-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathmodel.py
executable file
·329 lines (271 loc) · 15.5 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
import torch
import helper
import config
import random
import uuid
import os
import numpy as np
import torch.nn.functional as F
from torch_geometric.nn import NNConv
import time
import sys
from torch.nn import Sequential, Linear, ReLU
#set seed for reproducibility
torch.manual_seed(35813)
np.random.seed(35813)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
#check if any gpu is available
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
class MGN_NET(torch.nn.Module):
def __init__(self, dataset):
super(MGN_NET, self).__init__()
model_params = config.PARAMS
nn = Sequential(Linear(model_params["Linear1"]["in"], model_params["Linear1"]["out"]), ReLU())
self.conv1 = NNConv(model_params["conv1"]["in"], model_params["conv1"]["out"], nn, aggr='mean')
nn = Sequential(Linear(model_params["Linear2"]["in"], model_params["Linear2"]["out"]), ReLU())
self.conv2 = NNConv(model_params["conv2"]["in"], model_params["conv2"]["out"], nn, aggr='mean')
nn = Sequential(Linear(model_params["Linear3"]["in"], model_params["Linear3"]["out"]), ReLU())
self.conv3 = NNConv(model_params["conv3"]["in"], model_params["conv3"]["out"], nn, aggr='mean')
def forward(self, data):
"""
Args:
data (Object): data object consist of three parts x, edge_attr, and edge_index.
This object can be produced by using helper.cast_data function
x: Node features with shape [number_of_nodes, 1] (Simply set to vector of ones since we dont have any)
edge_attr: Edge features with shape [number_of_edges, number_of_views]
edge_index: Graph connectivities with shape [2, number_of_edges] (COO format)
"""
x, edge_attr, edge_index = data.x, data.edge_attr, data.edge_index
x = F.relu(self.conv1(x, edge_index, edge_attr))
x = F.relu(self.conv2(x, edge_index, edge_attr))
x = F.relu(self.conv3(x, edge_index, edge_attr))
repeated_out = x.repeat(35,1,1)
repeated_t = torch.transpose(repeated_out, 0, 1)
diff = torch.abs(repeated_out - repeated_t)
cbt = torch.sum(diff, 2)
return cbt
@staticmethod
def generate_subject_biased_cbts(model, train_data):
"""
Generates all possible CBTs for a given training set.
Args:
model: trained DGN model
train_data: list of data objects
"""
model.eval()
cbts = np.zeros((35,35, len(train_data)))
train_data = [d.to(device) for d in train_data]
for i, data in enumerate(train_data):
cbt = model(data)
cbts[:,:,i] = np.array(cbt.cpu().detach())
return cbts
@staticmethod
def generate_cbt_median(model, train_data):
"""
Generate optimized CBT for the training set (use post training refinement)
Args:
model: trained DGN model
train_data: list of data objects
"""
model.eval()
cbts = []
train_data = [d.to(device) for d in train_data]
for data in train_data:
cbt = model(data)
cbts.append(np.array(cbt.cpu().detach()))
final_cbt = torch.tensor(np.median(cbts, axis = 0), dtype = torch.float32).to(device)
return final_cbt
@staticmethod
def KL_error(cbt, target_data, six_views = False):
"""
Calculate the KL_divergence between the CBT and test subjects (all views)
Args:
cbt: models output
target_data: list of data objects
"""
cbt_dist = cbt.sum(axis = 1)
cbt_probs = cbt_dist / cbt_dist.sum()
views = torch.cat([data.con_mat for data in target_data], axis = 2).permute((2,1,0))
#View 1
view1_mean = views[range(0,views.shape[0],6 if six_views else 4)].mean(axis = 0)
view1_dist = view1_mean.sum(axis = 1)
view1_prob = view1_dist / view1_dist.sum()
kl_1 = ((cbt_probs * torch.log2(cbt_probs/view1_prob)).sum().abs()) + ((view1_prob * torch.log2(view1_prob/cbt_probs)).sum().abs())
#View 2
view2_mean = views[range(1,views.shape[0],6 if six_views else 4)].mean(axis = 0)
view2_dist = view2_mean.sum(axis = 1)
view2_prob = view2_dist / view2_dist.sum()
kl_2 = ((cbt_probs * torch.log2(cbt_probs/view2_prob)).sum().abs()) + ((view2_prob * torch.log2(view2_prob/cbt_probs)).sum().abs())
#View 3
