-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathPoseData.py
68 lines (54 loc) · 2.13 KB
/
PoseData.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
import torch.utils.data as data
from PIL import Image
import os
import os.path
import numpy as np
import torch
# Get image path and pose from dataset_train.txt.
# There is an invalid value in dataset_train.txt,
# so you have to delete it manually.
def make_dataset(dir, train=True):
# It needs to be optimized more.
if train:
paths = np.genfromtxt(os.path.join(dir, 'dataset_train.txt'),
dtype=str, delimiter=' ', skip_header=3,
usecols=[0])
poses = np.genfromtxt(os.path.join(dir, 'dataset_train.txt'),
dtype=np.float32, delimiter=' ', skip_header=3,
usecols=[1, 2, 3, 4, 5, 6, 7])
else:
paths = np.genfromtxt(os.path.join(dir, 'dataset_test.txt'),
dtype=str, delimiter=' ', skip_header=3,
usecols=[0])
poses = np.genfromtxt(os.path.join(dir, 'dataset_test.txt'),
dtype=np.float32, delimiter=' ', skip_header=3,
usecols=[1, 2, 3, 4, 5, 6, 7])
# sort by path name
order = paths.argsort()
paths = paths[order]
poses = poses[order]
return paths, poses
def default_loader(path):
return Image.open(path).convert('RGB')
class PoseData(data.Dataset):
def __init__(self, root, transform=None, target_transform=None,
loader=default_loader, train=True):
paths, poses = make_dataset(root, train)
self.root = root
self.paths = paths
self.poses = poses
self.transform = transform
self.target_transform = target_transform
self.loader = loader
def __getitem__(self, index):
path = self.paths[index]
target = self.poses[index]
img = self.loader(os.path.join(self.root, path))
if self.transform is not None:
img = self.transform(img)
if self.target_transform is not None:
target = self.target_transform(target)
target = torch.from_numpy(target)
return img, target
def __len__(self):
return len(self.paths)