diff --git a/doc/docs/Python_User_Interface.md b/doc/docs/Python_User_Interface.md index 7a21f53d5..8e009dd01 100644 --- a/doc/docs/Python_User_Interface.md +++ b/doc/docs/Python_User_Interface.md @@ -1017,9 +1017,9 @@ Sets the condition of the boundary on the specified side in the specified direct — Given a `component` or `derived_component` constant `c` and a `Vector3` `pt`, returns the value of that component at that point. -**`get_epsilon_point(pt)`** +**`get_epsilon_point(pt, omega=0)`** — -Equivalent to `get_field_point(mp.Dielectric, pt)`. +Given a frequency `omega` and a `Vector3` `pt`, returns the average eigenvalue of the permittivity tensor at that location and frequency. **`initialize_field(c, func)`** — @@ -1800,7 +1800,7 @@ See also [Field Functions](Field_Functions.md), and [Synchronizing the Magnetic The output functions described above write the data for the fields and materials for the entire cell to an HDF5 file. This is useful for post-processing as you can later read in the HDF5 file to obtain field/material data as a NumPy array. However, in some cases it is convenient to bypass the disk altogether to obtain the data *directly* in the form of a NumPy array without writing/reading HDF5 files. Additionally, you may want the field/material data on just a subregion (or slice) of the entire volume. This functionality is provided by the `get_array` method which takes as input a subregion of the cell and the field/material component. The method returns a NumPy array containing values of the field/material at the current simulation time. ```python - get_array(vol=None, center=None, size=None, component=mp.Ez, cmplx=False, arr=None) + get_array(vol=None, center=None, size=None, component=mp.Ez, cmplx=False, arr=None, omega=0) ``` with the following input parameters: @@ -1815,7 +1815,9 @@ with the following input parameters: + `arr`: optional field to pass a pre-allocated NumPy array of the correct size, which will be overwritten with the field/material data instead of allocating a new array. Normally, this will be the array returned from a previous call to `get_array` for a similar slice, allowing one to re-use `arr` (e.g., when fetching the same slice repeatedly at different times). -For convenience, the following wrappers for `get_array` over the entire cell are available: `get_epsilon()`, `get_mu()`, `get_hpwr()`, `get_dpwr()`, `get_tot_pwr()`, `get_Xfield()`, `get_Xfield_x()`, `get_Xfield_y()`, `get_Xfield_z()`, `get_Xfield_r()`, `get_Xfield_p()` where `X` is one of `h`, `b`, `e`, `d`, or `s`. The routines `get_Xfield_*` all return an array type consistent with the fields (real or complex). ++ `omega`: optional frequency point over which the average eigenvalue of the dielectric and permeability tensors are evaluated (defaults to 0). + +For convenience, the following wrappers for `get_array` over the entire cell are available: `get_epsilon()`, `get_mu()`, `get_hpwr()`, `get_dpwr()`, `get_tot_pwr()`, `get_Xfield()`, `get_Xfield_x()`, `get_Xfield_y()`, `get_Xfield_z()`, `get_Xfield_r()`, `get_Xfield_p()` where `X` is one of `h`, `b`, `e`, `d`, or `s`. The routines `get_Xfield_*` all return an array type consistent with the fields (real or complex). The routines `get_epsilon()` and `get_mu()` accept the optional omega parameter (defaults to 0). **Note on array-slice dimensions:** The routines `get_epsilon`, `get_Xfield_z`, etc. use as default `size=meep.Simulation.fields.total_volume()` which for simulations involving Bloch-periodic boundaries (via `k_point`) will result in arrays that have slightly *different* dimensions than e.g. `get_array(center=meep.Vector3(), size=cell_size, component=meep.Dielectric`, etc. (i.e., the slice spans the entire cell volume `cell_size`). Neither of these approaches is "wrong", they are just slightly different methods of fetching the boundaries. The key point is that if you pass the same value for the `size` parameter, or use the default, the slicing routines always give you the same-size array for all components. You should *not* try to predict the exact size of these arrays; rather, you should simply rely on Meep's output. diff --git a/python/Makefile.am b/python/Makefile.am index 836d43f6d..29fe991a1 100644 --- a/python/Makefile.am +++ b/python/Makefile.am @@ -18,12 +18,14 @@ endif # WITH_MPI if WITH_MPB BINARY_GRATING_TEST = $(TEST_DIR)/binary_grating.py + DISPERSIVE_EIGENMODE_TEST = $(TEST_DIR)/dispersive_eigenmode.py KDOM_TEST = $(TEST_DIR)/kdom.py MODE_COEFFS_TEST = $(TEST_DIR)/mode_coeffs.py MODE_DECOMPOSITION_TEST = $(TEST_DIR)/mode_decomposition.py WVG_SRC_TEST = $(TEST_DIR)/wvg_src.py else BINARY_GRATING_TEST = + DISPERSIVE_EIGENMODE_TEST = KDOM_TEST = MODE_COEFFS_TEST = MODE_DECOMPOSITION_TEST = @@ -41,6 +43,7 @@ TESTS = \ $(TEST_DIR)/cavity_farfield.py \ $(TEST_DIR)/chunks.py \ $(TEST_DIR)/cyl_ellipsoid.py \ + ${DISPERSIVE_EIGENMODE_TEST} \ $(TEST_DIR)/dft_energy.py \ $(TEST_DIR)/dft_fields.py \ $(TEST_DIR)/faraday_rotation.py \ diff --git a/python/examples/binary_grating.ipynb b/python/examples/binary_grating.ipynb index f346254e1..0354d97a0 100644 --- a/python/examples/binary_grating.ipynb +++ b/python/examples/binary_grating.ipynb @@ -1,5 +1,41 @@ { "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Diffraction Spectrum of a Binary Grating" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The mode-decomposition feature can also be applied to planewaves in homogeneous media with scalar permittivity/permeability (i.e., no anisotropy). This will be demonstrated in this example to compute the diffraction spectrum of a binary phase grating. To compute the diffraction spectrum for a finite-length structure, see Tutorials/Near to Far Field Spectra/Diffraction Spectrum of a Finite Binary Grating. \n", + "\n", + "The unit cell geometry of the grating is shown in the schematic below. The grating is periodic in the `y` direction with periodicity `gp` and has a rectangular profile of height `gh` and duty cycle `gdc`. The grating parameters are `gh=0.5` μm, `gdc=0.5`, and `gp=10 μm`. There is a semi-infinite substrate of thickness `dsub` adjacent to the grating. The substrate and grating are glass with a refractive index of 1.5. The surrounding is air/vacuum. Perfectly matched layers (PML) of thickness `dpml` are used in the $\\pm x$ boundaries." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "![geometry](https://meep.readthedocs.io/en/latest/images/grating.png)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Transmittance Spectra for Planewave at Normal Incidence\n", + "\n", + "A pulsed planewave with $E_z$ polarization spanning wavelengths of 0.4 to 0.6 μm is normally incident on the grating from the glass substrate. The eigenmode monitor is placed in the air region. We will use mode decomposition to compute the transmittance — the ratio of the power in the +x direction of the diffracted mode relative to that of the incident planewave — for the first ten diffraction orders. \n", + "\n", + "Two simulations are required: (1) an empty cell of homogeneous glass to obtain the incident power of the source, and (2) the grating structure to obtain the diffraction orders. At the end of the simulation, the wavelength, angle, and transmittance for each diffraction order are computed.\n", + "\n", + "First, we'll import our standard libraries, along with the `fused_quartz` material from MEEP's material library." + ] + }, { "cell_type": "code", "execution_count": 1, @@ -9,240 +45,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "-----------\n", - "Initializing structure...\n", - "field decay(t = 50.01): 0.10609306658233111 / 0.10609306658233111 = 1.0\n", - "field decay(t = 100.01): 8.493197174525773e-20 / 0.10609306658233111 = 8.005421511626135e-19\n", - "run 0 finished at t = 100.01 (10001 timesteps)\n", - "-----------\n", - "Initializing structure...\n", - "field decay(t = 50.01): 0.10313983544158939 / 0.10313983544158939 = 1.0\n", - "field decay(t = 100.01): 8.275841626039517e-06 / 0.10313983544158939 = 8.023904237006785e-05\n", - "field decay(t = 150.02): 7.578862246277832e-06 / 0.10313983544158939 = 7.348142658778942e-05\n", - "field decay(t = 200.03): 2.6331983132012556e-06 / 0.10313983544158939 = 2.55303714799167e-05\n", - "field decay(t = 250.04): 1.0595609940381617e-06 / 0.10313983544158939 = 1.0273052981921975e-05\n", - "field decay(t = 300.04): 4.182093600426132e-07 / 0.10313983544158939 = 4.054780175400371e-06\n", - "field decay(t = 350.05): 1.7897453529965382e-07 / 0.10313983544158939 = 1.7352610127152227e-06\n", - "field decay(t = 400.06): 7.323581231103283e-08 / 0.10313983544158939 = 7.100633038386808e-07\n", - "field decay(t = 450.07): 2.9341078575718368e-08 / 0.10313983544158939 = 2.8447862506368783e-07\n", - "field decay(t = 500.08): 1.184153513314788e-08 / 0.10313983544158939 = 1.1481049084913492e-07\n", - "field decay(t = 550.08): 4.99840667036108e-09 / 0.10313983544158939 = 4.846242626780028e-08\n", - "field decay(t = 600.09): 2.3507305572060455e-09 / 0.10313983544158939 = 2.2791684194002052e-08\n", - "field decay(t = 650.1): 1.1816026525465915e-09 / 0.10313983544158939 = 1.1456317023268492e-08\n", - "field decay(t = 700.11): 3.9576427414058525e-10 / 0.10313983544158939 = 3.837162163834518e-09\n", - "field decay(t = 750.12): 1.4213834548368875e-10 / 0.10313983544158939 = 1.378112975215916e-09\n", - "field decay(t = 800.13): 8.16132061585537e-11 / 0.10313983544158939 = 7.912869533786803e-10\n", - "run 0 finished at t = 800.13 (80013 timesteps)\n", - "grating0:, 0.60000, 0.00, 0.06566064\n", - "grating0:, 0.58537, 0.00, 0.05057571\n", - "grating0:, 0.57143, 0.00, 0.03752612\n", - "grating0:, 0.55814, 0.00, 0.02620881\n", - "grating0:, 0.54545, 0.00, 0.01693912\n", - "grating0:, 0.53333, 0.00, 0.00973341\n", - "grating0:, 0.52174, 0.00, 0.00458582\n", - "grating0:, 0.51064, 0.00, 0.00152102\n", - "grating0:, 0.50000, 0.00, 0.00059451\n", - "grating0:, 0.48980, 0.00, 0.00181994\n", - "grating0:, 0.48000, 0.00, 0.00521963\n", - "grating0:, 0.47059, 0.00, 0.01065881\n", - "grating0:, 0.46154, 0.00, 0.01826748\n", - "grating0:, 0.45283, 0.00, 0.02799911\n", - "grating0:, 0.44444, 0.00, 0.03976392\n", - "grating0:, 0.43636, 0.00, 0.05353118\n", - "grating0:, 0.42857, 0.00, 0.06923018\n", - "grating0:, 0.42105, 0.00, 0.08678683\n", - "grating0:, 0.41379, 0.00, 0.10606991\n", - "grating0:, 0.40678, 0.00, 0.12727449\n", - "grating0:, 0.40000, 0.00, 0.15011932\n", - "grating1:, 0.60000, 3.44, 0.36441833\n", - "grating1:, 0.58537, 3.36, 0.37026888\n", - "grating1:, 0.57143, 3.28, 0.37531227\n", - "grating1:, 0.55814, 3.20, 0.37950073\n", - "grating1:, 0.54545, 3.13, 0.38292703\n", - "grating1:, 0.53333, 3.06, 0.38544932\n", - "grating1:, 0.52174, 2.99, 0.38707714\n", - "grating1:, 0.51064, 2.93, 0.38788219\n", - "grating1:, 0.50000, 2.87, 0.38779242\n", - "grating1:, 0.48980, 2.81, 0.38676394\n", - "grating1:, 0.48000, 2.75, 0.38487068\n", - "grating1:, 0.47059, 2.70, 0.38213290\n", - "grating1:, 0.46154, 2.65, 0.37846383\n", - "grating1:, 0.45283, 2.60, 0.37394214\n", - "grating1:, 0.44444, 2.55, 0.36858855\n", - "grating1:, 0.43636, 2.50, 0.36237877\n", - "grating1:, 0.42857, 2.46, 0.35537418\n", - "grating1:, 0.42105, 2.41, 0.34760885\n", - "grating1:, 0.41379, 2.37, 0.33907896\n", - "grating1:, 0.40678, 2.33, 0.32983916\n", - "grating1:, 0.40000, 2.29, 0.31995793\n", - "grating2:, 0.60000, 6.89, 0.00060264\n", - "grating2:, 0.58537, 6.72, 0.00061980\n", - "grating2:, 0.57143, 6.56, 0.00066675\n", - "grating2:, 0.55814, 6.41, 0.00070498\n", - "grating2:, 0.54545, 6.26, 0.00073362\n", - "grating2:, 0.53333, 6.12, 0.00077073\n", - "grating2:, 0.52174, 5.99, 0.00081400\n", - "grating2:, 0.51064, 5.86, 0.00084271\n", - "grating2:, 0.50000, 5.74, 0.00087413\n", - "grating2:, 0.48980, 5.62, 0.00092390\n", - "grating2:, 0.48000, 5.51, 0.00094605\n", - "grating2:, 0.47059, 5.40, 0.00097020\n", - "grating2:, 0.46154, 5.30, 0.00101890\n", - "grating2:, 0.45283, 5.20, 0.00104340\n", - "grating2:, 0.44444, 5.10, 0.00107227\n", - "grating2:, 