-
Notifications
You must be signed in to change notification settings - Fork 5
/
train_density_D_compare.py
419 lines (357 loc) · 21.5 KB
/
train_density_D_compare.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
import os
import wandb
import torch
from model import Density1D, Density2D
from helpers import vae_train_utils
from helpers.Control.density_eval import *
from data.src.dataLoaders import GrooveDataSet_Density
from helpers import vae_test_utils, vae_train_utils
from helpers import density_eval
from torch.utils.data import DataLoader
from logging import getLogger, DEBUG
import yaml
import argparse
from distutils.util import strtobool
logger = getLogger("train.py")
logger.setLevel(DEBUG)
parser = argparse.ArgumentParser()
# ----------------------- Set True When Testing ----------------
parser.add_argument("--is_testing", help="Use testing dataset (1% of full date) for testing the script", type=bool,
default=False)
# ----------------------- WANDB Settings -----------------------
parser.add_argument("--wandb", type=bool, help="log to wandb", default=True)
parser.add_argument(
"--config",
help="Yaml file for configuration. If available, the rest of the arguments will be ignored", default=None)
parser.add_argument("--wandb_project", type=str, help="WANDB Project Name",
default="Control 1D")
# ----------------------- Model Parameters -----------------------
# d_model_dec_ratio denotes the ratio of the dec relative to enc size
parser.add_argument("--d_model_enc", type=int, help="Dimension of the encoder model", default=32)
parser.add_argument("--d_model_dec_ratio", type=int,help="Dimension of the decoder model as a ratio of d_model_enc", default=1)
parser.add_argument("--embedding_size_src", type=int, help="Dimension of the source embedding", default=27)
parser.add_argument("--embedding_size_tgt", type=int, help="Dimension of the target embedding", default=27)
parser.add_argument("--nhead_enc", type=int, help="Number of attention heads for the encoder", default=2)
parser.add_argument("--nhead_dec", type=int, help="Number of attention heads for the decoder", default=2)
# d_ff_enc_to_dmodel denotes the ratio of the feed_forward ratio in encoder relative to the encoder dim (d_model_enc)
parser.add_argument("--d_ff_enc_to_dmodel", type=float, help="ration of the dimension of enc feed-frwrd layer relative to "
"enc dmodel", default=1)
# d_ff_dec_to_dmodel denotes the ratio of the feed_forward ratio in encoder relative to the encoder dim (d_model_enc)
parser.add_argument("--d_ff_dec_to_dmodel", type=float,
help="ration of the dimension of dec feed-frwrd layer relative to decoder dmodel", default=1)
# n_dec_lyrs_ratio denotes the ratio of the dec relative to n_enc_lyrs
parser.add_argument("--n_enc_lyrs", type=int, help="Number of encoder layers", default=3)
parser.add_argument("--n_dec_lyrs_ratio", type=float, help="Number of decoder layers as a ratio of "
"n_enc_lyrs as a ratio of d_ff_enc", default=1)
parser.add_argument("--max_len_enc", type=int, help="Maximum length of the encoder", default=32)
parser.add_argument("--max_len_dec", type=int, help="Maximum length of the decoder", default=32)
parser.add_argument("--latent_dim", type=int, help="Overall Dimension of the latent space", default=256)
# ----------------------- Control Parameters -----------------------
parser.add_argument("--model_type", type=str, help="Which type of model to use", default="1D")
parser.add_argument("--n_params", type=int, help="Number of controllability parameters", default=1)
# ----------------------- Loss Parameters -----------------------
parser.add_argument("--balance_vo", type=strtobool, help="Whether to make vel/off loss proportional to h", default=True)
parser.add_argument("--hit_loss_balancing_beta", type=float, help="beta parameter for hit loss balancing", default=0.0)
