-
Notifications
You must be signed in to change notification settings - Fork 44
/
Copy pathmain.py
163 lines (118 loc) · 6.73 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
import argparse
import os
import numpy as np
import torch
import DDPG
import utils
import environment
def whiten(state):
return (state - np.mean(state)) / np.std(state)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
# Choose the type of the experiment
parser.add_argument('--experiment_type', default='custom', choices=['custom', 'power', 'rsi_elements', 'learning_rate', 'decay'],
help='Choose one of the experiment types to reproduce the learning curves given in the paper')
# Training-specific parameters
parser.add_argument("--policy", default="DDPG", help='Algorithm (default: DDPG)')
parser.add_argument("--env", default="RIS_MISO", help='OpenAI Gym environment name')
parser.add_argument("--seed", default=0, type=int, help='Seed number for PyTorch and NumPy (default: 0)')
parser.add_argument("--gpu", default="0", type=int, help='GPU ordinal for multi-GPU computers (default: 0)')
parser.add_argument("--start_time_steps", default=0, type=int, metavar='N', help='Number of exploration time steps sampling random actions (default: 0)')
parser.add_argument("--buffer_size", default=100000, type=int, help='Size of the experience replay buffer (default: 100000)')
parser.add_argument("--batch_size", default=16, metavar='N', help='Batch size (default: 16)')
parser.add_argument("--save_model", action="store_true", help='Save model and optimizer parameters')
parser.add_argument("--load_model", default="", help='Model load file name; if empty, does not load')
# Environment-specific parameters
parser.add_argument("--num_antennas", default=4, type=int, metavar='N', help='Number of antennas in the BS')
parser.add_argument("--num_RIS_elements", default=4, type=int, metavar='N', help='Number of RIS elements')
parser.add_argument("--num_users", default=4, type=int, metavar='N', help='Number of users')
parser.add_argument("--power_t", default=30, type=float, metavar='N', help='Transmission power for the constrained optimization in dB')
parser.add_argument("--num_time_steps_per_eps", default=10000, type=int, metavar='N', help='Maximum number of steps per episode (default: 20000)')
parser.add_argument("--num_eps", default=10, type=int, metavar='N', help='Maximum number of episodes (default: 5000)')
parser.add_argument("--awgn_var", default=1e-2, type=float, metavar='G', help='Variance of the additive white Gaussian noise (default: 0.01)')
parser.add_argument("--channel_est_error", default=False, type=bool, help='Noisy channel estimate? (default: False)')
# Algorithm-specific parameters
parser.add_argument("--exploration_noise", default=0.0, metavar='G', help='Std of Gaussian exploration noise')
parser.add_argument("--discount", default=0.99, metavar='G', help='Discount factor for reward (default: 0.99)')
parser.add_argument("--tau", default=1e-3, type=float, metavar='G', help='Learning rate in soft/hard updates of the target networks (default: 0.001)')
parser.add_argument("--lr", default=1e-3, type=float, metavar='G', help='Learning rate for the networks (default: 0.001)')
parser.add_argument("--decay", default=1e-5, type=float, metavar='G', help='Decay rate for the networks (default: 0.00001)')
args = parser.parse_args()
print("---------------------------------------")
print(f"Policy: {args.policy}, Env: {args.env}, Seed: {args.seed}")
print("---------------------------------------")
file_name = f"{args.num_antennas}_{args.num_RIS_elements}_{args.num_users}_{args.power_t}_{args.lr}_{args.decay}"
if not os.path.exists(f"./Learning Curves/{args.experiment_type}"):
os.makedirs(f"./Learning Curves/{args.experiment_type}")
if args.save_model and not os.path.exists("./Models"):
os.makedirs("./Models")
env = environment.RIS_MISO(args.num_antennas, args.num_RIS_elements, args.num_users, AWGN_var=args.awgn_var)
# Set seeds
torch.manual_seed(args.seed)
np.random.seed(args.seed)
state_dim = env.state_dim
action_dim = env.action_dim
max_action = 1
device = torch.device(f"cuda:{args.gpu}" if torch.cuda.is_available() else "cpu")
kwargs = {
"state_dim": state_dim,
"action_dim": action_dim,
"power_t": args.power_t,
"max_action": max_action,
"M": args.num_antennas,
"N": args.num_RIS_elements,
"K": args.num_users,
"actor_lr": args.lr,
"critic_lr": args.lr,
"actor_decay": args.decay,
"critic_decay": args.decay,
"device": device,
"discount": args.discount,
"tau": args.tau
}
# Initialize the algorithm
agent = DDPG.DDPG(**kwargs)
if args.load_model != "":
policy_file = file_name if args.load_model == "default" else args.load_model
agent.load(f"./models/{policy_file}")
replay_buffer = utils.ExperienceReplayBuffer(state_dim, action_dim, max_size=args.buffer_size)
# Initialize the instant rewards recording array
instant_rewards = []
max_reward = 0
for eps in range(int(args.num_eps)):
state, done = env.reset(), False
episode_reward = 0
episode_num = 0
episode_time_steps = 0
state = whiten(state)
eps_rewards = []
for t in range(int(args.num_time_steps_per_eps)):
# Choose action from the policy
action = agent.select_action(np.array(state))
# Take the selected action
next_state, reward, done, _ = env.step(action)
done = 1.0 if t == args.num_time_steps_per_eps - 1 else float(done)
# Store data in the experience replay buffer
replay_buffer.add(state, action, next_state, reward, done)
state = next_state
episode_reward += reward
state = whiten(state)
if reward > max_reward:
max_reward = reward
# Train the agent
agent.update_parameters(replay_buffer, args.batch_size)
print(f"Time step: {t + 1} Episode Num: {episode_num + 1} Reward: {reward:.3f}")
eps_rewards.append(reward)
episode_time_steps += 1
if done:
print(f"\nTotal T: {t + 1} Episode Num: {episode_num + 1} Episode T: {episode_time_steps} Max. Reward: {max_reward:.3f}\n")
# Reset the environment
state, done = env.reset(), False
episode_reward = 0
episode_time_steps = 0
episode_num += 1
state = whiten(state)
instant_rewards.append(eps_rewards)
np.save(f"./Learning Curves/{args.experiment_type}/{file_name}_episode_{episode_num + 1}", instant_rewards)
if args.save_model:
agent.save(f"./Models/{file_name}")