0.43636, 5.01, 0.00109732\n", - "grating2:, 0.42857, 4.92, 0.00113048\n", - "grating2:, 0.42105, 4.83, 0.00115295\n", - "grating2:, 0.41379, 4.75, 0.00119091\n", - "grating2:, 0.40678, 4.67, 0.00121934\n", - "grating2:, 0.40000, 4.59, 0.00121934\n", - "grating3:, 0.60000, 10.37, 0.04032187\n", - "grating3:, 0.58537, 10.11, 0.04096864\n", - "grating3:, 0.57143, 9.87, 0.04150771\n", - "grating3:, 0.55814, 9.64, 0.04191451\n", - "grating3:, 0.54545, 9.42, 0.04230647\n", - "grating3:, 0.53333, 9.21, 0.04255648\n", - "grating3:, 0.52174, 9.01, 0.04268330\n", - "grating3:, 0.51064, 8.81, 0.04277436\n", - "grating3:, 0.50000, 8.63, 0.04276314\n", - "grating3:, 0.48980, 8.45, 0.04260564\n", - "grating3:, 0.48000, 8.28, 0.04237879\n", - "grating3:, 0.47059, 8.12, 0.04209800\n", - "grating3:, 0.46154, 7.96, 0.04166668\n", - "grating3:, 0.45283, 7.81, 0.04115689\n", - "grating3:, 0.44444, 7.66, 0.04057382\n", - "grating3:, 0.43636, 7.52, 0.03987212\n", - "grating3:, 0.42857, 7.39, 0.03909019\n", - "grating3:, 0.42105, 7.26, 0.03823992\n", - "grating3:, 0.41379, 7.13, 0.03728341\n", - "grating3:, 0.40678, 7.01, 0.03625078\n", - "grating3:, 0.40000, 6.89, 0.03516630\n", - "grating4:, 0.60000, 13.89, 0.00062308\n", - "grating4:, 0.58537, 13.54, 0.00063845\n", - "grating4:, 0.57143, 13.21, 0.00068368\n", - "grating4:, 0.55814, 12.90, 0.00072240\n", - "grating4:, 0.54545, 12.60, 0.00075041\n", - "grating4:, 0.53333, 12.32, 0.00078515\n", - "grating4:, 0.52174, 12.05, 0.00082905\n", - "grating4:, 0.51064, 11.79, 0.00085870\n", - "grating4:, 0.50000, 11.54, 0.00088811\n", - "grating4:, 0.48980, 11.30, 0.00093827\n", - "grating4:, 0.48000, 11.07, 0.00096058\n", - "grating4:, 0.47059, 10.85, 0.00098445\n", - "grating4:, 0.46154, 10.64, 0.00103279\n", - "grating4:, 0.45283, 10.44, 0.00105781\n", - "grating4:, 0.44444, 10.24, 0.00108599\n", - "grating4:, 0.43636, 10.05, 0.00111000\n", - "grating4:, 0.42857, 9.87, 0.00114322\n", - "grating4:, 0.42105, 9.70, 0.00116469\n", - "grating4:, 0.41379, 9.53, 0.00120199\n", - "grating4:, 0.40678, 9.36, 0.00123025\n", - "grating4:, 0.40000, 9.21, 0.00122872\n", - "grating5:, 0.60000, 17.46, 0.01434617\n", - "grating5:, 0.58537, 17.02, 0.01458357\n", - "grating5:, 0.57143, 16.60, 0.01476756\n", - "grating5:, 0.55814, 16.20, 0.01486971\n", - "grating5:, 0.54545, 15.83, 0.01502474\n", - "grating5:, 0.53333, 15.47, 0.01509725\n", - "grating5:, 0.52174, 15.12, 0.01510229\n", - "grating5:, 0.51064, 14.79, 0.01513732\n", - "grating5:, 0.50000, 14.48, 0.01513738\n", - "grating5:, 0.48980, 14.18, 0.01504842\n", - "grating5:, 0.48000, 13.89, 0.01495349\n", - "grating5:, 0.47059, 13.61, 0.01487265\n", - "grating5:, 0.46154, 13.34, 0.01470122\n", - "grating5:, 0.45283, 13.09, 0.01451304\n", - "grating5:, 0.44444, 12.84, 0.01431250\n", - "grating5:, 0.43636, 12.60, 0.01405324\n", - "grating5:, 0.42857, 12.37, 0.01377062\n", - "grating5:, 0.42105, 12.15, 0.01347551\n", - "grating5:, 0.41379, 11.94, 0.01312754\n", - "grating5:, 0.40678, 