parser.add_argument("--genre_loss_balancing_beta", type=float, help="beta parameter for genre loss balancing", default=0.0)
parser.add_argument("--hit_loss_function", type=str, help="hit_loss_function - only bce supported for now", default="bce")
parser.add_argument("--velocity_loss_function", type=str, help="velocity_loss_function - either 'bce' or 'mse' loss",
default='mse', choices=['bce', 'mse'])
parser.add_argument("--offset_loss_function", type=str, help="offset_loss_function - either 'bce' or 'mse' loss",
default='mse', choices=['bce', 'mse'])
parser.add_argument("--beta_annealing_activated", help="Use cyclical annealing on KL beta term", type=strtobool, default=True)
parser.add_argument("--beta_level", type=float, help="Max level of beta term on KL", default=1.0)
parser.add_argument("--beta_annealing_per_cycle_rising_ratio", type=float, help="rising ratio in each cycle to anneal beta", default=1)
parser.add_argument("--beta_annealing_per_cycle_period", type=int, help="Number of epochs for each cycle of Beta annealing", default=100)
parser.add_argument("--beta_annealing_start_first_rise_at_epoch", type=int, help="Warm up epochs (KL = 0) before starting the first cycle", default=0)
# ----------------------- Training Parameters -----------------------
parser.add_argument("--dropout", type=float, help="Dropout", default=0.4)
parser.add_argument("--force_data_on_cuda", type=bool, help="places all training data on cude", default=True)
parser.add_argument("--epochs", type=int, help="Number of epochs", default=100)
parser.add_argument("--batch_size", type=int, help="Batch size", default=64)
parser.add_argument("--lr", type=float, help="Learning rate", default=1e-4)
parser.add_argument("--optimizer", type=str, help="optimizer to use - either 'sgd' or 'adam' loss", default="sgd",
choices=['sgd', 'adam'])
parser.add_argument("--reduce_loss_by_sum", type=int, help="reduce loss by summing over all dimensions", default=0)
# ----------------------- Data Parameters -----------------------
parser.add_argument("--dataset_json_dir", type=str,
help="Path to the folder hosting the dataset json file",
default="data/dataset_json_settings")
parser.add_argument("--dataset_json_fname", type=str,
help="filename of the data (USE 4_4_Beats_gmd.jsom for only beat sections,"
" and 4_4_BeatsAndFills_gmd.json for beats and fill samples combined",
default="4_4_Beats_gmd.json")
parser.add_argument("--evaluate_on_subset", type=str,
help="Using test or evaluation subset for evaluating the model", default="test",
choices=['test', 'evaluation'] )
parser.add_argument("--normalize_densities", help="Norm between 0 and 1", type=strtobool, default=True)
# ----------------------- Evaluation Params -----------------------
parser.add_argument("--calculate_hit_scores_on_train", type=strtobool,
help="Evaluates the quality of the hit models on training set",
default=True)
parser.add_argument("--calculate_hit_scores_on_test", type=strtobool,
help="Evaluates the quality of the hit models on test/evaluation set",
default=True)
parser.add_argument("--piano_roll_samples", type=strtobool, help="Generate piano rolls", default=True)
parser.add_argument("--piano_roll_frequency", type=int, help="Frequency of piano roll generation", default=20)
parser.add_argument("--hit_score_frequency", type=int, help="Frequency of hit score generation", default=10)
# ----------------------- Misc Params -----------------------
parser.add_argument("--save_model", type=bool, help="Save model", default=True)
parser.add_argument("--save_model_dir", type=str, help="Path to save the model", default="misc/VAE")
parser.add_argument("--save_model_frequency", type=int, help="Save model every n epochs", default=10)
args, unknown = parser.parse_known_args()
if unknown:
