-
Notifications
You must be signed in to change notification settings - Fork 2
/
NAGFS.py
288 lines (213 loc) · 9.85 KB
/
NAGFS.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
"""
Main function of NAGFS framework for a fast and accurate classification.
Details can be found in the original paper: https://www.scieC2edirect.com/scieC2e/article/abs/pii/S1361841519301367
Islem Mhiri and Islem Rekik. "Joint input_ brain network atlas estimation and feature selection for neurological disorder diagnosis
with application to autism",Medical Image Analysis, 2019, p. 101596.
---------------------------------------------------------------------
This file contains the implementation of three key steps of our NAG-FS framework:
(1) Estimation of a centered and representative input_ network atlas,
(2) Discriminative connectional biomarker identification and
(3) disease classification:
[AC1,AC2,ind] = NAGFS(train_data,train_Labels,Nf,displayResults)
Inputs:
train_data: ((n-1) × m × m) tensor stacking the symmetric matrices of the training subjects
n-->the total number of subjects
m-->the number of nodes
train_Labels: ((n-1) × 1) vector of training labels (e.g., -1, 1)
Nf: Number of selected features
displayResults: Boolean variables [0, 1].
if displayResults = 1 ==> display(Atlas of group 1, Atlas of group 2, top features matrix and the circular graph)
if displayResults = 0 ==> no display
Outputs:
AC1: (m × m) matrix storing the atlas of Class 1
AC2: (m × m) matrix storing the atlas of Class 2
ind: (Nf × 1) vector storing the indices of the top disciminative features
To evaluate our framework we used Leave-One-Out cross validation strategy.
To test NAGFS on random data, we defined the function 'simulateData' where the size of the dataset is chosen by the user.
---------------------------------------------------------------------
Copyright 2020 Dogu Can ELCI, Istanbul Technical University.
Please cite the above paper if you use this python code.
All rights reserved.
"""
# noinspection PyUnresolvedReferences
import scipy as sc
# noinspection PyUnresolvedReferences
import sklearn as sk
import numpy as np
# noinspection PyUnresolvedReferences
import SIMLR
# noinspection PyUnresolvedReferences
import snf
# noinspection PyUnresolvedReferences
import matplotlib.pyplot as plt
def NAGFS(train_data,train_Labels,Nf,displayResults):
XC1 = np.empty((0, train_data.shape[2],train_data.shape[2]), int)
XC2 = np.empty((0, train_data.shape[2],train_data.shape[2]), int)
# * * (5.1) In this part, Training samples which were chosen last part are seperated as class-1 and class-2 samples.
for i in range(len(train_Labels)):
if (train_Labels[i] == 1):
XC1=np.append(XC1,[train_data[i,:,:]],axis=0)
else:
XC2=np.append(XC2,[train_data[i,:,:]],axis=0)
# * *
# * * (5.2) SIMLR functions need matrixes which has 1x(N*N) shape.So all training matrixes are converted to this shape.
#For C1 group
k=np.empty((0,XC1.shape[1]*XC1.shape[1]),int)
for i in range(XC1.shape[0]):
k1=np.concatenate(XC1[i]) #it vectorizes all NxN matrixes
k=np.append(k,[k1.reshape(XC1.shape[1]*XC1.shape[1])],axis=0)
# For C2 group
kk = np.empty((0, XC2.shape[1] * XC2.shape[1]), int)
for i in range(XC2.shape[0]):
kk1 = np.concatenate(XC2[i])
kk = np.append(kk, [kk1.reshape(XC2.shape[1] * XC2.shape[1])], axis=0)
# * *
# * * (5.3) SIMLR(Single-Cell Interpretation via Multi Kernel Learning) is used to clustering of samples of 2 classes into 3 clusters.
#For C1 group
#[t1, S2, F2, ydata2,alpha2] = SIMLR(kk,3,2);
simlr = SIMLR.SIMLR_LARGE(3,4,0) #This is how we initialize an object for SIMLR.The first input is number of rank (clusters) and the second input is number of neighbors.The third one is an binary indicator whether to use memory-saving mode.You can turn it on when the number of cells are extremely large to save some memory but with the cost of efficiency.
S1, F1,val1, ind1 = simlr.fit(k)
y_pred_X1 = simlr.fast_minibatch_kmeans(F1,3) #This SIMLR function predicts training 1x(N*N) samples what they belong.
#to first, second or third clusters.(0,1 or 2)
# For C2 group
simlr = SIMLR.SIMLR_LARGE(3,4,0)
S2, F2,val2, ind2 = simlr.fit(kk)
y_pred_X2 = simlr.fast_minibatch_kmeans(F2,3)