11.74, 0.01275200\n", - "grating5:, 0.40000, 11.54, 0.01237396\n", - "grating6:, 0.60000, 21.10, 0.00065868\n", - "grating6:, 0.58537, 20.56, 0.00067104\n", - "grating6:, 0.57143, 20.05, 0.00071263\n", - "grating6:, 0.55814, 19.57, 0.00075198\n", - "grating6:, 0.54545, 19.10, 0.00077912\n", - "grating6:, 0.53333, 18.66, 0.00080894\n", - "grating6:, 0.52174, 18.24, 0.00085387\n", - "grating6:, 0.51064, 17.84, 0.00088503\n", - "grating6:, 0.50000, 17.46, 0.00091058\n", - "grating6:, 0.48980, 17.09, 0.00096069\n", - "grating6:, 0.48000, 16.74, 0.00098339\n", - "grating6:, 0.47059, 16.40, 0.00100748\n", - "grating6:, 0.46154, 16.08, 0.00105476\n", - "grating6:, 0.45283, 15.77, 0.00108059\n", - "grating6:, 0.44444, 15.47, 0.00110807\n", - "grating6:, 0.43636, 15.18, 0.00112967\n", - "grating6:, 0.42857, 14.90, 0.00116340\n", - "grating6:, 0.42105, 14.63, 0.00118366\n", - "grating6:, 0.41379, 14.38, 0.00121941\n", - "grating6:, 0.40678, 14.13, 0.00124712\n", - "grating6:, 0.40000, 13.89, 0.00124315\n", - "grating7:, 0.60000, 24.83, 0.00712106\n", - "grating7:, 0.58537, 24.19, 0.00725596\n", - "grating7:, 0.57143, 23.58, 0.00735079\n", - "grating7:, 0.55814, 23.00, 0.00736618\n", - "grating7:, 0.54545, 22.45, 0.00746403\n", - "grating7:, 0.53333, 21.92, 0.00749527\n", - "grating7:, 0.52174, 21.42, 0.00746526\n", - "grating7:, 0.51064, 20.94, 0.00748585\n", - "grating7:, 0.50000, 20.49, 0.00749678\n", - "grating7:, 0.48980, 20.05, 0.00742615\n", - "grating7:, 0.48000, 19.63, 0.00736557\n", - "grating7:, 0.47059, 19.23, 0.00734406\n", - "grating7:, 0.46154, 18.85, 0.00724584\n", - "grating7:, 0.45283, 18.48, 0.00714626\n", - "grating7:, 0.44444, 18.13, 0.00705266\n", - "grating7:, 0.43636, 17.79, 0.00691768\n", - "grating7:, 0.42857, 17.46, 0.00677418\n", - "grating7:, 0.42105, 17.14, 0.00663497\n", - "grating7:, 0.41379, 16.84, 0.00645740\n", - "grating7:, 0.40678, 16.54, 0.00626388\n", - "grating7:, 0.40000, 16.26, 0.00608317\n", - "grating8:, 0.60000, 28.69, 0.00071146\n", - "grating8:, 0.58537, 27.92, 0.00071967\n", - "grating8:, 0.57143, 27.20, 0.00075394\n", - "grating8:, 0.55814, 26.52, 0.00079416\n", - "grating8:, 0.54545, 25.87, 0.00082087\n", - "grating8:, 0.53333, 25.26, 0.00084132\n", - "grating8:, 0.52174, 24.67, 0.00088698\n", - "grating8:, 0.51064, 24.11, 0.00092106\n", - "grating8:, 0.50000, 23.58, 0.00094015\n", - "grating8:, 0.48980, 23.07, 0.00098910\n", - "grating8:, 0.48000, 22.58, 0.00101255\n", - "grating8:, 0.47059, 22.12, 0.00103723\n", - "grating8:, 0.46154, 21.67, 0.00108226\n", - "grating8:, 0.45283, 21.24, 0.00110965\n", - "grating8:, 0.44444, 20.83, 0.00113597\n", - "grating8:, 0.43636, 20.43, 0.00115414\n", - "grating8:, 0.42857, 20.05, 0.00118921\n", - "grating8:, 0.42105, 19.68, 0.00120781\n", - "grating8:, 0.41379, 19.33, 0.00124119\n", - "grating8:, 0.40678, 18.99, 0.00126834\n", - "grating8:, 0.40000, 18.66, 0.00126119\n", - "grating9:, 0.60000, 32.68, 0.00405749\n", - "grating9:, 0.58537, 31.79, 0.00416387\n", - "grating9:, 