forked from jatinshah/ufldl_tutorial
-
Notifications
You must be signed in to change notification settings - Fork 0
/
cnn_exercise.py
243 lines (190 loc) · 10.3 KB
/
cnn_exercise.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
import cPickle as pickle
import display_network
import numpy as np
import scipy.io
import cnn
import sparse_autoencoder
import sys
import time
import datetime
import softmax
## CS294A/CS294W Convolutional Neural Networks Exercise
# Instructions
# ------------
#
# This file contains code that helps you get started on the
# convolutional neural networks exercise. In this exercise, you will only
# need to modify cnnConvolve.m and cnnPool.m. You will not need to modify
# this file.
##======================================================================
## STEP 0: Initialization
# Here we initialize some parameters used for the exercise.
image_dim = 64 # image dimension
image_channels = 3 # number of channels (rgb, so 3)
patch_dim = 8 # patch dimension
num_patches = 50000 # number of patches
visible_size = patch_dim * patch_dim * image_channels # number of input units
output_size = visible_size # number of output units
hidden_size = 400 # number of hidden units
epsilon = 0.1 # epsilon for ZCA whitening
pool_dim = 19 # dimension of pooling region
##======================================================================
## STEP 1: Train a sparse autoencoder (with a linear decoder) to learn
# features from color patches. If you have completed the linear decoder
# execise, use the features that you have obtained from that exercise,
# loading them into optTheta. Recall that we have to keep around the
# parameters used in whitening (i.e., the ZCA whitening matrix and the
# meanPatch)
with open('stl10_features.pickle', 'r') as f:
opt_theta = pickle.load(f)
zca_white = pickle.load(f)
patch_mean = pickle.load(f)
# Display and check to see that the features look good
W = opt_theta[0:hidden_size * visible_size].reshape(hidden_size, visible_size)
b = opt_theta[2 * hidden_size * visible_size:2 * hidden_size * visible_size + hidden_size]
display_network.display_color_network(W.dot(zca_white).transpose(), 'zca_features_test.png')
##======================================================================
## STEP 2: Implement and test convolution and pooling
# In this step, you will implement convolution and pooling, and test them
# on a small part of the data set to ensure that you have implemented
# these two functions correctly. In the next step, you will actually
# convolve and pool the features with the STL10 images.
## STEP 2a: Implement convolution
# Implement convolution in the function cnnConvolve in cnnConvolve.m
# Note that we have to preprocess the images in the exact same way
# we preprocessed the patches before we can obtain the feature activations.
stl_train = scipy.io.loadmat('data/stlTrainSubset.mat')
train_images = stl_train['trainImages']
train_labels = stl_train['trainLabels']
num_train_images = stl_train['numTrainImages'][0][0]
## Use only the first 8 images for testing
conv_images = train_images[:, :, :, 0:8]
convolved_features = cnn.cnn_convolve(patch_dim, hidden_size, conv_images,
W, b, zca_white, patch_mean)
## STEP 2b: Checking your convolution
# To ensure that you have convolved the features correctly, we have
# provided some code to compare the results of your convolution with
# activations from the sparse autoencoder
# For 1000 random points
for i in range(1000):
feature_num = np.random.randint(0, hidden_size)
image_num = np.random.randint(0, 8)
image_row = np.random.randint(0, image_dim - patch_dim + 1)
image_col = np.random.randint(0, image_dim - patch_dim + 1)
patch = conv_images[image_row:image_row + patch_dim, image_col:image_col + patch_dim, :, image_num]
patch = np.concatenate((patch[:, :, 0].flatten(), patch[:, :, 1].flatten(), patch[:, :, 2].flatten()))
patch = np.reshape(patch, (patch.size, 1))
patch = patch - np.tile(patch_mean, (patch.shape[1], 1)).transpose()
patch = zca_white.dot(patch)
features = sparse_autoencoder.sparse_autoencoder(opt_theta, hidden_size, visible_size, patch)
if abs(features[feature_num, 0] - convolved_features[feature_num, image_num, image_row, image_col]) > 1e-9:
print 'Convolved feature does not match activation from autoencoder'
print 'Feature Number :', feature_num
print 'Image Number :', image_num
print 'Image Row :', image_row
print 'Image Column :', image_col
print 'Convolved feature :', convolved_features[feature_num, image_num, image_row, image_col]
print 'Sparse AE feature :', features[feature_num, 0]
sys.exit("Convolved feature does not match activation from autoencoder. Exiting...")
print 'Congratulations! Your convolution code passed the test.'
## STEP 2c: Implement pooling
# Implement pooling in the function cnnPool in cnnPool.m
# NOTE: Implement cnnPool in cnnPool.m first!
## STEP 2d: Checking your pooling
# To ensure that you have implemented pooling, we will use your pooling
# function to pool over a test matrix and check the results.
test_matrix = np.arange(64).reshape(8, 8)
expected_matrix = np.array([[np.mean(test_matrix[0:4, 0:4]), np.mean(test_matrix[0:4, 4:8])],
[np.mean(test_matrix[4:8, 0:4]), np.mean(test_matrix[4:8, 4:8])]])
test_matrix = np.reshape(test_matrix, (1, 1, 8, 8))
pooled_features = cnn.cnn_pool(4, test_matrix)
if not (pooled_features == expected_matrix).all():
print "Pooling incorrect"
print "Expected matrix"
print expected_matrix
print "Got"
print pooled_features
print 'Congratulations! Your pooling code passed the test.'
