-
Notifications
You must be signed in to change notification settings - Fork 2
/
plot_fig4.py
449 lines (368 loc) · 19.1 KB
/
plot_fig4.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
#import:
import matplotlib
matplotlib.use('Agg')
from matplotlib.pyplot import *
import numpy as np
from numpy import linspace, logspace, empty, zeros, ones, array, fromfile
from numpy import pi, exp, log, sqrt, sin, cos, arccos, arctan2
from numpy import absolute, sign, floor, ceil,ma
# from numpy.polynomial.laguerre import laggauss
# from numpy.polynomial.legendre import leggauss
# from scipy.interpolate import interp1d
# from scipy.special import kn
# from bisect import bisect
colors=[
# 'xkcd:brownish red',
'xkcd:red',
# 'xkcd:orange',
# 'xkcd:dark yellow',
# 'xkcd:dark yellow green',
'xkcd:deep green',
# 'xkcd:dark cyan',
'xkcd:blue',
'xkcd:purple'
]
#physical constants:
evere=.5109989e6 # electron volts in elecron rest energy
G=13275412528e1 # G*M_sol in km^3/s^2
c=299792458e-3 # speed of light in km/s
NPhi = 550#500#150#128*2#120#128#120 # Number of equidistant phase points
phi, phi_weight=linspace(0,360,num=NPhi,endpoint=True,retstep=True) #Size of spacing between samples = phi_weight
philag = ma.array(zeros(NPhi))
sphilag = ma.array(zeros(NPhi))
chi = ma.array(zeros(NPhi))
chi_sph = ma.array(zeros(NPhi))
chi_old = ma.array(zeros(NPhi))
chi_pri = ma.array(zeros(NPhi))
chi_one = ma.array(zeros(NPhi))
chi_pri_sph = ma.array(zeros(NPhi))
chi_nul = ma.array(zeros(NPhi))
chi_nul_sph = ma.array(zeros(NPhi))
diffchi_old = ma.array(zeros(NPhi))
diffchi = ma.array(zeros(NPhi))
mu_0 = ma.array(zeros(NPhi))
nu=[1,200,400,600] # star rotation frequency in Hz
# nu=[600]*4# [1,200,400,600] # star rotation frequency in Hz
M=1.4#1.6#1.4 # star mass in solar masses
# R_g=M*2.95 # gravitational Schwarzschild radius
R_0=12.0 # equatorial radius of the star in kilometers
# incl = [40*pi/180]*4 # [20*pi/180,40*pi/180,60*pi/180,80*pi/180] #pi*4/18#1.5 # line of sight colatitude #in radians
incl = [50*pi/180]*4 # [20*pi/180,40*pi/180,60*pi/180,80*pi/180] #pi*4/18#1.5 # line of sight colatitude #in radians
# incl = [20*pi/180,40*pi/180,60*pi/180,80*pi/180] #pi*4/18#1.5 # line of sight colatitude #in radians
# theta = [15*pi/180,30*pi/180,45*pi/180,60*pi/180]# [pi/4]
# theta = [3*pi/18]*4 #[15*pi/180,30*pi/180,45*pi/180,60*pi/180]# [pi/4]
theta = [40*pi/180]*4 #[15*pi/180,30*pi/180,45*pi/180,60*pi/180]# [pi/4]
#,3*pi/18,6*pi/18,pi/18]
NSpots = len(theta)
#rc("text", usetex=True)
figA = figure(figsize=(14,12), dpi=300) #8,6
