-
Notifications
You must be signed in to change notification settings - Fork 204
/
classifyApp.py
92 lines (83 loc) · 4.33 KB
/
classifyApp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
# coding: utf-8
import tensorflow as tf
import numpy as np
import os
import time
import datetime
from classifyUtils import data_process
from text_cnn import TextCNN
import math
from tensorflow.contrib import learn
import jieba
#tf.reset_default_graph()
class classifyApplication:
def __init__(self,sess,device='/gpu:1'):
with sess.as_default():
with sess.graph.as_default():
self.word_embedings_path="./data_ai/cbowData/classifyDocument.txt.ebd.npy"
self.vocb_path = "./data_ai/cbowData/classifyDocument.txt.vab"
self.model_path="./data_ai/classifyModel"
self.num_classes = 9
self.max_sentence_len = 20
self.embedding_dim = 200
self.filter_sizes="2,3,4"
self.dropout_keep_prob=1.0
self.l2_reg_lambda=0.0
self.num_filters=128
self.num_checkpoints =1
self.data_helpers = data_process(
train_data_path="",
word_embedings_path=self.word_embedings_path,
vocb_path=self.vocb_path,
num_classes=self.num_classes,
max_document_length = self.max_sentence_len)
self.data_helpers.load_wordebedding()
self.cnn = TextCNN(
w2v_model= self.data_helpers.word_embeddings,
sequence_length=self.max_sentence_len,
num_classes=self.num_classes,
embedding_size= self.embedding_dim,
filter_sizes=list(map(int, self.filter_sizes.split(","))),
num_filters= self.num_filters,
l2_reg_lambda= self.l2_reg_lambda,
device = device
)
self.saver = tf.train.Saver(max_to_keep= self.num_checkpoints)
ckpt = tf.train.get_checkpoint_state(self.model_path)
if ckpt and ckpt.model_checkpoint_path:
self.saver.restore(sess, ckpt.model_checkpoint_path)
print("restore from history model.")
else:
print("there is no classify model.")
def classifyApp(self,sess):
with sess.as_default():
with sess.graph.as_default():
text="application"
while(text!="" and text!=" "):
text=input("请输入一句话:")
if text == "quit" or text=="" or text == " ":break
text = text.strip()
seg_list=list(jieba.cut(text))
x_data = self.data_helpers.handle_input(' '.join(seg_list))
feed_dict = {self.cnn.input_x: x_data,self.cnn.dropout_keep_prob: self.dropout_keep_prob}
_predic = sess.run([self.cnn.predictions],feed_dict)
print("%s is %d"%(text,_predic[0]))
def questionClassify(self,sess,text):
with sess.as_default():
with sess.graph.as_default():
text = text.strip()
seg_list=list(jieba.cut(text))
x_data = self.data_helpers.handle_input(' '.join(seg_list))
feed_dict = {self.cnn.input_x: x_data,self.cnn.dropout_keep_prob: self.dropout_keep_prob}
_predic = sess.run([self.cnn.predictions],feed_dict)
return _predic[0]
if __name__ == "__main__":
graph = tf.Graph()
# 使用allow_growth option,刚一开始分配少量的GPU容量,然后按需慢慢的增加
log_device_placement = True # 是否打印设备分配日志
allow_soft_placement = True # 如果你指定的设备不存在,允许TF自动分配设备
gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.3)
session_conf = tf.ConfigProto(gpu_options=gpu_options,allow_soft_placement= allow_soft_placement,log_device_placement= log_device_placement)
sess = tf.Session(graph=graph,config=session_conf)
classifyApp =classifyApplication(sess)
classifyApp.classifyApp(sess)