-
Notifications
You must be signed in to change notification settings - Fork 0
/
train.py
402 lines (317 loc) · 14.3 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
import argparse
import glob
import json
import os
import random
import re
import nni
import pandas as pd
import logging
from importlib import import_module
from pathlib import Path
import numpy as np
import matplotlib.pyplot as plt
import torch
from torch.optim.lr_scheduler import StepLR
from torch.utils.data import Subset, DataLoader
from torch.utils.tensorboard import SummaryWriter
from nni.utils import merge_parameter
from dataset import TestDataset, MaskBaseDataset
from loss import create_criterion
from tqdm import tqdm
from pandas import Series, DataFrame
def seed_everything(seed):
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed) # if use multi-GPU
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
np.random.seed(seed)
random.seed(seed)
def get_lr(optimizer):
for param_group in optimizer.param_groups:
return param_group['lr']
def grid_image(np_images, gts, preds, n=16, shuffle=False):
batch_size = np_images.shape[0]
assert n <= batch_size
choices = random.choices(range(batch_size), k=n) if shuffle else list(range(n))
figure = plt.figure(figsize=(12, 18 + 2)) # cautions: hardcoded, 이미지 크기에 따라 figsize 를 조정해야 할 수 있습니다. T.T
plt.subplots_adjust(top=0.8) # cautions: hardcoded, 이미지 크기에 따라 top 를 조정해야 할 수 있습니다. T.T
n_grid = np.ceil(n ** 0.5)
tasks = ["mask", "gender", "age"]
for idx, choice in enumerate(choices):
gt = gts[choice].item()
pred = preds[choice].item()
image = np_images[choice]
# title = f"gt: {gt}, pred: {pred}"
gt_decoded_labels = MaskBaseDataset.decode_multi_class(gt)
pred_decoded_labels = MaskBaseDataset.decode_multi_class(pred)
title = "\n".join([
f"{task} - gt: {gt_label}, pred: {pred_label}"
for gt_label, pred_label, task
in zip(gt_decoded_labels, pred_decoded_labels, tasks)
])
plt.subplot(n_grid, n_grid, idx + 1, title=title)
plt.xticks([])
plt.yticks([])
plt.grid(False)
plt.imshow(image, cmap=plt.cm.binary)
return figure
def increment_path(path, args, exist_ok=False):
""" Automatically increment path, i.e. runs/exp --> runs/exp0, runs/exp1 etc.
Args:
path (str or pathlib.Path): f"{model_dir}/{args.name}".
exist_ok (bool): whether increment path (increment if False).
"""
folder_name = str(args['classification'])+"_"+str(args['model'])+"_"+str(args['batch_size'])+"_"+str(args['criterion'])+"_"+str(args['lr'])+"_Center"
path = Path(os.path.join(path, folder_name, args['name']))
if (path.exists() and exist_ok) or (not path.exists()):
return str(path)
else:
dirs = glob.glob(f"{path}*")
matches = [re.search(rf"%s(\d+)" % path.stem, d) for d in dirs]
i = [int(m.groups()[0]) for m in matches if m]
n = max(i) + 1 if i else 2
return f"{path}{n}"
def make_csv(model, data_iter, epoch, submission, save_dir, accr, loss):
with torch.no_grad():
model.eval() # evaluate (affects DropOut을 안하고, and BN은 학습되어있는 것을 사용)
hard_predictions = []
soft_predictions = None
for batch_in in data_iter:
model_pred = model(batch_in)
_, y_pred = torch.max(model_pred.data, 1)
hard_predictions.extend(y_pred.cpu().numpy())
soft_predictions = model_pred.data if soft_predictions is None else torch.cat(
[soft_predictions, model_pred.data], dim=0)
# hard submission
submission['ans'] = hard_predictions
submission.to_csv(os.path.join(save_dir, 'submission' + str(epoch) +"_"+str(accr)[:6]+"_"+str(loss)[:6]+ '_hard.csv'), index=False)
# soft submission
soft_predictions = soft_predictions.transpose(0, 1).contiguous().cpu().numpy()
for idx in range(soft_predictions.shape[0]):
submission[str(idx)] = soft_predictions[idx]
submission.to_csv(os.path.join(save_dir, 'submission' + str(epoch) +"_"+str(accr)[:6]+"_"+str(loss)[:6]+ '_soft.csv'), index=False)
print("submission.csv is generated")
model.train() # back to train mode
def get_num_classification(c):
num_classes = None
if c == "mask":
num_classes = 3
