forked from jatinshah/ufldl_tutorial
-
Notifications
You must be signed in to change notification settings - Fork 0
/
stl_exercise.py
98 lines (73 loc) · 3.75 KB
/
stl_exercise.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
import load_MNIST
import numpy as np
import sparse_autoencoder
import scipy.optimize
import display_network
import softmax
## ======================================================================
# STEP 0: Here we provide the relevant parameters values that will
# allow your sparse autoencoder to get good filters; you do not need to
# change the parameters below.
input_size = 28 * 28
num_labels = 5
hidden_size = 196
sparsity_param = 0.1 # desired average activation of the hidden units.
lambda_ = 3e-3 # weight decay parameter
beta = 3 # weight of sparsity penalty term
## ======================================================================
# STEP 1: Load data from the MNIST database
#
# This loads our training and test data from the MNIST database files.
# We have sorted the data for you in this so that you will not have to
# change it.
images = load_MNIST.load_MNIST_images('data/mnist/train-images-idx3-ubyte')
labels = load_MNIST.load_MNIST_labels('data/mnist/train-labels-idx1-ubyte')
unlabeled_index = np.argwhere(labels >= 5).flatten()
labeled_index = np.argwhere(labels < 5).flatten()
num_train = round(labeled_index.shape[0] / 2)
train_index = labeled_index[0:num_train]
test_index = labeled_index[num_train:]
unlabeled_data = images[:, unlabeled_index]
train_data = images[:, train_index]
train_labels = labels[train_index]
test_data = images[:, test_index]
test_labels = labels[test_index]
print '# examples in unlabeled set: {0:d}\n'.format(unlabeled_data.shape[1])
print '# examples in supervised training set: {0:d}\n'.format(train_data.shape[1])
print '# examples in supervised testing set: {0:d}\n'.format(test_data.shape[1])
## ======================================================================
# STEP 2: Train the sparse autoencoder
# This trains the sparse autoencoder on the unlabeled training
# images.
# Randomly initialize the parameters
theta = sparse_autoencoder.initialize(hidden_size, input_size)
J = lambda x: sparse_autoencoder.sparse_autoencoder_cost(x, input_size, hidden_size,
lambda_, sparsity_param,
beta, unlabeled_data)
options_ = {'maxiter': 400, 'disp': True}
result = scipy.optimize.minimize(J, theta, method='L-BFGS-B', jac=True, options=options_)
opt_theta = result.x
print result
# Visualize the weights
W1 = opt_theta[0:hidden_size * input_size].reshape(hidden_size, input_size).transpose()
display_network.display_network(W1)
##======================================================================
## STEP 3: Extract Features from the Supervised Dataset
#
# You need to complete the code in feedForwardAutoencoder.m so that the
# following command will extract features from the data.
train_features = sparse_autoencoder.sparse_autoencoder(opt_theta, hidden_size,
input_size, train_data)
test_features = sparse_autoencoder.sparse_autoencoder(opt_theta, hidden_size,
input_size, test_data)
##======================================================================
## STEP 4: Train the softmax classifier
lambda_ = 1e-4
options_ = {'maxiter': 400, 'disp': True}
opt_theta, input_size, num_classes = softmax.softmax_train(hidden_size, num_labels,
lambda_, train_features,
train_labels, options_)
##======================================================================
## STEP 5: Testing
predictions = softmax.softmax_predict((opt_theta, input_size, num_classes), test_features)
print "Accuracy: {0:.2f}%".format(100 * np.sum(predictions == test_labels, dtype=np.float64) / test_labels.shape[0])