#rc("font", family="serif")
#rc("font",serif="Times")
matplotlib.pyplot.figure(1)
lbfontsz = 25
lwidth= 2.5
rc("xtick", labelsize=lbfontsz)
rc("ytick", labelsize=lbfontsz)
rc("axes", linewidth=lwidth)
#figA.clear()
matplotlib.pyplot.rcParams.update({'axes.titlesize': lbfontsz})
matplotlib.pyplot.rcParams.update({'font.size': lbfontsz})
matplotlib.pyplot.rcParams.update({'lines.linewidth': lwidth})
matplotlib.pyplot.rcParams.update({'ytick.major.width': lwidth})
matplotlib.pyplot.rcParams.update({'xtick.major.width': lwidth})
matplotlib.pyplot.rcParams.update({'ytick.major.size': 10.0})
matplotlib.pyplot.rcParams.update({'xtick.major.size': 10.0})
matplotlib.pyplot.rcParams.update({'font.family': 'serif'})
#matplotlib.pyplot.rcParams.update({'font.serif': 'Times'})
matplotlib.pyplot.subplots_adjust(wspace=0, hspace=0)
plotAc=figA.add_subplot(2,1,1,yscale='linear')
plotAd=figA.add_subplot(2,1,2,) #
def Beloborodov(cos_psi):
"""Beloborodov's approximation for cos_alpha(cos_psi) light bending function
takes the cos psi
returns the cos alpha and its derivative
"""
return 1. + (cos_psi - 1.)/redshift**2 ,1./redshift**2
def Poutanen(u,y):
return ( 1 - u )*y*( 1 + u*u*y*y/112 - np.e/1e2*u*y*( np.log( 1 - y/2 ) + y/2 ) )
def Schwarzschild(R,alpha):
"""Schwarzschild exact relation between the \psi and \\alpha angles, where
\\alpha is the angle between radius vector of the spot and the direction of the outgoing photon near the surface
and \psi is the angle between normal and light propagation at the limit of infinite distance.
For given distance from the mass center and the emission angle \\alpha
this function returns two numbers:
the corresponding angle \psi
and the time lag over against the fotons emited with zero impact parameter at the radius.
"""
kx,wx=IntBend
eps=(1+kx[0])/4e2
u=R_g/R
b=sin(alpha)/sqrt(1-u)*R # impact parameter
if 2*alpha>pi+eps:
cos_3eta=sqrt(27)*R_g/2/b
if cos_3eta > 1:
return pi+2*eps,0 # the timelag
closest_approach=-2*b/sqrt(3)*cos(arccos(cos_3eta)/3 + 2*pi/3)
psi_max, lag_max= Schwarzschild(closest_approach,pi/2.)
psi_min, lag_min= Schwarzschild(R,pi-alpha)
psi=2*psi_max - psi_min
lag=2*lag_max - lag_min # + 2*(R - closest_approach + R_g*log((R - R_g)/(closest_approach - R_g)))/c
if psi>pi:
return pi+eps,lag
else:
psi=0
lag=(R_e - R + R_g*log( (R_e - R_g)/(R - R_g) ) )/c
for i in range(NBend):
ex=(kx[i]+1)/2
q=(2. - ex*ex - u*(1 - ex*ex)**2/(1 - u))*sin(alpha)**2
sr=sqrt(cos(alpha)**2+ex*ex*q)
if 2*alpha>pi-eps:
dpsi=b/R/sqrt(q)*wx[i] #*2/2
else:
dpsi=ex*b/R/sr*wx[i] #*2/2
dlag=dpsi*b/c/(1+sr) #*2/2
