_targets[0], per_model_per_batch_targets[i])
# assert np.equal(np.array(per_model_per_batch_targets[0]), np.array(per_model_per_batch_targets[i]))
per_batch_preds = np.mean(per_model_per_batch_preds, axis=0)
#print(per_batch_preds.shape)
per_batch_max = np.argmax(per_batch_preds, axis=2)
per_batch_targets = np.array(per_model_per_batch_targets[0]).reshape(per_batch_max.shape)
#print(per_batch_max)
accuracy = np.mean(np.equal(per_batch_targets, per_batch_max))
accuracy_std = np.std(np.equal(per_batch_targets, per_batch_max))
test_losses = {"test_accuracy_mean": accuracy, "test_accuracy_std": accuracy_std}
_ = save_statistics(self.logs_filepath,
list(test_losses.keys()),
create=True, filename="test_summary.csv")
summary_statistics_filepath = save_statistics(self.logs_filepath,
list(test_losses.values()),
create=False, filename="test_summary.csv")
print(test_losses)
print("saved test performance at", summary_statistics_filepath)
def run_experiment(self):
"""
Runs a full training experiment with evaluations of the model on the val set at every epoch. Furthermore,
will return the test set evaluation results on the best performing validation model.
"""
with tqdm.tqdm(initial=self.state['current_iter'],
total=int(self.args.total_iter_per_epoch * self.args.total_epochs)) as pbar_train:
while (self.state['current_iter'] < (self.args.total_epochs * self.args.total_iter_per_epoch)) and (self.args.evaluate_on_test_set_only == False):
for train_sample_idx, train_sample in enumerate(
self.data.get_train_batches(total_batches=int(self.args.total_iter_per_epoch *
self.args.total_epochs) - self.state[
'current_iter'],
augment_images=self.augment_flag)):
# print(self.state['current_iter'], (self.args.total_epochs * self.args.total_iter_per_epoch))
train_losses, total_losses, self.state['current_iter'] = self.train_iteration(
train_sample=train_sample,
total_losses=self.total_losses,
epoch_idx=(self.state['current_iter'] /
self.args.total_iter_per_epoch),
pbar_train=pbar_train,
current_iter=self.state['current_iter'],
sample_idx=self.state['current_iter'])
if self.state['current_iter'] % self.args.total_iter_per_epoch == 0:
total_losses = dict()
val_losses = dict()
with tqdm.tqdm(total=int(self.args.num_evaluation_tasks / self.args.batch_size)) as pbar_val:
for _, val_sample in enumerate(
self.data.get_val_batches(total_batches=int(self.args.num_evaluation_tasks / self.args.batch_size),
augment_images=False)):
val_losses, total_losses = self.evaluation_iteration(val_sample=val_sample,
total_losses=total_losses,
pbar_val=pbar_val, phase='val')
if val_losses["val_accuracy_mean"] > self.state['best_val_acc']:
print("Best validation accuracy", val_losses["val_accuracy_mean"])
self.state['best_val_acc'] = val_losses["val_accuracy_mean"]
self.state['best_val_iter'] = self.state['current_iter']
self.state['best_epoch'] = int(
self.state['best_val_iter'] / self.args.total_iter_per_epoch)
self.epoch += 1
self.state = self.merge_two_dicts(first_dict=self.merge_two_dicts(first_dict=self.state,
second_dict=train_losses),
second_dict=val_losses)
self.save_models(model=self.model, epoch=self.epoch, state=self.state)
self.start_time, self.state = self.pack_and_save_metrics(start_time=self.start_time,
create_summary_csv=self.create_summary_csv,
train_losses=train_losses,
val_losses=val_losses,
state=self.state)
self.total_losses = dict()
self.epochs_done_in_this_run += 1
save_to_json(filename=os.path.join(self.logs_filepath, "summary_statistics.json"),
dict_to_store=self.state['per_epoch_statistics'])
if self.epochs_done_in_this_run >= self.total_epochs_before_pause:
print("train_seed {}, val_seed: {}, at pause time".format(self.data.dataset.seed["train"],
self.data.dataset.seed["val"]))
sys.exit()
self.evaluated_test_set_using_the_best_models(top_n_models=5)