diff --git a/arch/unitroot/unitroot.py b/arch/unitroot/unitroot.py index 61bac43d2e..6cb116b2ca 100644 --- a/arch/unitroot/unitroot.py +++ b/arch/unitroot/unitroot.py @@ -139,7 +139,7 @@ def _select_best_ic( Parameters ---------- - method : {'aic', 'bic', 't-stat'} + method : {"aic", "bic", "t-stat"} Method to use when finding the lag length nobs : float Number of observations in time series @@ -147,7 +147,7 @@ def _select_best_ic( maxlag + 1 array containing MLE estimates of the residual variance tstat : ndarray maxlag + 1 array containing t-statistic values. Only used if method - is 't-stat' + is "t-stat" Returns ------- @@ -196,9 +196,9 @@ def _autolag_ols_low_memory( Variable being tested for a unit root maxlag : int The highest lag order for lag length selection. - trend : {'nc', 'c', 'ct','ctt'} + trend : {"n", "c", "ct", "ctt"} Trend in the model - method : {'aic', 'bic', 't-stat'} + method : {"aic", "bic", "t-stat"} Method to use when finding the lag length Returns @@ -290,10 +290,11 @@ def _autolag_ols( The first zero-indexed column to hold a lag. See Notes. maxlag : int The highest lag order for lag length selection. - method : {'aic', 'bic', 't-stat'} - aic - Akaike Information Criterion - bic - Bayes Information Criterion - t-stat - Based on last lag + method : {"aic", "bic", "t-stat"} + + * aic - Akaike Information Criterion + * bic - Bayes Information Criterion + * t-stat - Based on last lag Returns ------- @@ -353,13 +354,13 @@ def _df_select_lags( ---------- y : ndarray The data for the lag selection exercise - trend : {'nc','c','ct','ctt'} + trend : {"n","c","ct","ctt"} The trend order max_lags : int The maximum number of lags to check. This setting affects all estimation since the sample is adjusted by max_lags when fitting the models - method : {'AIC','BIC','t-stat'} + method : {"AIC","BIC","t-stat"} The method to use when estimating the model low_memory : bool Flag indicating whether to use the low-memory algorithm for @@ -418,7 +419,7 @@ def _estimate_df_regression(y: NDArray, trend: str, lags: int) -> RegressionResu ---------- y : ndarray The data for the lag selection - trend : {'nc','c','ct','ctt'} + trend : {"n","c","ct","ctt"} The trend order lags : int The number of lags to include in the ADF regression @@ -667,19 +668,23 @@ class ADF(UnitRootTest, metaclass=AbstractDocStringInheritor): The number of lags to use in the ADF regression. If omitted or None, `method` is used to automatically select the lag length with no more than `max_lags` are included. - trend : {'nc', 'c', 'ct', 'ctt'}, optional - The trend component to include in the ADF test - 'nc' - No trend components - 'c' - Include a constant (Default) - 'ct' - Include a constant and linear time trend - 'ctt' - Include a constant and linear and quadratic time trends + trend : {"n", "c", "ct", "ctt"}, optional + The trend component to include in the test + + - "n" - No trend components + - "c" - Include a constant (Default) + - "ct" - Include a constant and linear time trend + - "ctt" - Include a constant and linear and quadratic time trends + max_lags : int, optional The maximum number of lags to use when selecting lag length - method : {'AIC', 'BIC', 't-stat'}, optional + method : {"AIC", "BIC", "t-stat"}, optional The method to use when selecting the lag length - 'AIC' - Select the minimum of the Akaike IC - 'BIC' - Select the minimum of the Schwarz/Bayesian IC - 't-stat' - Select the minimum of the Schwarz/Bayesian IC + + - "AIC" - Select the minimum of the Akaike IC + - "BIC" - Select