psi+= dpsi
lag+= dlag
return psi,lag
# flattening=0
def foldchi(c):
for i in range(len(c)):
c[i] = (c[i]*180/pi+90)%180-90
if abs(c[i]-c[i-1])>90:
c[i] = ma.masked
return c
if True:
# sphere case
for p in range(NSpots):
sin_i=sin(incl[p])
cos_i=cos(incl[p])
sin_theta=sin(theta[p])
cos_theta=cos(theta[p])
R=R_0
dR=0.0
R_g=M*2.95
u = R_g/R
redshift=1.0/sqrt(1.0 - u) # 1/sqrt(1-R_g/R) = 1+ z = redshift
f=0
sin_gamma=0.0
cos_gamma=1.0
beta=2*pi*nu[p]*R*redshift*sin_theta/c
Gamma=1.0/sqrt(1.0 - beta**2)
Gamma1= (1.0-sqrt(1.0 - beta**2) )/ beta
print('theta: ',theta[p],'gamma: ',arctan2(f,1.0)*180/pi)
for t in range(NPhi):
# if True: # find mu
phi0 = phi[t]*pi/180+pi
sin_phi=sin(phi0)
cos_phi=cos(phi0)
cos_psi=cos_i*cos_theta + sin_i*sin_theta*cos_phi
sin_psi=sqrt(1. - cos_psi**2)
cos_alpha = 1.0 - Poutanen(u, 1.0 - cos_psi) # insert exact formula here
sin_alpha = sqrt(1. - cos_alpha**2)
sin_alpha_over_sin_psi= sin_alpha/sin_psi if sin_psi > 1e-4 else 1./redshift
cos_xi = - sin_alpha_over_sin_psi*sin_i*sin_phi
delta = 1./Gamma/(1.-beta*cos_xi)
cos_sigma = cos_gamma*cos_alpha + sin_alpha_over_sin_psi*sin_gamma*(cos_i*sin_theta - sin_i*cos_theta*cos_phi)
sin_sigma = sqrt(1. - cos_sigma**2)
mu0=delta*cos_sigma # cos(sigma')
# Omega=dS[p]*mu0*redshift**2*dcos_alpha #*Gamma*R*R/cos_gamma #
sin_chi_0= - sin_theta*sin_phi # times sin psi
cos_chi_0=sin_i*cos_theta - sin_theta*cos_i*cos_phi # times sin psi
chi_0=arctan2(sin_chi_0,cos_chi_0)
# chi_0 = 0
# sin_chi_1=sin_gamma*sin_i*sin_phi*sin_alpha_over_sin_psi #times sin alpha sin sigma
# cos_chi_1=cos_gamma - cos_alpha*cos_sigma #times sin alpha sin sigma
# chi_1=arctan2(sin_chi_1,cos_chi_1)
# sin_lambda=sin_theta*cos_gamma - sin_gamma*cos_theta
# cos_lambda=cos_theta*cos_gamma + sin_theta*sin_gamma
# cos_eps = sin_alpha_over_sin_psi*(cos_i*sin_lambda - sin_i*cos_lambda*cos_phi + cos_psi*sin_gamma) - cos_alpha*sin_gamma
# # this line is the longest one
# # alt_cos_eps=(cos_sigma*cos_gamma - cos_alpha)/sin_gamma # legit! thanks God I checked it!
# # sin_chi_prime=cos_eps*mu0*Gamma*beta # times something
# sin_chi_prime=cos_eps*mu0*delta*Gamma*beta*(1-Gamma1*cos_xi)# times something
# # cos_chi_prime=1. - cos_sigma**2 /(1. - beta*cos_xi) # times the samething
# cos_chi_prime=sin_sigma**2 - Gamma*mu0**2*beta*cos_xi*(1 - Gamma1*cos_xi) # times the samething
# chi_prime=arctan2(sin_chi_prime,cos_chi_prime)
# chi[t] = foldchi(chi_0+chi_prime+ chi_1)
cos_eps_sph = sin_alpha_over_sin_psi*(cos_i*sin_theta - sin_i*cos_theta*cos_phi)
