-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmain.py
executable file
·93 lines (85 loc) · 5.77 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
"""Main function of ABMT for the paper: Adversarial Brain Multiplex Prediction From a Single Brain Network with Application to Gender Fingerprinting
View Network Normalization
Details can be found in:
(1) the original paper
Ahmed Nebli, and Islem Rekik.
---------------------------------------------------------------------
This file contains the implementation of three key steps of our netNorm framework:
Inputs:
sourceGraph: (N × m x m) matrix stacking the source graphs of all subjects
(N × m x m) matrix stacking the target graphs of all subjects
N the total number of views
m the number of regions
Output:
Target graph: (N x m x m) matrix stacking predicted target graphs of all subjects
(2) Dependencies: please install the following libraries:
- TensorFlow
- numpy
- scikitlearn
---------------------------------------------------------------------
Copyright 2020 Ahmed Nebli, Sousse University.
Please cite the above paper if you use this code.
All rights reserved.
"""
import argparse
import os
import scipy.misc
import numpy as np
from model import graph2graph
import tensorflow as tf
import datetime
parser = argparse.ArgumentParser(description='')
parser.add_argument('--epoch', dest='epoch', type=int, default=1, help='# of epoch')
parser.add_argument('--batch_size', dest='batch_size', type=int, default=40, help='# graphs in batch')
parser.add_argument('--train_size', dest='train_size', type=int, default=1e8, help='# graphs used to train')
parser.add_argument('--ngf', dest='ngf', type=int, default=200, help='# of gen filters in first conv layer')
parser.add_argument('--ndf', dest='ndf', type=int, default=200, help='# of discri filters in first conv layer')
parser.add_argument('--input_nc', dest='input_nc', type=int, default=40, help='# of input channels')
parser.add_argument('--output_nc', dest='output_nc', type=int, default=40, help='# of output channels')
parser.add_argument('--niter', dest='niter', type=int, default=1, help='# of iter at starting learning rate')
parser.add_argument('--lr_d', dest='lr_d', type=float, default=0.0001, help='initial learning rate for adam')
parser.add_argument('--lr_g', dest='lr_g', type=float, default=0.00005, help='initial learning rate for adam')
parser.add_argument('--lr_c', dest='lr_c', type=float, default=0.001, help='intial learning rate for adam')
parser.add_argument('--beta1', dest='beta1', type=float, default=0.5, help='m omentum term of adam')
parser.add_argument('--flip', dest='flip', type=bool, default=True, help='if flip the graphs for data argumentation')
parser.add_argument('--save_epoch_freq', dest='save_epoch_freq', type=int, default=2,
help='save a model every save_epoch_freq epochs (does not overwrite previously saved models)')
parser.add_argument('--save_latest_freq', dest='save_latest_freq', type=int, default=5,
help='save the latest model every latest_freq sgd iterations (overwrites the previous latest model)')
parser.add_argument('--print_freq', dest='print_freq', type=int, default=50, help='print the debug information every print_freq iterations')
parser.add_argument('--continue_train', dest='continue_train', type=bool, default=False,
help='if continue training, load the latest model: 1: true, 0: false')
parser.add_argument('--serial_batches', dest='serial_batches', type=bool, default=False,
help='f 1, takes graphsin order to make batches, otherwise takes them randomly')
parser.add_argument('--serial_batch_iter', dest='serial_batch_iter', type=bool, default=True, help='iter into serial graph list')
parser.add_argument('--checkpoint_dir', dest='checkpoint_dir', default='./checkpoint_auth_50',
help='models are saved here,need to be distinguis hable for different dataset')
parser.add_argument('--sample_dir', dest='sample_dir', default='./sample', help='sample are saved here')
parser.add_argument('--test_dir', dest='test_dir', default='./validation_data_auth_50/',
help='test sample are saved here, need to be distinguishable for different dataset')
parser.add_argument('--L1_lambda', dest='L1_lambda', type=int, default=10000, help='weight on L1 term in objective')
parser.add_argument('--train_dir', dest='train_dir', default='./', help='train sample are saved here')
parser.add_argument('--graph_size', dest='graph_size', default=[35, 35], help='size of graph')
parser.add_argument('--output_size', dest='output_size', default=[35, 35], help='size of graph')
parser.add_argument('--dataset', dest='dataset', default='authentication', help='chose from authentication, scale-free and poisson-random')
args = parser.parse_args()
def main():
start = datetime.datetime.now()
if not os.path.exists(args.checkpoint_dir):
os.makedirs(args.checkpoint_dir)
if not os.path.exists(args.sample_dir):
os.makedirs(args.sample_dir)
if not os.path.exists(args.test_dir):
os.makedirs(args.test_dir)
if not os.path.exists(args.train_dir):
os.makedirs(args.train_dir)
tf.reset_default_graph()
with tf.Session() as sess:
model = graph2graph(sess, batch_size=args.batch_size,
checkpoint_dir=args.checkpoint_dir, sample_dir=args.sample_dir, test_dir=args.test_dir, train_dir=args.train_dir,
graph_size=args.graph_size, output_size=args.output_size, dataset=args.dataset)
model.train(args)
end = datetime.datetime.now()
print(end-start)
if __name__ == '__main__':
main()