elif c == "gender":
num_classes = 2
elif c == "age":
num_classes = 3
else:
num_classes = 3 * 2 * 3
return num_classes
def train(data_dir, model_dir, args):
seed_everything(args['seed'])
save_dir = increment_path(model_dir, args)
# -- settings
use_cuda = torch.cuda.is_available()
device = torch.device("cuda" if use_cuda else "cpu")
# -- dataset
dataset_module = getattr(import_module("dataset"), args['dataset']) # default: BaseAugmentation
dataset = dataset_module(
data_dir=data_dir,
c=args['classification']
)
num_classes = get_num_classification(args['classification']) # 18
# -- augmentation
transform_module = getattr(import_module("dataset"), args['augmentation']) # default: BaseAugmentation
transform_train = transform_module(
resize=args['resize'],
mean=dataset.mean,
std=dataset.std,
)
dataset.set_transform(transform_train)
# -- data_loader
train_set, val_set = dataset.split_dataset()
train_loader = DataLoader(
train_set,
batch_size=args['batch_size'],
num_workers=2,
shuffle=True,
pin_memory=use_cuda,
drop_last=True,
)
val_loader = DataLoader(
val_set,
batch_size=args['valid_batch_size'],
num_workers=8,
shuffle=False,
pin_memory=use_cuda,
drop_last=True,
)
# -- test data iter
test_dir = '/opt/ml/input/data/eval'
submission = pd.read_csv(os.path.join(test_dir, 'info.csv'))
image_dir = os.path.join(test_dir, 'images')
test_image_paths = [os.path.join(image_dir, img_id) for img_id in submission.ImageID]
test_set = TestDataset(test_image_paths, args['resize'])
transform_module = getattr(import_module("dataset"), "BaseAugmentation") # default: BaseAugmentation
transform_test = transform_module(
resize=args['resize'],
mean=dataset.mean,
std=dataset.std,
)
test_set.set_transform(transform_test)
test_loader = DataLoader(
test_set,
batch_size=args['batch_size'],
num_workers=2,
shuffle=False,
pin_memory=use_cuda,
drop_last=False,
)
# -- model
model_module = getattr(import_module("model"), args['model']) # default: BaseModel
model = model_module(
num_classes=num_classes
).to(device)
model = torch.nn.DataParallel(model)
# -- loss & metric
criterion = create_criterion(args['criterion'], num_classes) # default: cross_entropy
opt_module = getattr(import_module("torch.optim"), args['optimizer']) # default: Adam
optimizer = opt_module(
filter(lambda p: p.requires_grad, model.parameters()),
lr=args['lr'],
weight_decay=5e-5
)
# scheduler = StepLR(optimizer, args['lr_decay_step'], gamma=0.5)
# -- logging
logger = SummaryWriter(log_dir=save_dir)
with open(os.path.join(save_dir, 'config.json'), 'w', encoding='utf-8') as f:
json.dump(args, f, ensure_ascii=False, indent=4)
best_val_acc = 0
best_train_acc = 0
best_val_loss = np.inf
best_train_loss = np.inf
n_total = 0
for epoch in range(args['epochs']):
# train loop
model.train()
loss_value = 0
matches = 0
n_total = 0
for idx, train_batch in enumerate(tqdm(train_loader)):
inputs, labels = train_batch
inputs = inputs.to(device)
labels = labels.to(device)
optimizer.zero_grad()
outs = model(inputs)
preds = torch.argmax(outs, dim=-1)
loss = criterion(outs, labels)
loss.backward()
optimizer.step()
loss_value += loss.item()
matches += (preds == labels).sum().item()
n_total += inputs.size(0)
loss_avg_value = loss_value / len(train_loader)
train_acc = matches / n_total
current_lr = get_lr(optimizer)
print(
f"Epoch[{epoch}/{args['epochs']}]({idx + 1}/{len(train_loader)}) || "
f"training loss {loss_avg_value:4.4} || training accuracy {train_acc:4.2%} || lr {current_lr}"
)
nni.report_intermediate_result(train_acc)
if train_acc > 0.89 and best_train_loss > loss_avg_value:
submission = pd.read_csv(os.path.join(test_dir, 'info.csv'))
make_csv(model, test_loader, epoch, submission, save_dir, train_acc, loss_avg_value)
best_train_loss = loss_avg_value
best_train_acc = train_acc
if epoch in [10, 20, 25]:
for g in optimizer.param_groups:
g['lr'] /= 10
print("Loss 1/10")
# val loop
with torch.no_grad():
print("Calculating validation results...")
