-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathmain.py
219 lines (171 loc) · 6.86 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
import shutil
import numpy as np
import math
import torch
import torch.nn as nn
import torch.backends.cudnn as cudnn
import torch.nn.parallel
import torch.optim
import torch.utils.data
import torchvision.models as models
import torchvision.transforms as transforms
import PoseData
from PoseNet import PoseNet
def main():
best_loss = 10000
start_epoch = 0
# learning rate
lr = 1e-4
# use ResNet-34 for pretrained model of PoseNet
original_model = models.resnet34(pretrained=True)
# make PoseNet
model = PoseNet(original_model)
# model.features = torch.nn.DataParallel(model.features)
model.cuda()
# for resume code, update epoch and best loss
# checkpoint = torch.load('model_best.pth.tar-Res34')
# model.load_state_dict(checkpoint['state_dict'])
# start_epoch = checkpoint['epoch']
# best_loss = checkpoint['best_loss']
cudnn.benchmark = True
# Data loading code
datadir = './dataset/KingsCollege'
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
train_loader = torch.utils.data.DataLoader(
PoseData.PoseData(datadir, transforms.Compose([
transforms.Scale(256),
transforms.RandomCrop(224),
transforms.ToTensor(),
normalize
]), train=True),
batch_size=75, shuffle=True,
num_workers=8, pin_memory=True)
val_loader = torch.utils.data.DataLoader(
PoseData.PoseData(datadir, transforms.Compose([
transforms.Scale(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
normalize
]), train=False),
batch_size=75, shuffle=False,
num_workers=8, pin_memory=True)
optimizer = torch.optim.Adam([{'params': model.features.parameters(), 'lr': lr},
{'params': model.regressor.parameters(), 'lr': lr},
{'params': model.trans_regressor.parameters(), 'lr': lr},
{'params': model.rotation_regressor.parameters(), 'lr': lr}],
weight_decay=2e-4)
for epoch in range(start_epoch, 160):
adjust_learning_rate(optimizer, epoch)
# train for one epoch
train(train_loader, model, optimizer, epoch)
# evaluate on validation set
loss, trans_loss, rotation_loss = validate(val_loader, model)
# remember best loss and save checkpoint
is_best = loss < best_loss
best_loss = min(loss, best_loss)
save_checkpoint({
'epoch': epoch + 1,
'state_dict': model.state_dict(),
'best_loss': best_loss,
}, is_best)
def train(train_loader, model, optimizer, epoch):
losses = AverageMeter()
trans_losses = AverageMeter()
rotation_losses = AverageMeter()
# switch to train mode
model.train()
beta = 500
for i, (input, target) in enumerate(train_loader):
target = target.cuda()
input_var = torch.autograd.Variable(input.cuda())
target_var = torch.autograd.Variable(target)
# compute output
trans_output, rotation_output = model(input_var)
trans_loss = pose_loss(trans_output, target_var[:, 0:3])
rotation_loss = pose_loss(rotation_output, target_var[:, 3:]) * beta
loss = trans_loss + rotation_loss
# measure and record loss
losses.update(loss.data[0], input.size(0))
trans_losses.update(trans_loss.data[0], input.size(0))
rotation_losses.update(rotation_loss.data[0], input.size(0))
# compute gradient and do SGD step
optimizer.zero_grad()
loss.backward()
optimizer.step()
print('Epoch: [{0}][{1}]\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
'Trans Loss {trans_loss.val:.4f} ({trans_loss.avg:.4f})\t'
'Rotation Loss {rotation_loss.val:.4f} ({rotation_loss.avg:.4f})\t'.format(
epoch, len(train_loader), loss=losses,
trans_loss=trans_losses, rotation_loss=rotation_losses))
def validate(val_loader, model):
losses = AverageMeter()
trans_losses = AverageMeter()
rotation_losses = AverageMeter()
rotation_errors = AverageMeter()
# switch to evaluate mode
model.eval()
beta = 500
for i, (input, target) in enumerate(val_loader):
target = target.cuda()
input_var = torch.autograd.Variable(input.cuda(), volatile=True)
target_var = torch.autograd.Variable(target, volatile=True)
# compute output
trans_output, rotation_output = model(input_var)
trans_loss = pose_loss(trans_output, target_var[:, 0:3])
rotation_loss = pose_loss(rotation_output, target_var[:, 3:]) * beta
loss = trans_loss + rotation_loss
# measure and record loss
losses.update(loss.data[0], input.size(0))
trans_losses.update(trans_loss.data[0], input.size(0))
rotation_losses.update(rotation_loss.data[0], input.size(0))
rotation_errors.update(rotation_error(rotation_output, target_var[:, 3:]).data[0],
input.size(0))
print('Test: [{0}]\t'
'Loss ({loss.avg:.4f})\t'
'Trans Loss ({trans_loss.avg:.4f})\t'
'Rotation Loss ({rotation_loss.avg:.4f})\t'
'Rotation Error ({rotation_error.avg:.4f})\t'.format(
len(val_loader), loss=losses,
trans_loss=trans_losses, rotation_loss=rotation_losses,
rotation_error=rotation_errors))
return losses.avg, trans_losses.avg, rotation_losses.avg
def save_checkpoint(state, is_best, filename='checkpoint.pth.tar'):
torch.save(state, filename)
if is_best:
shutil.copyfile(filename, 'model_best.pth.tar')
def adjust_learning_rate(optimizer, epoch):
"""Sets the learning rate to the initial LR decayed by 10 every 80 epochs"""
lr = 1e-4 * (0.1 ** (epoch // 80))
for param_group in optimizer.param_groups:
param_group['lr'] = lr
def pose_loss(input, target):
x = torch.norm(input-target, dim=1)
x = torch.mean(x)
return x
def rotation_error(input, target):
x1 = torch.norm(input, dim=1)
x2 = torch.norm(target, dim=1)
x1 = torch.div(input, torch.stack((x1, x1, x1, x1), dim=1))
x2 = torch.div(target, torch.stack((x2, x2, x2, x2), dim=1))
d = torch.abs(torch.sum(x1 * x2, dim=1))
theta = 2 * torch.acos(d) * 180/math.pi
theta = torch.mean(theta)
return theta
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
if __name__ == '__main__':
main()