view3_mean = views[range(2,views.shape[0],6 if six_views else 4)].mean(axis = 0)
view3_dist = view3_mean.sum(axis = 1)
view3_prob = view3_dist / view3_dist.sum()
kl_3 = ((cbt_probs * torch.log2(cbt_probs/view3_prob)).sum().abs()) + ((view3_prob * torch.log2(view3_prob/cbt_probs)).sum().abs())
#View 4
view4_mean = views[range(3,views.shape[0],6 if six_views else 4)].mean(axis = 0)
view4_dist = view4_mean.sum(axis = 1)
view4_prob = view4_dist / view4_dist.sum()
kl_4 = ((cbt_probs * torch.log2(cbt_probs/view4_prob)).sum().abs()) + ((view4_prob * torch.log2(view4_prob/cbt_probs)).sum().abs())
if six_views:
#View 5
view5_mean = views[range(4,views.shape[0],6 if six_views else 4)].mean(axis = 0)
view5_dist = view5_mean.sum(axis = 1)
view5_prob = view5_dist / view5_dist.sum()
kl_5 = ((cbt_probs * torch.log2(cbt_probs/view5_prob)).sum().abs()) + ((view5_prob * torch.log2(view5_prob/cbt_probs)).sum().abs())
#View 6
view6_mean = views[range(5,views.shape[0],6 if six_views else 4)].mean(axis = 0)
view6_dist = view6_mean.sum(axis = 1)
view6_prob = view6_dist / view6_dist.sum()
kl_6 = ((cbt_probs * torch.log2(cbt_probs/view6_prob)).sum().abs()) + ((view6_prob * torch.log2(view6_prob/cbt_probs)).sum().abs())
else:
kl_5, kl_6 = 0, 0
return kl_1, kl_2, kl_3, kl_4, kl_5, kl_6
@staticmethod
def mean_frobenious_distance(generated_cbt, test_data):
"""
Calculate the mean Frobenious distance between the CBT and test subjects (all views)
Args:
generated_cbt: trained DGN model
test_data: list of data objects
"""
frobenius_all = []
for data in test_data:
views = data.con_mat
for index in range(views.shape[2]):
diff = torch.abs(views[:,:,index] - generated_cbt)
diff = diff*diff
sum_of_all = diff.sum()
d = torch.sqrt(sum_of_all)
frobenius_all.append(d)
return sum(frobenius_all) / len(frobenius_all)
@staticmethod
def train_model(n_max_epochs, data_path, early_stop, model_name, weighted_loss = True, random_sample_size = 10, n_folds = 5):
"""
Trains a model for each cross validation fold and
saves all models along with CBTs to ./output/<model_name>
Args:
n_max_epochs (int): number of training epochs (if early_stop == True this is maximum epoch limit)
data_path (string): file path for the dataset
early_stop (bool): if set true, model will stop training when overfitting starts.
model_name (string): name for saving the model
weighted (bool): view normalization in centeredness loss
random_sample_size (int): random subset size for SNL function
n_folds (int): number of cross validation folds
Return:
models: trained models
"""
models = []
n_attr = config.Nattr
dataset = "simulated"
save_path = config.MODEL_WEIGHT_BACKUP_PATH + "/" + model_name + "/"
if not os.path.exists(save_path):
os.makedirs(save_path)
if not os.path.isdir("temp"):
os.makedirs("temp")
model_id = str(uuid.uuid4())
model_params = config.PARAMS
with open(save_path + "model_params.txt", 'w') as f:
print(model_params, file=f)
for i in range(n_folds):
print("********* FOLD {} *********".format(i))
train_data, test_data, train_mean, train_std = helper.preprocess_data_array(data_path,
number_of_folds=n_folds, current_fold_id=i)
test_casted = [d.to(device) for d in helper.cast_data(test_data)]
if weighted_loss:
loss_weightes = torch.tensor(np.array(list((1 / train_mean) / np.max(1 / train_mean))*len(train_data)), dtype = torch.float32)
else:
loss_weightes = torch.tensor(np.ones((n_attr*len(train_data))), dtype = torch.float32)
loss_weightes = loss_weightes.to(device)
train_casted = [d.to(device) for d in helper.cast_data(train_data)]
model = MGN_NET(dataset)
model = model.to(device)
optimizer = torch.optim.AdamW(model.parameters(), lr=model_params["learning_rate"], weight_decay= 0.00)
targets = [torch.tensor(tensor, dtype = torch.float32).to(device) for tensor in train_data]
test_errors_rep = []
kl1_error_ave = []
kl2_error_ave = []
kl3_error_ave = []
kl4_error_ave = []
number_views = 4
tick = time.time()
for epoch in range(n_max_epochs):
model.train()
losses = []
for data in train_casted:
#Compose Dissimilarity matrix from network outputs
cbt = model(data)
views_sampled = random.sample(targets, random_sample_size)
sampled_targets = torch.cat(views_sampled, axis = 2).permute((2,1,0))
expanded_cbt = cbt.expand((sampled_targets.shape[0],35,35))
#rep loss
diff = torch.abs(expanded_cbt - sampled_targets) #Absolute difference
sum_of_all = torch.mul(diff, diff).sum(axis = (1,2)) #Sum of squares
l = torch.sqrt(sum_of_all) #Square root of the sum
#KL loss
cbt_dist = cbt.sum(axis = 1)
cbt_probs = cbt_dist / cbt_dist.sum()
#View 1 target
target_mean1 = sampled_targets[range(0,random_sample_size * number_views, number_views)].mean(axis = 0)
target_dist1 = target_mean1.sum(axis = 1)
target_probs1 = target_dist1 / target_dist1.sum()
kl_loss_1 = ((cbt_probs * torch.log2(cbt_probs/target_probs1)).sum().abs()) + ((target_probs1* torch.log2(target_probs1/cbt_probs)).sum().abs())
#View 2 target
target_mean2 = sampled_targets[range(1,random_sample_size * number_views, number_views)].mean(axis = 0)
target_dist2 = target_mean2.sum(axis = 1)
target_probs2 = target_dist2 / target_dist2.sum()
kl_loss_2 = ((cbt_probs * torch.log2(cbt_probs/target_probs2)).sum().abs()) + ((target_probs2 * torch.log2(target_probs2/cbt_probs)).sum().abs())
#View 3 target
target_mean3 = sampled_targets[range(2,random_sample_size * number_views, number_views)].mean(axis = 0)
target_dist3 = target_mean3.sum(axis = 1)
target_probs3 = target_dist3 / target_dist3.sum()
kl_loss_3 = ((cbt_probs * torch.log2(cbt_probs/target_probs3)).sum().abs()) + ((target_probs3* torch.log2(target_probs3/cbt_probs)).sum().abs())
#View 4 target
target_mean4 = sampled_targets[range(3,random_sample_size * number_views, number_views)].mean(axis = 0)
target_dist4 = target_mean4.sum(axis = 1)
target_probs4 = target_dist4 / target_dist4.sum()
kl_loss_4 = ((cbt_probs * torch.log2(cbt_probs/target_probs4)).sum().abs()) + ((target_probs4* torch.log2(target_probs4/cbt_probs)).sum().abs())
kl_loss = (kl_loss_1 + kl_loss_2 + kl_loss_3 + kl_loss_4)
rep_loss = (l * loss_weightes[:random_sample_size * n_attr]).mean()
losses.append(kl_loss * model_params["lambda_kl"] + rep_loss )
optimizer.zero_grad()
loss = torch.mean(torch.stack(losses))
loss.backward()
optimizer.step()
if epoch % 10 == 0:
cbt = MGN_NET.generate_cbt_median(model, train_casted)
rep_loss = MGN_NET.mean_frobenious_distance(cbt, test_casted)
kl1, kl2, kl3, kl4, kl5, kl6 = MGN_NET.KL_error(cbt, test_casted, six_views= True if dataset == "nc_asd" else False)
tock = time.time()
time_elapsed = tock - tick
tick = tock
rep_loss = float(rep_loss)
test_errors_rep.append(rep_loss)
kl1_error_ave.append(float(kl1)), kl2_error_ave.append(float(kl2))
kl3_error_ave.append(float(kl3)), kl4_error_ave.append(float(kl4))
print("Epoch: {} | {} Rep: {:.2f} | KL: {:.2f} | Time Elapsed: {:.2f} |".format(epoch,
data_path.split("/")[-1].split(" ")[0], rep_loss, float(kl1+kl2+kl3+kl4) * model_params["lambda_kl"], time_elapsed))
try:
#Early stopping and restoring logic
if len(test_errors_rep) > 5 and early_stop:
torch.save(model.state_dict(), "./temp/weight_" + model_id + "_" + str(rep_loss)[:5] + ".model")
last_5 = test_errors_rep[-5:]
if(all(last_5[i] < last_5[i + 1] for i in range(4))):
print("Early Stopping")
break
except:
print("ERROR occured")
break
restore = "./temp/weight_" + model_id + "_" + str(min(test_errors_rep))[:5] + ".model"
model.load_state_dict(torch.load(restore))
torch.save(model.state_dict(), save_path + "fold" + str(i) + ".model")
models.append(model)
cbt = MGN_NET.generate_cbt_median(model, train_casted)
rep_loss = MGN_NET.mean_frobenious_distance(cbt, test_casted)
kl_loss = float(sum(MGN_NET.KL_error(cbt, test_casted)))
cbt = cbt.cpu().numpy()
np.save( save_path + "fold" + str(i) + "_cbt", cbt)
all_cbts = MGN_NET.generate_subject_biased_cbts(model, train_casted)
np.save(save_path + "fold" + str(i) + "_all_cbts", all_cbts)
print("FINAL RESULTS REP: {} KL: {}".format(rep_loss, kl_loss))
return models