sin_chi_prime_sph=cos_eps_sph*mu0*delta*Gamma*beta*(1-Gamma1*cos_xi)# times something
cos_chi_prime_sph=sin_alpha**2 - Gamma*mu0**2*beta*cos_xi*(1 - Gamma1*cos_xi) # times the samething
chi_prime_sph= arctan2(sin_chi_prime_sph,cos_chi_prime_sph)
chi_sph[t] = (chi_0+ chi_prime_sph)
nup = nu[p]
M_bar = M/1.4
nu_cr = 1278*sqrt(M_bar)*(10/R)**1.5
nu_bar = nup/nu_cr
R_e = R_0*(0.9766 + 0.025/(1.07- nu_bar)+0.07*M_bar**1.5*nu_bar**2)
a1 = 0.001*M_bar**1.5
a0 = 1.0 - a1/1.1
a2 = 10*a1
M_prime = M*(a0 + a1/(1.1-nu_bar)+ a2*nu_bar**2)
print(M_prime/M)
print(R_e/R_0)
R_g=M_prime*2.95
sin_i=sin(incl[p])
cos_i=cos(incl[p])
Omega_bar=2*pi*nu[p]*sqrt(2*R_e**3/R_g)/c
# print('_O_^2',Omega_bar**2,'_O_',Omega_bar)
flattening=(0.788-0.515*R_g/R_e)*Omega_bar**2
# print(R_e*(1-flattening))
sin_theta=sin(theta[p])
cos_theta=cos(theta[p])
R=R_e*(1 - flattening*cos_theta**2)
dR=2*R_e*flattening*cos_theta*sin_theta # dR / d\theta
u = R_g/R
redshift=1.0/sqrt(1.0 - u) # 1/sqrt(1-R_g/R) = 1+ z = redshift
f=redshift/R*dR
sin_gamma=f/sqrt(1 + f**2) # angle gamma is positive towards the north pole
cos_gamma=1.0/sqrt(1 + f**2)
beta=2*pi*nu[p]*R*redshift*sin_theta/c
Gamma=1.0/sqrt(1.0 - beta**2)
Gamma1= (1.0-sqrt(1.0 - beta**2) )/ beta
print('theta: ',theta[p],'gamma: ',arctan2(f,1.0)*180/pi)
for t in range(NPhi):
# if True: # find mu
phi0 = phi[t]*pi/180+pi
sin_phi=sin(phi0)
cos_phi=cos(phi0)
cos_psi=cos_i*cos_theta + sin_i*sin_theta*cos_phi
sin_psi=sqrt(1. - cos_psi**2)
cos_alpha = 1.0 - Poutanen(u, 1.0 - cos_psi) # insert exact formula here
sin_alpha = sqrt(1. - cos_alpha**2)
sin_alpha_over_sin_psi= sin_alpha/sin_psi if sin_psi > 1e-4 else 1./redshift
cos_xi = - sin_alpha_over_sin_psi*sin_i*sin_phi
delta = 1./Gamma/(1.-beta*cos_xi)
cos_sigma = cos_gamma*cos_alpha + sin_alpha_over_sin_psi*sin_gamma*(cos_i*sin_theta - sin_i*cos_theta*cos_phi)
sin_sigma = sqrt(1. - cos_sigma**2)
mu0=delta*cos_sigma # cos(sigma')
mu_0[t]=(1-mu0)/(1+3.582*mu0)*117
# Omega=dS[p]*mu0*redshift**2*dcos_alpha #*Gamma*R*R/cos_gamma #
sin_chi_0= - sin_theta*sin_phi # times sin psi
cos_chi_0=sin_i*cos_theta - sin_theta*cos_i*cos_phi # times sin psi
chi_0=arctan2(sin_chi_0,cos_chi_0)
# chi_0 = 0
sin_chi_1=sin_gamma*sin_i*sin_phi*sin_alpha_over_sin_psi #times sin alpha sin sigma
cos_chi_1=cos_gamma - cos_alpha*cos_sigma #times sin alpha sin sigma
chi_1=arctan2(sin_chi_1,cos_chi_1)
sin_lambda=sin_theta*cos_gamma - sin_gamma*cos_theta
cos_lambda=cos_theta*cos_gamma + sin_theta*sin_gamma
cos_eps = sin_alpha_over_sin_psi*(cos_i*sin_lambda - sin_i*cos_lambda*cos_phi + cos_psi*sin_gamma) - cos_alpha*sin_gamma