# * *
# * * (5.4) Training samples are placed into their predicted clusters for Class-1 and Class-2 samples.
#For XC1, +1 k
Ca1 = np.empty((0, XC1.shape[2],XC1.shape[2]), int)
Ca2 = np.empty((0, XC1.shape[2],XC1.shape[2]), int)
Ca3 = np.empty((0, XC1.shape[2],XC1.shape[2]), int)
for i in range(len(y_pred_X1)):
if y_pred_X1[i]==0:
Ca1=np.append(Ca1,[XC1[i,:,:]],axis=0)
Ca1=np.abs(Ca1)
elif y_pred_X1[i]==1:
Ca2=np.append(Ca2,[XC1[i,:,:]],axis=0)
Ca2 = np.abs(Ca2)
elif y_pred_X1[i]==2:
Ca3=np.append(Ca3,[XC1[i,:,:]],axis=0)
Ca3 = np.abs(Ca3)
#For XC2, -1 kk
Cn1 = np.empty((0, XC2.shape[2],XC2.shape[2]), int)
Cn2 = np.empty((0, XC2.shape[2],XC2.shape[2]), int)
Cn3 = np.empty((0, XC2.shape[2],XC2.shape[2]), int)
for i in range(len(y_pred_X2)):
if y_pred_X2[i]==0:
Cn1=np.append(Cn1,[XC2[i,:,:]],axis=0)
Cn1 = np.abs(Cn1)
elif y_pred_X2[i]==1:
Cn2=np.append(Cn2,[XC2[i,:,:]],axis=0)
Cn2 = np.abs(Cn2)
elif y_pred_X2[i]==2:
Cn3=np.append(Cn3,[XC2[i,:,:]],axis=0)
Cn3 = np.abs(Cn3)
# * *
#SNF PROCESS
# * * (5.5) SNF(Similarity Network Fusion) is used for create a local centered network atlas which is the best representative matrix
#of other similar matrixes.In this process, for every class, there are 3 clusters, so snf create 3 representative-center
#matrixes for both classes.After that it create 1 general representative matrixes of 3 matrixes.
#So finally there are 2 general representative matrixes.
#Ca1
class1=[]
if Ca1.shape[0]>1:
for i in range(Ca1.shape[0]):
class1.append(Ca1[i,:,:])
affinity_networks = snf.make_affinity(class1, metric='euclidean', K=20, mu=0.5)
AC11=snf.snf(affinity_networks,K=20) #First local network atlas for C1 group
class1=[]
else:
AC11=Ca1[0]
#Ca2
class1=[]
if Ca2.shape[0]>1:
for i in range(Ca2.shape[0]):
class1.append(Ca2[i,:,:])
affinity_networks = snf.make_affinity(class1, metric='euclidean', K=20, mu=0.5)
AC12=snf.snf(affinity_networks,K=20) #Second local network atlas for C1 group
class1 = []
else:
AC12=Ca2[0]
#Ca3
class1=[]
if Ca3.shape[0]>1:
for i in range(Ca3.shape[0]):
class1.append(Ca3[i,:,:])
affinity_networks = snf.make_affinity(class1, metric='euclidean', K=20, mu=0.5)
AC13=snf.snf(affinity_networks,K=20) #Third local network atlas for C1 group
class1 = []
else:
AC13=Ca3[0]
#Cn1
if Cn1.shape[0]>1:
class1=[]
for i in range(Cn1.shape[0]):
class1.append(Cn1[i,:,:])
affinity_networks = snf.make_affinity(class1, metric='euclidean', K=20, mu=0.5)
AC21=snf.snf(affinity_networks,K=20) #First local network atlas for C2 group
class1 = []
else:
AC21=Cn1[0]
#Cn2
class1=[]
if Cn2.shape[0]>1:
for i in range(Cn2.shape[0]):
class1.append(Cn2[i,:,:])
affinity_networks = snf.make_affinity(class1, metric='euclidean', K=20, mu=0.5)
AC22=snf.snf(affinity_networks,K=20) #Second local network atlas for C2 group
class1 = []
else:
AC22=Cn2[0]
#Cn3
class1=[]
if Cn3.shape[0]>1:
for i in range(Cn3.shape[0]):
class1.append(Cn3[i,:,:])
affinity_networks = snf.make_affinity(class1, metric='euclidean', K=20, mu=0.5)
AC23=snf.snf(affinity_networks,K=20) #Third local network atlas for C2 group
class1 = []
else:
AC23=Cn3[0]
#A1
AC1 = snf.snf([AC11, AC12, AC13], K=20) #Global network atlas for C1 group
#A2
AC2 = snf.snf([AC21, AC22, AC23], K=20) #Global network atlas for C2 group
# * *
# * * (5.6) In this part, most 5 discriminative connectivities are determined and their indexes are saved in ind array.
D0=np.abs(AC1-AC2) #find differences between AC1 and AC2
D=np.triu(D0) #Upper triangular part of matrix
D1=D[np.triu_indices(AC1.shape[0],1)] #Upper triangular part of matrix
D1=D1.transpose()
D2=np.sort(D1) #Ranking features
D2=D2[::-1]
Dif=D2[0:Nf] #Extract most 5 discriminative connectivities
D3=[]
for i in D1:
D3.append(i)
ind=[]
for i in range(len(Dif)):
ind.append(D3.index(Dif[i]))
# * *
# * * (5.7) Coordinates of most 5 disriminative features are determined for plotting for each iteration if displayresults==1.
coord=[]
for i in range(len(Dif)):
for j in range(D0.shape[0]):
for k in range(D0.shape[1]):
if Dif[i]==D0[j][k]:
coord.append([j,k])
topFeatures=np.zeros((D0.shape[0],D0.shape[1]))
s=0
ss=0
for i in range(len(Dif)*2):
topFeatures[coord[i][0]][coord[i][1]]=Dif[s]
ss+=1
if ss==2:
s+=1
ss=0
if displayResults==1:
plt.imshow(topFeatures)
plt.colorbar()
plt.show()
# * *
return AC1 , AC2 ,ind