model.eval()
val_loss_items = []
val_acc_items = []
figure = None
for val_batch in val_loader:
inputs, labels = val_batch
inputs = inputs.to(device)
labels = labels.to(device)
outs = model(inputs)
preds = torch.argmax(outs, dim=-1)
loss_item = criterion(outs, labels).item()
acc_item = (labels == preds).sum().item()
val_loss_items.append(loss_item)
val_acc_items.append(acc_item)
if figure is None:
inputs_np = torch.clone(inputs).detach().cpu().permute(0, 2, 3, 1).numpy()
inputs_np = dataset_module.denormalize_image(inputs_np, dataset.mean, dataset.std)
figure = grid_image(inputs_np, labels, preds, args['dataset'] != "MaskSplitByProfileDataset")
val_loss = np.sum(val_loss_items) / len(val_loader)
val_acc = np.sum(val_acc_items) / len(val_set)
# report intermediate result
nni.report_intermediate_result(val_acc)
# logger.debug('validation accuracy %g', val_acc)
# logger.debug('Pipe send intermediate result done.')
best_val_loss = min(best_val_loss, val_loss)
if val_acc > best_val_acc:
print(f"New best model for val accuracy : {val_acc:4.2%}! saving the best model..")
torch.save(model.module.state_dict(), f"{save_dir}/best.pth")
best_val_acc = val_acc
torch.save(model.module.state_dict(), f"{save_dir}/last.pth")
print(
f"[Val] acc : {val_acc:4.2%}, loss: {val_loss:4.2} || "
f"best acc : {best_val_acc:4.2%}, best loss: {best_val_loss:4.2}"
)
logger.add_scalar("Val/loss", val_loss, epoch)
logger.add_scalar("Val/accuracy", val_acc, epoch)
logger.add_figure("results", figure, epoch)
print()
# report final result
nni.report_final_result(best_train_acc)
def get_params(parser):
# Data and model checkpoints directories
parser.add_argument('--seed', type=int, default=42, help='random seed (default: 42)')
parser.add_argument('--epochs', type=int, default=15, help='number of epochs to train (default: 35)')
parser.add_argument('--classification', type=str, default='multi', help='classification type (default: multi)')
parser.add_argument('--dataset', type=str, default='MaskBaseDataset',
help='dataset augmentation type (default: MaskBaseDataset)')
parser.add_argument('--augmentation', type=str, default='BaseAugmentation',
help='data augmentation type (default: BaseAugmentation)')
parser.add_argument("--resize", nargs="+", type=list, default=[160, 160],
help='resize size for image when training')
parser.add_argument('--batch_size', type=int, default=128, help='input batch size for training (default: 128)')
parser.add_argument('--valid_batch_size', type=int, default=128,
help='input batch size for validing (default: 128)')
parser.add_argument('--model', type=str, default='Efficientnet_b6', help='model type (default: Efficientnet_b6)')
parser.add_argument('--optimizer', type=str, default='Adam', help='optimizer type (default: Adam)')
parser.add_argument('--lr', type=float, default=0.01, help='learning rate (default: 0.01)')
parser.add_argument('--val_ratio', type=float, default=0.2, help='ratio for validaton (default: 0.2)')
parser.add_argument('--criterion', type=str, default='cross_entropy',
help='criterion type (default: cross_entropy)')
parser.add_argument('--lr_decay_step', type=int, default=20,
help='learning rate scheduler deacy step (default: 20)')
parser.add_argument('--log_interval', type=int, default=20,
help='how many batches to wait before logging training status')
parser.add_argument('--name', default='exp', help='model save at {SM_MODEL_DIR}/{name}')
# Container environment
parser.add_argument('--data_dir', type=str,
default=os.environ.get('SM_CHANNEL_TRAIN', '/opt/ml/input/data/train/images'))
parser.add_argument('--model_dir', type=str, default=os.environ.get('SM_MODEL_DIR', '/opt/ml/code/baseline/model'))
args, _ = parser.parse_known_args() # parse_args와 유사하게 동작하지만 여분의 인자에 대해 error를 발생시키지 않음
print("args : ", args)
return args
if __name__ == '__main__':
try:
parser = argparse.ArgumentParser()
# get parameters form tuner
tuner_params = nni.get_next_parameter()
args = vars(merge_parameter(get_params(parser), tuner_params))
# test 할 때
# tuner_params = dict({"epochs": 10, "lr":0.01})
# args = vars(merge_parameter(get_params(parser), tuner_params))
print(args)
data_dir = args['data_dir']
model_dir = args['model_dir']
train(data_dir, model_dir, args)
except Exception as exception:
raise