logger.warning(f"Unknown arguments: {unknown}")
# Disable wandb logging in testing mode
if args.is_testing:
os.environ["WANDB_MODE"] = "disabled"
if args.config is not None:
with open(args.config, "r") as f:
hparams = yaml.safe_load(f)
else:
d_model_dec = int(float(args.d_model_enc) * float(args.d_model_dec_ratio))
dim_feedforward_enc = int(float(args.d_ff_enc_to_dmodel)*float(args.d_model_enc))
dim_feedforward_dec = int(float(args.d_ff_dec_to_dmodel) * d_model_dec)
num_decoder_layers = int(float(args.n_enc_lyrs) * float(args.n_dec_lyrs_ratio))
hparams = dict(
d_model_enc=args.d_model_enc,
d_model_dec=d_model_dec,
dim_feedforward_enc=dim_feedforward_enc,
dim_feedforward_dec=dim_feedforward_dec,
num_encoder_layers=int(args.n_enc_lyrs),
num_decoder_layers=num_decoder_layers,
embedding_size_src=args.embedding_size_src,
embedding_size_tgt=args.embedding_size_tgt,
n_params=args.n_params,
nhead_enc=args.nhead_enc,
nhead_dec=args.nhead_dec,
dropout=args.dropout,
latent_dim=args.latent_dim,
max_len_enc=args.max_len_enc,
max_len_dec=args.max_len_dec,
o_activation="tanh" if args.offset_loss_function=="mse" else "sigmoid",
hit_loss_function=args.hit_loss_function,
velocity_loss_function=args.velocity_loss_function,
offset_loss_function=args.offset_loss_function,
hit_loss_balancing_beta=float(args.hit_loss_balancing_beta),
genre_loss_balancing_beta=float(args.genre_loss_balancing_beta),
beta_annealing_activated = args.beta_annealing_activated,
beta_level = args.beta_level,
beta_annealing_per_cycle_rising_ratio=float(args.beta_annealing_per_cycle_rising_ratio),
beta_annealing_per_cycle_period=args.beta_annealing_per_cycle_period,
beta_annealing_start_first_rise_at_epoch=args.beta_annealing_start_first_rise_at_epoch,
epochs=args.epochs,
batch_size=args.batch_size,
lr=args.lr,
optimizer=args.optimizer,
reduce_loss_by_sum=True if args.reduce_loss_by_sum == 1 else False,
is_testing=args.is_testing,
dataset_json_dir=args.dataset_json_dir,
dataset_json_fname=args.dataset_json_fname,
device="cuda" if torch.cuda.is_available() else "cpu"
)
# config files without wandb_project specified
if args.wandb_project is not None:
hparams["wandb_project"] = args.wandb_project
assert "wandb_project" in hparams.keys(), "wandb_project not specified"
if __name__ == "__main__":
# Initialize wandb
# ----------------------------------------------------------------------------------------------------------
wandb_run = wandb.init(
config=hparams, # either from config file or CLI specified hyperparameters
project=hparams["wandb_project"], # name of the project
entity="mmil_julian", # saves in the mmil_vae_cntd team account
settings=wandb.Settings(code_dir="train.py") # for code saving
)
# Reset config to wandb.config (in case of sweeping with YAML necessary)
# ----------------------------------------------------------------------------------------------------------
config = wandb.config
run_name = wandb_run.name
run_id = wandb_run.id
collapse_tapped_sequence = (args.embedding_size_src == 3)
# Load Training and Testing Datasets and Wrap them in torch.utils.data.Dataloader
# ----------------------------------------------------------------------------------------------------------
# only 1% of the dataset is used if we are testing the script (is_testing==True)
should_place_all_data_on_cuda = args.force_data_on_cuda and torch.cuda.is_available()
training_dataset = GrooveDataSet_Density(
dataset_setting_json_path="data/dataset_json_settings/4_4_BeatsAndFills_gmd.json",
subset_tag="train",
max_len=int(args.max_len_enc),
tapped_voice_idx=2,
collapse_tapped_sequence=collapse_tapped_sequence,
down_sampled_ratio=0.1 if args.is_testing is True else None,
move_all_to_gpu=should_place_all_data_on_cuda,
hit_loss_balancing_beta=args.hit_loss_balancing_beta,
genre_loss_balancing_beta=args.genre_loss_balancing_beta,