# this line is the longest one
# alt_cos_eps=(cos_sigma*cos_gamma - cos_alpha)/sin_gamma # legit! thanks God I checked it!
# sin_chi_prime=cos_eps*mu0*Gamma*beta # times something
sin_chi_prime=cos_eps*mu0*delta*Gamma*beta*(1-Gamma1*cos_xi)# times something
# cos_chi_prime=1. - cos_sigma**2 /(1. - beta*cos_xi) # times the samething
cos_chi_prime=sin_sigma**2 - Gamma*mu0**2*beta*cos_xi*(1 - Gamma1*cos_xi) # times the samething
chi_prime=arctan2(sin_chi_prime,cos_chi_prime)
chi[t] = (chi_0+chi_prime+ chi_1)
nup = nu[p]
M_bar = M/1.4
nu_cr = 1278*sqrt(M_bar)*(10/R)**1.5
nu_bar = nup/nu_cr
R_e = R_0#*(0.9766 + 0.025/(1.07- nu_bar)+0.07*M_bar**1.5*nu_bar**2)
a1 = 0.001*M_bar**1.5
a0 = 1.0 - a1/1.1
a2 = 10*a1
M_prime = M#*(a0 + a1/(1.1-nu_bar)+ a2*nu_bar**2)
print(M_prime/M)
print(R_e/R_0)
R_g=M_prime*2.95
sin_i=sin(incl[p])
cos_i=cos(incl[p])
Omega_bar=2*pi*nu[p]*sqrt(2*R_e**3/R_g)/c
# print('_O_^2',Omega_bar**2,'_O_',Omega_bar)
flattening=(0.788-0.515*R_g/R_e)*Omega_bar**2
# print(R_e*(1-flattening))
sin_theta=sin(theta[p])
cos_theta=cos(theta[p])
R=R_e*(1 - flattening*cos_theta**2)
dR=2*R_e*flattening*cos_theta*sin_theta # dR / d\theta
u = R_g/R
redshift=1.0/sqrt(1.0 - u) # 1/sqrt(1-R_g/R) = 1+ z = redshift
f=redshift/R*dR
sin_gamma=f/sqrt(1 + f**2) # angle gamma is positive towards the north pole
cos_gamma=1.0/sqrt(1 + f**2)
beta=2*pi*nu[p]*R*redshift*sin_theta/c
Gamma=1.0/sqrt(1.0 - beta**2)
Gamma1= (1.0-sqrt(1.0 - beta**2) )/ beta
print('theta: ',theta[p],'gamma: ',arctan2(f,1.0)*180/pi)
for t in range(NPhi):
# if True: # find mu
phi0 = phi[t]*pi/180+pi
sin_phi=sin(phi0)
cos_phi=cos(phi0)
cos_psi=cos_i*cos_theta + sin_i*sin_theta*cos_phi
sin_psi=sqrt(1. - cos_psi**2)
cos_alpha = 1.0 - Poutanen(u, 1.0 - cos_psi) # insert exact formula here
sin_alpha = sqrt(1. - cos_alpha**2)
sin_alpha_over_sin_psi= sin_alpha/sin_psi if sin_psi > 1e-4 else 1./redshift
cos_xi = - sin_alpha_over_sin_psi*sin_i*sin_phi
delta = 1./Gamma/(1.-beta*cos_xi)
cos_sigma = cos_gamma*cos_alpha + sin_alpha_over_sin_psi*sin_gamma*(cos_i*sin_theta - sin_i*cos_theta*cos_phi)
sin_sigma = sqrt(1. - cos_sigma**2)
mu0=delta*cos_sigma # cos(sigma')
# Omega=dS[p]*mu0*redshift**2*dcos_alpha #*Gamma*R*R/cos_gamma #
sin_chi_0= - sin_theta*sin_phi # times sin psi
cos_chi_0=sin_i*cos_theta - sin_theta*cos_i*cos_phi # times sin psi
chi_0=arctan2(sin_chi_0,cos_chi_0)
# chi_0 = 0
sin_chi_1=sin_gamma*sin_i*sin_phi*sin_alpha_over_sin_psi #times sin alpha sin sigma
cos_chi_1=cos_gamma - cos_alpha*cos_sigma #times sin alpha sin sigma
chi_1=arctan2(sin_chi_1,cos_chi_1)
sin_lambda=sin_theta*cos_gamma - sin_gamma*cos_theta
cos_lambda=cos_theta*cos_gamma + sin_theta*sin_gamma
cos_eps = sin_alpha_over_sin_psi*(cos_i*sin_lambda - sin_i*cos_lambda*cos_phi + cos_psi*sin_gamma) - cos_alpha*sin_gamma