the minimum of the Schwarz/Bayesian IC + - "t-stat" - Select the minimum of the Schwarz/Bayesian IC + low_memory : bool Flag indicating whether to use a low memory implementation of the lag selection algorithm. The low memory algorithm is slower than @@ -708,18 +713,18 @@ class ADF(UnitRootTest, metaclass=AbstractDocStringInheritor): >>> import numpy as np >>> import statsmodels.api as sm >>> data = sm.datasets.macrodata.load().data - >>> inflation = np.diff(np.log(data['cpi'])) + >>> inflation = np.diff(np.log(data["cpi"])) >>> adf = ADF(inflation) - >>> print('{0:0.4f}'.format(adf.stat)) + >>> print("{0:0.4f}".format(adf.stat)) -3.0931 - >>> print('{0:0.4f}'.format(adf.pvalue)) + >>> print("{0:0.4f}".format(adf.pvalue)) 0.0271 >>> adf.lags 2 - >>> adf.trend='ct' - >>> print('{0:0.4f}'.format(adf.stat)) + >>> adf.trend="ct" + >>> print("{0:0.4f}".format(adf.stat)) -3.2111 - >>> print('{0:0.4f}'.format(adf.pvalue)) + >>> print("{0:0.4f}".format(adf.pvalue)) 0.0822 References @@ -832,17 +837,20 @@ class DFGLS(UnitRootTest, metaclass=AbstractDocStringInheritor): The number of lags to use in the ADF regression. If omitted or None, `method` is used to automatically select the lag length with no more than `max_lags` are included. - trend : {'c', 'ct'}, optional - The trend component to include in the ADF test - 'c' - Include a constant (Default) - 'ct' - Include a constant and linear time trend + trend : {"c", "ct"}, optional + The trend component to include in the test + + - "c" - Include a constant (Default) + - "ct" - Include a constant and linear time trend + max_lags : int, optional The maximum number of lags to use when selecting lag length - method : {'AIC', 'BIC', 't-stat'}, optional + method : {"AIC", "BIC", "t-stat"}, optional The method to use when selecting the lag length - 'AIC' - Select the minimum of the Akaike IC - 'BIC' - Select the minimum of the Schwarz/Bayesian IC - 't-stat' - Select the minimum of the Schwarz/Bayesian IC + + - "AIC" - Select the minimum of the Akaike IC + - "BIC" - Select the minimum of the Schwarz/Bayesian IC + - "t-stat" - Select the minimum of the Schwarz/Bayesian IC Notes ----- @@ -854,8 +862,8 @@ class DFGLS(UnitRootTest, metaclass=AbstractDocStringInheritor): DFGLS differs from the ADF test in that an initial GLS detrending step is used before a trend-less ADF regression is run. - Critical values and p-values when trend is 'c' are identical to - the ADF. When trend is set to 'ct, they are from ... + Critical values and p-values when trend is "c" are identical to + the ADF. When trend is set to "ct", they are from ... Examples -------- @@ -863,18 +871,18 @@ class DFGLS(UnitRootTest, metaclass=AbstractDocStringInheritor): >>> import numpy as np >>> import statsmodels.api as sm >>> data = sm.datasets.macrodata.load().data - >>> inflation = np.diff(np.log(data['cpi'])) + >>> inflation = np.diff(np.log(data["cpi"])) >>> dfgls = DFGLS(inflation) - >>> print('{0:0.4f}'.format(dfgls.stat)) + >>> print("{0:0.4f}".format(dfgls.stat)) -2.7611 - >>> print('{0:0.4f}'.format(dfgls.pvalue)) + >>> print("{0:0.4f}".format(dfgls.pvalue)) 0.0059 >>> dfgls.lags 2 - >>> dfgls.trend = 'ct' - >>> print('{0:0.4f}'.format(dfgls.stat)) + >>> dfgls.trend = "ct" + >>> print("{0:0.4f}".format(dfgls.stat)) -2.9036 - >>> print('{0:0.4f}'.format(dfgls.pvalue)) + >>> print("{0:0.4f}".format(dfgls.pvalue)) 0.0447 References @@ -1011,14 +1019,16 @@ class PhillipsPerron(UnitRootTest, metaclass=AbstractDocStringInheritor): The number of lags to use in the Newey-West estimator of the long-run covariance. If omitted or None, the lag length is set automatically to 12 * (nobs/100) ** (1/4) - trend : {'nc', 'c', 'ct'}, optional - The trend component to include in the ADF test - 'nc' - No trend components - 'c' - Include a constant (Default) - 'ct' - Include a constant and linear time trend - test_type : {'tau', 'rho'} - The test to use when computing the test statistic. 