normalize_densities=args.normalize_densities
)
train_dataloader = DataLoader(training_dataset, batch_size=config.batch_size, shuffle=True)
test_dataset = GrooveDataSet_Density(
dataset_setting_json_path="data/dataset_json_settings/4_4_BeatsAndFills_gmd.json",
subset_tag="test",
max_len=int(args.max_len_enc),
tapped_voice_idx=2,
collapse_tapped_sequence=collapse_tapped_sequence,
down_sampled_ratio=0.1 if args.is_testing is True else None,
move_all_to_gpu=should_place_all_data_on_cuda,
normalize_densities = args.normalize_densities
)
test_dataloader = DataLoader(test_dataset, batch_size=config.batch_size, shuffle=True)
# Initialize the model
# ------------------------------------------------------------------------------------------------------------
assert args.model_type in ["1D", "2D"], print("Invalid model type specified")
if args.model_type == "1D":
config["add_params"] = True
model = Density1D(config)
elif args.model_type == "2D":
config["add_params"] = False
model = Density2D(config)
density_model = model.to(config.device)
wandb.watch(density_model, log="all", log_freq=1)
# Instantiate the loss Criterion and Optimizer
# ------------------------------------------------------------------------------------------------------------
if config.hit_loss_function == "bce":
hit_loss_fn = torch.nn.BCEWithLogitsLoss(reduction='none')
else:
raise NotImplementedError(f"hit_loss_function {config.hit_loss_function} not implemented")
if config.velocity_loss_function == "bce":
velocity_loss_fn = torch.nn.BCEWithLogitsLoss(reduction='none')
else:
velocity_loss_fn = torch.nn.MSELoss(reduction='none')
if config.offset_loss_function == "bce":
offset_loss_fn = torch.nn.BCEWithLogitsLoss(reduction='none')
else:
offset_loss_fn = torch.nn.MSELoss(reduction='none')
if config.optimizer == 'adam':
optimizer = torch.optim.Adam(density_model.parameters(), lr=config.lr)
else:
optimizer = torch.optim.SGD(density_model.parameters(), lr=config.lr)
# Create curve for KL beta annealing
beta_np_cyc = vae_train_utils.generate_beta_curve(
n_epochs=config.epochs,
period_epochs=config.beta_annealing_per_cycle_period,
rise_ratio=config.beta_annealing_per_cycle_rising_ratio,
start_first_rise_at_epoch=config.beta_annealing_start_first_rise_at_epoch)
# Iterate over epochs
# ------------------------------------------------------------------------------------------------------------
metrics = dict()
step_ = 0
for epoch in range(config.epochs):
print(f"Epoch {epoch} of {config.epochs}, steps so far {step_}")
# Run the training loop (trains per batch internally)
# ------------------------------------------------------------------------------------------
density_model.train()
logger.info("***************************Training...")
if config.beta_annealing_activated:
beta = float(args.beta_level * beta_np_cyc[epoch])
else:
beta = args.beta_level
train_log_metrics, step_ = vae_train_utils.train_loop(
train_dataloader=train_dataloader,
model=density_model,
optimizer=optimizer,
hit_loss_fn=hit_loss_fn,
velocity_loss_fn=velocity_loss_fn,
offset_loss_fn=offset_loss_fn,
device=config.device,
starting_step=step_,
kl_beta=beta,
reduce_by_sum=config.reduce_loss_by_sum,
balance_vo=args.balance_vo
)
wandb.log(train_log_metrics, commit=False)
wandb.log({"kl_beta": beta}, commit=False)
# ---------------------------------------------------------------------------------------------------
# After each epoch, evaluate the model on the test set
# - To ensure not overloading the GPU, we evaluate the model on the test set also in batche
# rather than all at once
# ---------------------------------------------------------------------------------------------------
density_model.eval() # DON'T FORGET TO SET THE MODEL TO EVAL MODE (check torch no grad)
logger.info("***************************Testing...")