##======================================================================
## STEP 3: Convolve and pool with the dataset
# In this step, you will convolve each of the features you learned with
# the full large images to obtain the convolved features. You will then
# pool the convolved features to obtain the pooled features for
# classification.
#
# Because the convolved features matrix is very large, we will do the
# convolution and pooling 50 features at a time to avoid running out of
# memory. Reduce this number if necessary
step_size = 25
assert hidden_size % step_size == 0, "step_size should divide hidden_size"
stl_train = scipy.io.loadmat('data/stlTrainSubset.mat')
train_images = stl_train['trainImages']
train_labels = stl_train['trainLabels']
num_train_images = stl_train['numTrainImages'][0][0]
stl_test = scipy.io.loadmat('data/stlTestSubset.mat')
test_images = stl_test['testImages']
test_labels = stl_test['testLabels']
num_test_images = stl_test['numTestImages'][0][0]
pooled_features_train = np.zeros(shape=(hidden_size, num_train_images,
np.floor((image_dim - patch_dim + 1) / pool_dim),
np.floor((image_dim - patch_dim + 1) / pool_dim)),
dtype=np.float64)
pooled_features_test = np.zeros(shape=(hidden_size, num_test_images,
np.floor((image_dim - patch_dim + 1) / pool_dim),
np.floor((image_dim - patch_dim + 1) / pool_dim)),
dtype=np.float64)
start_time = time.time()
for conv_part in range(hidden_size / step_size):
features_start = conv_part * step_size
features_end = (conv_part + 1) * step_size
print "Step:", conv_part, "features", features_start, "to", features_end
Wt = W[features_start:features_end, :]
bt = b[features_start:features_end]
print "Convolving & pooling train images"
convolved_features = cnn.cnn_convolve(patch_dim, step_size, train_images,
Wt, bt, zca_white, patch_mean)
pooled_features = cnn.cnn_pool(pool_dim, convolved_features)
pooled_features_train[features_start:features_end, :, :, :] = pooled_features
print "Time elapsed:", str(datetime.timedelta(seconds=time.time() - start_time))
print "Convolving and pooling test images"
convolved_features = cnn.cnn_convolve(patch_dim, step_size, test_images,
Wt, bt, zca_white, patch_mean)
pooled_features = cnn.cnn_pool(pool_dim, convolved_features)
pooled_features_test[features_start:features_end, :, :, :] = pooled_features
print "Time elapsed:", str(datetime.timedelta(seconds=time.time() - start_time))
print('Saving pooled features...')
with open('cnn_pooled_features.pickle', 'wb') as f:
pickle.dump(pooled_features_train, f)
pickle.dump(pooled_features_test, f)
print "Saved"
print "Time elapsed:", str(datetime.timedelta(seconds=time.time() - start_time))
##======================================================================
## STEP 4: Use pooled features for classification
# Now, you will use your pooled features to train a softmax classifier,
# using softmaxTrain from the softmax exercise.
# Training the softmax classifer for 1000 iterations should take less than
# 10 minutes.
# Load pooled features
with open('cnn_pooled_features.pickle', 'r') as f:
pooled_features_train = pickle.load(f)
pooled_features_test = pickle.load(f)
# Setup parameters for softmax
softmax_lambda = 1e-4
num_classes = 4
# Reshape the pooled_features to form an input vector for softmax
softmax_images = np.transpose(pooled_features_train, axes=[0, 2, 3, 1])
softmax_images = softmax_images.reshape((softmax_images.size / num_train_images, num_train_images))
softmax_labels = train_labels.flatten() - 1 # Ensure that labels are from 0..n-1 (for n classes)
options_ = {'maxiter': 1000, 'disp': True}
softmax_model = softmax.softmax_train(softmax_images.size / num_train_images, num_classes,
softmax_lambda, softmax_images, softmax_labels, options_)
(softmax_opt_theta, softmax_input_size, softmax_num_classes) = softmax_model
##======================================================================
## STEP 5: Test classifer
# Now you will test your trained classifer against the test images
softmax_images = np.transpose(pooled_features_test, axes=[0, 2, 3, 1])
softmax_images = softmax_images.reshape((softmax_images.size / num_test_images, num_test_images))
softmax_labels = test_labels.flatten() - 1
predictions = softmax.softmax_predict(softmax_model, softmax_images)
print "Accuracy: {0:.2f}%".format(100 * np.sum(predictions == softmax_labels, dtype=np.float64) / test_labels.shape[0])
# You should expect to get an accuracy of around 80% on the test images.