'tau' is based on - the t-stat and 'rho' uses a test based on nobs times the re-centered + trend : {"n", "c", "ct"}, optional + The trend component to include in the test + + - "n" - No trend components + - "c" - Include a constant (Default) + - "ct" - Include a constant and linear time trend + + test_type : {"tau", "rho"} + The test to use when computing the test statistic. "tau" is based on + the t-stat and "rho" uses a test based on nobs times the re-centered regression coefficient Notes @@ -1044,23 +1054,23 @@ class PhillipsPerron(UnitRootTest, metaclass=AbstractDocStringInheritor): >>> import numpy as np >>> import statsmodels.api as sm >>> data = sm.datasets.macrodata.load().data - >>> inflation = np.diff(np.log(data['cpi'])) + >>> inflation = np.diff(np.log(data["cpi"])) >>> pp = PhillipsPerron(inflation) - >>> print('{0:0.4f}'.format(pp.stat)) + >>> print("{0:0.4f}".format(pp.stat)) -8.1356 - >>> print('{0:0.4f}'.format(pp.pvalue)) + >>> print("{0:0.4f}".format(pp.pvalue)) 0.0000 >>> pp.lags 15 - >>> pp.trend = 'ct' - >>> print('{0:0.4f}'.format(pp.stat)) + >>> pp.trend = "ct" + >>> print("{0:0.4f}".format(pp.stat)) -8.2022 - >>> print('{0:0.4f}'.format(pp.pvalue)) + >>> print("{0:0.4f}".format(pp.pvalue)) 0.0000 - >>> pp.test_type = 'rho' - >>> print('{0:0.4f}'.format(pp.stat)) + >>> pp.test_type = "rho" + >>> print("{0:0.4f}".format(pp.stat)) -120.3271 - >>> print('{0:0.4f}'.format(pp.pvalue)) + >>> print("{0:0.4f}".format(pp.pvalue)) 0.0000 References @@ -1179,8 +1189,10 @@ def _compute_statistic(self) -> None: @property def test_type(self) -> str: - """Gets or sets the test type returned by stat. - Valid values are 'tau' or 'rho'""" + """ + Gets or sets the test type returned by stat. + Valid values are "tau" or "rho" + """ return self._test_type @test_type.setter @@ -1218,10 +1230,10 @@ class KPSS(UnitRootTest, metaclass=AbstractDocStringInheritor): Andrews (1991), Newey & West (1994), and Schwert (1989). Set lags=-1 to use the old method that only depends on the sample size, 12 * (nobs/100) ** (1/4). - trend : {'c', 'ct'}, optional + trend : {"c", "ct"}, optional The trend component to include in the ADF test - 'c' - Include a constant (Default) - 'ct' - Include a constant and linear time trend + "c" - Include a constant (Default) + "ct" - Include a constant and linear time trend Notes ----- @@ -1240,16 +1252,16 @@ class KPSS(UnitRootTest, metaclass=AbstractDocStringInheritor): >>> import numpy as np >>> import statsmodels.api as sm >>> data = sm.datasets.macrodata.load().data - >>> inflation = np.diff(np.log(data['cpi'])) + >>> inflation = np.diff(np.log(data["cpi"])) >>> kpss = KPSS(inflation) - >>> print('{0:0.4f}'.format(kpss.stat)) + >>> print("{0:0.4f}".format(kpss.stat)) 0.2870 - >>> print('{0:0.4f}'.format(kpss.pvalue)) + >>> print("{0:0.4f}".format(kpss.pvalue)) 0.1473 - >>> kpss.trend = 'ct' - >>> print('{0:0.4f}'.format(kpss.stat)) + >>> kpss.trend = "ct" + >>> print("{0:0.4f}".format(kpss.stat)) 0.2075 - >>> print('{0:0.4f}'.format(kpss.pvalue)) + >>> print("{0:0.4f}".format(kpss.pvalue)) 0.0128 References @@ -1381,21 +1393,24 @@ class ZivotAndrews(UnitRootTest, metaclass=AbstractDocStringInheritor): The number of lags to use in the ADF regression. If omitted or None, `method` is used to automatically select the lag length with no more than `max_lags` are included. - trend : {'c', 't', 'ct'}, optional - The trend component to include in the Zivot-Andrews test - 'c' - Include a constant (Default) - 't' - Include a linear time trend - 'ct' - Include a constant and linear time trend + trend : {"c", "t", "ct"}, optional + The trend component to include in the test + + - "c" - Include a constant (Default) + - "t" - Include a linear time trend + - "ct" - Include a constant and linear time trend + trim : float percentage of series at begin/end to exclude from break-period calculation in range [0, 0.333] (default=0.15) max_lags : int, optional The maximum number of lags to use when selecting lag length - method : {'AIC', 'BIC', 't-stat'}, optional + method : {"AIC", "BIC", "t-stat"}, optional The method to use when selecting the lag length - 'AIC' - Select the minimum of the Akaike IC - 'BIC' - Select the minimum of the Schwarz/Bayesian IC - 't-stat' - Select the minimum of the Schwarz/Bayesian IC + + - "AIC" - Select the minimum of the Akaike IC + - "BIC" - Select the minimum of the Schwarz/Bayesian IC + - "t-stat" - Select the minimum of the Schwarz/Bayesian IC Notes ----- @@ -1586,8 +1601,8 @@ class VarianceRatio(UnitRootTest, metaclass=AbstractDocStringInheritor): lags : int The number of periods to used in the multi-period variance, which is the numerator of the test statistic. Must be at least 2 - trend : {'nc', 'c'}, optional - 'c' allows for a non-zero drift in the random walk, while 'nc' requires + trend : {"n", "c"}, optional + "c" allows for a non-zero drift in the random walk, while "n" requires that the increments to y are mean 0 overlap : bool, optional Indicates whether to use all overlapping blocks. Default is True. If @@ -1612,11 +1627,11 @@ class VarianceRatio(UnitRootTest, metaclass=AbstractDocStringInheritor): >>> from arch.unitroot import VarianceRatio >>> import datetime as dt >>> import pandas_datareader as pdr - >>> data = pdr.get_data_fred('DJIA') - >>> data = data.resample('M').last() # End of month - >>> returns = data['DJIA'].pct_change().dropna() + >>> data = pdr.get_data_fred("DJIA") + >>> data = data.resample("M").last() # End of month + >>> returns = data["DJIA"].pct_change().dropna() >>> vr = VarianceRatio(returns, lags=12) - >>> print('{0:0.4f}'.format(vr.pvalue)) + >>> print("{0:0.4f}".format(vr.pvalue)) 0.0000 References @@ -1778,18 +1793,18 @@ def mackinnonp( ---------- stat : float "T-value" from an Augmented Dickey-Fuller or DFGLS regression. - regression : {'c', 'nc', 'ct', 'ctt'} + regression : {"c", "n", "ct", "ctt"} This is the method of regression that was used. Following MacKinnon's notation, this can be "c" for constant, "n" for no constant, "ct" for constant and trend, and "ctt" for constant, trend, and trend-squared. num_unit_roots : int The number of series believed to be I(1). For (Augmented) Dickey- Fuller N = 1. - dist_type : {'ADF-t', 'ADF-z', 'DFGLS'} + dist_type : {"ADF-t", "ADF-z", "DFGLS"} The test type to use when computing p-values. Options include - 'ADF-t' - ADF t-stat based bootstrap - 'ADF-z' - ADF z bootstrap - 'DFGLS' - GLS detrended Dickey Fuller + "ADF-t" - ADF t-stat based bootstrap + "ADF-z" - ADF z bootstrap + "DFGLS" - GLS detrended Dickey Fuller Returns ------- @@ -1805,7 +1820,7 @@ def mackinnonp( Notes ----- Most values are from