test_log_metrics = vae_train_utils.test_loop(
test_dataloader=test_dataloader,
model=density_model,
hit_loss_fn=hit_loss_fn,
velocity_loss_fn=velocity_loss_fn,
offset_loss_fn=offset_loss_fn,
device=config.device,
kl_beta=beta,
reduce_by_sum = config.reduce_loss_by_sum,
balance_vo=args.balance_vo
)
wandb.log(test_log_metrics, commit=False)
logger.info(f"Epoch {epoch} Finished with total train loss of {train_log_metrics['train/loss_total']} "
f"and test loss of {test_log_metrics['test/loss_total']}")
# Generate PianoRolls and UMAP Plots and KL/OA PLots if Needed
# ---------------------------------------------------------------------------------------------------
if args.piano_roll_samples:
if epoch % args.piano_roll_frequency == 0:
piano_rolls = get_piano_rolls_for_control_model_wandb(model=density_model,
device=config.device,
test_dataset=test_dataset,
normalizing_fn=training_dataset.normalize_density if args.normalize_densities else None)
wandb.log(piano_rolls, commit=False)
media = generate_umap_for_control_model_wandb(
model=density_model,
device=config.device,
test_dataset=test_dataset,
subset_name='test',
collapse_tapped_sequence=collapse_tapped_sequence,
)
wandb.log(media, commit=False)
# Get Hit Scores for the entire train and the entire test set
# ---------------------------------------------------------------------------------------------------
if args.calculate_hit_scores_on_train:
if epoch % args.hit_score_frequency == 0:
logger.info("________Calculating Hit Scores on Train Set...")
train_set_hit_scores = get_hit_scores_for_density_model(
model=density_model,
device=config.device,
dataset_setting_json_path=f"{config.dataset_json_dir}/{config.dataset_json_fname}",
subset_name='train',
down_sampled_ratio=0.1,
collapse_tapped_sequence=collapse_tapped_sequence,
normalizing_fn=training_dataset.normalize_density if args.normalize_densities else None,
cached_folder="eval/GrooveEvaluator/templates",
divide_by_genre=False
)
wandb.log(train_set_hit_scores, commit=False)
densities_predictions = get_density_prediction_averages(model=density_model,
test_dataset=test_dataset,
device=config.device,
normalizing_fn=training_dataset.normalize_density if args.normalize_densities else None)
wandb.log(densities_predictions, commit=False)
if args.calculate_hit_scores_on_test:
if epoch % args.hit_score_frequency == 0:
logger.info("________Calculating Hit Scores on Test Set...")
test_set_hit_scores = get_hit_scores_for_density_model(
model=density_model,
device=config.device,
dataset_setting_json_path=f"{config.dataset_json_dir}/{config.dataset_json_fname}",
subset_name=args.evaluate_on_subset,
down_sampled_ratio=None,
collapse_tapped_sequence=collapse_tapped_sequence,
normalizing_fn=training_dataset.normalize_density if args.normalize_densities else None,
cached_folder="eval/GrooveEvaluator/templates",
divide_by_genre=False
)
wandb.log(test_set_hit_scores, commit=False)
# Commit the metrics to wandb
# ---------------------------------------------------------------------------------------------------
wandb.log({"epoch": epoch}, step=epoch)
# Save the model if needed
# ---------------------------------------------------------------------------------------------------
if args.save_model:
if epoch % args.save_model_frequency == 0 and epoch > 0:
if epoch < 10:
ep_ = f"00{epoch}"
elif epoch < 100:
ep_ = f"0{epoch}"
else:
ep_ = epoch
model_artifact = wandb.Artifact(f'model_epoch_{ep_}', type='model')
model_path = f"{args.save_model_dir}/{args.wandb_project}/{run_name}_{run_id}/{ep_}.pth"
density_model.save(model_path)
model_artifact.add_file(model_path)
wandb_run.log_artifact(model_artifact)
logger.info(f"Model saved to {model_path}")
wandb.finish()