# this line is the longest one
# alt_cos_eps=(cos_sigma*cos_gamma - cos_alpha)/sin_gamma # legit! thanks God I checked it!
# sin_chi_prime=cos_eps*mu0*Gamma*beta # times something
sin_chi_prime=cos_eps*mu0*delta*Gamma*beta*(1-Gamma1*cos_xi)# times something
# cos_chi_prime=1. - cos_sigma**2 /(1. - beta*cos_xi) # times the samething
cos_chi_prime=sin_sigma**2 - Gamma*mu0**2*beta*cos_xi*(1 - Gamma1*cos_xi) # times the samething
chi_prime=arctan2(sin_chi_prime,cos_chi_prime)
chi_old[t] = (chi_0+chi_prime+ chi_1)
diffchi = chi - chi_sph
diffchi_old = chi_old - chi_sph
# print(diffchi*180/pi)
plotAc.plot(phi,foldchi(chi),"-",linewidth=3,color=colors[p] )
plotAc.plot(phi,foldchi(chi_sph),"--",linewidth=2,color=colors[p])
plotAd.plot(phi,foldchi(diffchi),"-",linewidth=3,color=colors[p])
if p==3:
# plotAc.plot(phi,mu_0,"--",linewidth=1.5,color='orange')
# plotAd.plot(phi,mu_0,"--",linewidth=1.5,color='orange')
# plotAc.plot(phi,foldchi(chi_old),"--",linewidth=1.5,color='black')
# plotAd.plot(phi,diffchi_old*180/pi,"--",linewidth=1.5,color='black')
# plotAd.plot(phi,(chi - chi_old)*180/pi,"--",linewidth=1.5,color='purple')
# plotAc.plot(phi,[0]*NPhi,"--",linewidth=1,color="brown")
# print((chi - chi_old)*180/pi)
pass
fontsize = 30
# plotAc.xaxis.set_major_formatter(matplotlib.pyplot.NullFormatter())
# plotAd.xaxis.set_major_formatter(matplotlib.pyplot.NullFormatter())
# plotAd.set_xlabel(r'$\varphi\,[\degree]$',fontsize=fontsize)
plotAc.set_xticks([36,108,180,252,324])
plotAd.set_xticks([36,108,180,252,324])
plotAd.set_xticklabels(["-0.4","-0.2","0","0.2","0.4"])
# plotAd.set_xticks([0,60,120,180,240,300,360])
# plotAc.set_xticks([0,60,120,180,240,300,360])
# plotAd.set_xticklabels(["180","240","300","360,0","60","120","180"])
plotAc.set_yticks([0,-45,-90,45,90])
# plotAd.set_yticks([0,-10,-20,20,10])
plotAd.set_yticks([0,-10,-20,20,10])
plotAd.margins(x =0)
plotAd.set_ylim((-27,27))
plotAc.margins(x =0)
plotAc.tick_params(axis="both", which="both", pad=10,top=True,right = True)#
plotAd.tick_params(axis="both", which="both", pad=10,top=True,right = True)#
plotAc.tick_params(axis='x', which='major', bottom = True, labelbottom=False)
plotAc.tick_params(axis='both', which='major', labelsize=fontsize,direction='in')
plotAd.tick_params(axis='both', which='major', labelsize=fontsize,direction='in')
# plotAd.set_ylabel(r'$\chi_{\mathrm{obl}}-\chi_{\mathrm{sph}}$',fontsize=fontsize)
# plotAd.set_ylabel(r'$\chi_{\mathrm{obl}}-\chi_{\mathrm{sph}},\,[\degree]$',fontsize=fontsize))
# plotAc.set_ylabel(r"$\chi,\,[\degree]$",fontsize=fontsize)
plotAd.set_xlabel(r'$\phi/(2\pi)}$',fontsize=fontsize)
plotAd.set_ylabel(r'$\chi_{\mathrm{obl}}-\chi_{\mathrm{sph}}\,\mathrm{[deg]}$',fontsize=fontsize)
plotAc.set_ylabel(r"$\chi\,\mathrm{[deg]}$",fontsize=fontsize)
# figA.tight_layout()
figA.subplots_adjust(left=0.15)
figA.savefig('fig4.pdf',bbox_inches='tight')#.format(e))
figA.clf()