MacKinnon (1994). Values for DFGLS test statistics - and the 'nc' version of the ADF z test statistic were computed following + and the "n" version of the ADF z test statistic were computed following the methodology of MacKinnon (1994). """ dist_type = dist_type.lower() @@ -1868,17 +1883,17 @@ def mackinnoncrit( non-cointegration is being tested. For N > 12, the critical values are linearly interpolated (not yet implemented). For the ADF test, N = 1. - regression : {'c', 'tc', 'ctt', 'nc'}, optional + regression : {"c", "ct", "ctt", "n"}, optional Following MacKinnon (1996), these stand for the type of regression run. - 'c' for constant and no trend, 'tc' for constant with a linear trend, - 'ctt' for constant with a linear and quadratic trend, and 'nc' for + "c" for constant and no trend, "ct" for constant with a linear trend, + "ctt" for constant with a linear and quadratic trend, and "n" for no constant. The values for the no constant case are taken from the 1996 paper, as they were not updated for 2010 due to the unrealistic assumptions that would underlie such a case. nobs : {int, np.inf}, optional This is the sample size. If the sample size is numpy.inf, then the asymptotic critical values are returned. - dist_type : {'adf-t', 'adf-z', 'dfgls'}, optional + dist_type : {"adf-t", "adf-z", "dfgls"}, optional Type of test statistic Returns @@ -1934,7 +1949,7 @@ def kpss_crit(stat: float, trend: str = "c") -> Tuple[float, NDArray]: ---------- stat : float The KPSS test statistic. - trend : {'c','ct'} + trend : {"c","ct"} The trend used when computing the KPSS statistic Returns @@ -1975,9 +1990,9 @@ def auto_bandwidth( kernel : str The kernel function to use for selecting the bandwidth - - 'ba', 'bartlett', 'nw': Bartlett kernel (default) - - 'pa', 'parzen', 'gallant': Parzen kernel - - 'qs', 'andrews': Quadratic Spectral kernel + - "ba", "bartlett", "nw": Bartlett kernel (default) + - "pa", "parzen", "gallant": Parzen kernel + - "qs", "andrews": Quadratic Spectral kernel Returns ------- @@ -2029,7 +2044,7 @@ def auto_bandwidth( t_power = 1 / (2 * q + 1) if kernel == "pa": gamma = 2.6614 * (((s2 / s0) ** 2) ** t_power) - else: # kernel == 'qs': + else: # kernel == "qs": gamma = 1.3221 * (((s2 / s0) ** 2) ** t_power) bandwidth = gamma * power(len(y), t_power) diff --git a/doc/source/changes/4.0.txt b/doc/source/changes/4.0.txt index 5517389c75..e3dfd92d59 100644 --- a/doc/source/changes/4.0.txt +++ b/doc/source/changes/4.0.txt @@ -2,6 +2,12 @@ Version 4 ========= +Release 4.15 +============ +- This is a minor release with doc fixes and other small updates. The only notable + feature is :func:`~arch.unitroot.unitroot.PhillipsPerron.regression` which returns + regression results from the model estimated as part of the test (:issue:`395`). + Release 4.14 ============ - Added Kernel-based long-run variance estimation in ``arch.covariance.kernel``. diff --git a/doc/source/index.rst b/doc/source/index.rst index 9cce50cf99..dc2690d0fd 100644 --- a/doc/source/index.rst +++ b/doc/source/index.rst @@ -40,8 +40,8 @@ Citation ======== This package should be cited using Zenodo. For example, for the 4.13 release, -.. [*] Kevin Sheppard. (2019, March 28). bashtage/arch: Release 4.13 (Version 4.13). - Zenodo. https://zenodo.org/record/593254 +.. [*] Kevin Sheppard. (2020, June 24). bashtage/arch: Release 4.15 (Version 4.15). + Zenodo. https://doi.org/10.5281/zenodo.593254 .. image:: https://zenodo.org/badge/doi/10.5281/zenodo.3551028.svg :target: https://doi.org/10.5281/zenodo.593254