0.57143, 30.95, 0.00423625\n", - "grating9:, 0.55814, 30.15, 0.00421224\n", - "grating9:, 0.54545, 29.40, 0.00429611\n", - "grating9:, 0.53333, 28.69, 0.00432324\n", - "grating9:, 0.52174, 28.01, 0.00427886\n", - "grating9:, 0.51064, 27.36, 0.00429394\n", - "grating9:, 0.50000, 26.74, 0.00432027\n", - "grating9:, 0.48980, 26.16, 0.00425827\n", - "grating9:, 0.48000, 25.59, 0.00420924\n", - "grating9:, 0.47059, 25.06, 0.00421678\n", - "grating9:, 0.46154, 24.54, 0.00415124\n", - "grating9:, 0.45283, 24.05, 0.00408829\n", - "grating9:, 0.44444, 23.58, 0.00404009\n", - "grating9:, 0.43636, 23.12, 0.00395897\n", - "grating9:, 0.42857, 22.69, 0.00387386\n", - "grating9:, 0.42105, 22.27, 0.00380207\n", - "grating9:, 0.41379, 21.86, 0.00369822\n", - "grating9:, 0.40678, 21.48, 0.00358005\n", - "grating9:, 0.40000, 21.10, 0.00348359\n" + "Using MPI version 3.1, 1 processes\n" ] } ], @@ -250,10 +53,46 @@ "# -*- coding: utf-8 -*-\n", "\n", "import meep as mp\n", + "from meep.materials import fused_quartz\n", "import math\n", "import numpy as np\n", - "import matplotlib.pyplot as plt\n", - "\n", + "import matplotlib.pyplot as plt" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We first need to simulate the empty, homogenous glass (fuzed quartz)." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "-----------\n", + "Initializing structure...\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYgAAAG4CAYAAABfOXCLAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAASdAAAEnQB3mYfeAAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nO3dfXBlZ33Y8e8Pm5UZsSIB7DUsBpd1wC7MlDThNWDelh2XoRAYO1MKFGgzDEMomMyQJXGCJ+GloyZNePUfDqGkhSHYhNgkIUXjQqGUt8QhYJkl4DUxWDa7bDxFQrZ3FfH0D0lUFtere67Oc57nnP1+ZnZ2fXXP1WM99/6+Ole6UqSUkCRpq/uUXoAkqU4GQpI0koGQJI1kICRJIxkISdJIBkKSNJKBkCSNZCAkSSMZCEnSSKeXXkDtIuIBwNOB7wInCi9HknZiF3AO8JmU0g+2u7KB2N7TgWtLL0KSWvQC4OPbXclAbO+7ANdccw3nnXdekQWsrK5w8LqDzB2eY3rXNHum9/DxF2+7t/1x003wi7/4///7mmug0Mda3Rr61j//w88H4LwHnsfc4TkO7DvA7P5Z7nvafYus56J3XcStV94K63NtOwZieycAzjvvPB7zmMd0/s5XVld4ycdewtzSHJc84xLmj84TEUXW0pnzzoMh///pXg1t68946BncungrNy/dzCXPuIQPvehDxeIAsOvMXRv/HOvpcr9IXbGNOFz99au55J+v3bkiovSyJDWweHzxx4/fknGYhIGo1Kg49O3OJQlmpmZ6+/g1EBUyDtJw7N29t7ePXwNRGeMgDUufnxY2EBUxDpJyWVld4cjykUbHGIhKGAdJuWzMl+UTy42OMxAVMA6Sctk8X6Z3TTc61kAUZhwk5bJ1vuyZ3tPoeANRkHGQlMuo+dKUgSjEOEjKpa35YiAKMA6ScmlzvhiIjhkHSbm0PV8MRIeMg6RccswXA9ER4yApl1zzxUB0wDhIyiXnfDEQmRkHSbnkni8GIiPjICmXLuaLgcjEOEjKpav5YiAyMA6SculyvhiIlhkHSbl0PV8MRIuMg6RcSswXA9ES4yApl1LzxUC0wDhIyqXkfDEQO2QcJOVSer4YiB0ovXmShquG+WIgJlTD5kkaplrmi4GYQC2bJ2l4apovBqKhmjZP0rDUNl8GH4iIuCwiUkTM7/S2ats8ScNR43wZdCAi4mHAbwDLO72tGjdP0jDUOl9OL72AzH4P+CJwGvDgndzQwesOMrc0V9XmSeq/WuMAAz6DiIgLgYuBS9u4vbnDxkFSu2qOAww0EBFxGvBu4H0ppRvauM0D+w5Ut3mS+qv2OMBwn2J6NfAIYH+TgyLiLODMLRfvA5jdP1vd5knqpz7EAQYYiIh4EPA7wFtSSt9vePhrgMtHvaHGzZPUP32JAwwwEMBbgTtYe4qpqSuAq7dctg+4dqeLaktKiYgovQxJE+hTHGBggYiInwFexdoXph+6aZCeAdw3Is4FFlNKd4w6PqV0FDi65TZzLbexldUVFpYWeNjMw0ovRVJDfYsDDO+L1HtZ+396F/DtTX+eCDxq/d9vLra6Hdi4cy0eXyy9FEkN9TEOMLAzCGAeeOGIy98K7AZeDxzudEUt2HznmpmaKb0cSQ2klHoZBxhYIFJKx4Brtl4eEZeuv/0n3la7rZ95zB/d8U8MkdShhaUFDh071Ls4wPCeYhqUUaelNX1NRNL2Fo8v9jIOMLAziHuTUnpG6TU01dfnLCXd08zUTG8fv55BVMg4SMOxd/fe3j5+DURljIM0LH1+WthAVMQ4SMplZXWFI8tHGh1jICphHCTlsjFflk80+9U4BqICxkFSLpvny/Su6UbHGojCjIOkXLbOlz3TexodbyAKMg6Schk1X5oyEIUYB0m5tDVfDEQBxkFSLm3OFwPRMeMgKZe254uB6JBxkJRLjvliIDpiHCTlkmu+GIgOGAdJueScLwYiM+MgKZfc88VAZGQcJOXSxXwxEJkYB0m5dDVfDEQGxkFSLl3OFwPRMuMgKZeu54uBaJFxkJRLifliIFpiHCTlUmq+GIgWGAdJuZScLwZih4yDpFxKzxcDsQOlN0/ScNUwXwzEhGrYPEnDVMt8MRATqGXzJA1PTfPFQDRU0+ZJGpba5ouBaKC2zZM0HDXOFwMxpho3T9Iw1DpfTi+9gL44eN1B5pbmqto8Sf1XaxzAM4ixzR02DpLaVXMcwECM7cC+A9VtnqT+qj0OYCDGNrt/trrNk9RPfYgDGIix1bh5kvqnL3EAA9E7KaXSS5A0oT7FAQxEr6ysrrCwtFB6GZIm0Lc4gIHojY071+LxxdJLkdRQH+MABqIXNt+5ZqZmSi9HUgMppV7GAXyhXPW2fuYxf3S+9JIkNbCwtMChY4d6FwfwDKJqo05LI6L0siQ1sHh8sZdxAANRrb4+ZynpnmamZnr7+DUQFTIO0nDs3b23t49fA1EZ4yANS5+fFjYQFTEOknJZWV3hyPKRRscYiEoYB0m5bMyX5RPLjY4zEBUwDpJy2TxfpndNNzrWQBRmHCTlsnW+7Jne0+h4A1GQcZCUy6j50pSBKMQ4SMqlrfliIAowDpJyaXO+GIiOGQdJubQ9XwxEh4yDpFxyzBcD0RHjICmXXPPFQHTAOEjKJed8MRCZGQdJueSeLwYiI+MgKZcu5ouByMQ4SMqlq/liIDIwDpJy6XK+GIiWGQdJuXQ9XwxEi4yDpFxKzJfBBSIiHh8R74mIGyNiOSK+ExFXRcSjcr5f4yApl1Lz5fTs76F7B4FfAK4GvgacDbwW+NuIeFJKab7td2gcJOVScr4MMRC/D/zblNKJjQsi4iPADcCbgJe2+c6Mg6RcSs+XwQUipfT5EZd9KyJuBC5o832V3jxJw1XDfBlcIEaJiAD2ADduc72zgDO3XLxv1HVr2DxJw1TLfDklAgG8BNgLvHmb670GuHy7G6tl8yQNT03zZfCBiIjzgfcCXwD+eJurX8HaF7c32wdcu/EfNW2epGGpbb4MOhARcTbwl8APgItTSqsnu35K6ShwdMtt/PjftW2epOGocb4MNhAR8QDgr4CfAp6WUrptJ7dX4+ZJGoZa58sgAxERZwB/DjwK2J9S+vpOb/PgdQeZW5qravMk9V+tcYBhvpL6NOAjwJOBS1JKX2jjducOGwdJ7ao5DjDMM4j/AjyftTOIB0bEPV4Yl1L64CQ3emDfgeo2T1J/1R4HGGYgHrf+979e/7PVRIGY3T9b3eZJ6qc+xAEGGIiU0jNy3G6Nmyepf/oSBxjg1yCGLqVUegmSJtSnOICB6JWV1RUWlhZKL0PSBPoWBzAQvbFx51o8vlh6KZIa6mMcwED0wuY718zUTOnlSGogpdTLOMAAv0g9NFs/85g/2vrvO5KU0cLSAoeOHepdHMAziKqNOi3d/LOhJNVv8fhiL+MABqJafX3OUtI9zUzN9PbxayAqZByk4di7e29vH78GojLGQRqWPj8tbCAqYhwk5bKyusKR5SONjjEQlTAOknLZmC/LJ5YbHWcgKmAcJOWyeb5M75pudKyBKMw4SMpl63zZM72n0fEGoiDjICmXUfOlKQNRiHGQlEtb88VAFGAcJOXS5nwxEB0zDpJyaXu+GIgOGQdJueSYLwaiI8ZBUi655ouB6IBxkJRLzvliIDIzDpJyyT1fDERGxkFSLl3MFwORiXGQlEtX88VAZGAcJOXS5XwxEC0zDpJy6Xq+GIgWGQdJuZSYLwaiJcZBUi6l5ouBaIFxkJRLyfliIHbIOEjKpfR8MRA7UHrzJA1XDfPFQEyohs2TNEy1zBcDMYFaNk/S8NQ0XwxEQzVtnqRhqW2+GIgGats8ScNR43wxEGOqcfMkDUOt8+X00gvoi4PXHWRuaa6qzZPUf7XGATyDGNvcYeMgqV01xwEMxNgO7DtQ3eZJ6q/a4wAGYmyz+2er2zxJ/dSHOICBGFuNmyepf/oSBzAQvZNSKr0ESRPqUxzAQPTKyuoKC0sLpZchaQJ9iwMYiN7YuHMtHl8svRRJDfUxDmAgemHznWtmaqb0ciQ1kFLqZRzAF8pVb+tnHvNH50svSVIDC0sLHDp2qHdxAM8gqjbqtDQiSi9LUgOLxxd7GQcwENXq63OWku5pZmqmt49fA1Eh4yANx97de3v7+DUQlTEO0rD0+WlhA1ER4yApl5XVFY4sH2l0jIGohHGQlMvGfFk+sdzoOANRAeMgKZfN82V613SjYw1EYcZBUi5b58ue6T2NjjcQBRkHSbmMmi9NGYhCjIOkXNqaLwaiAOMgKZc254uB6JhxkJRL2/PFQHTIOEjKJcd8GWQgImIqImYj4raIuCsivhQRzym5JuMgKZdc86VxICLiCxHx2B2/57w+APwq8CHg9cAq8ImIeGqJxRgHSbnknC+TnEGcC1wfEW+PiDNaWUWLIuIJwL8Bfj2l9MaU0pXAs4BbgP/c9XqMg6Rccs+XSQLxaOB9wK8BN0TE/tZW046LWTtjuHLjgpTS3cAfAU+OiHO6WohxkJRLF/OlcSBSSosppV8BngwsAp+MiP8eEWe2urLJ/SzwzZTS1l/e/OX1vx93bwdGxFkR8ZjNf4B9kyzCOEjKpav5MvGvHE0p/XVEPB74j8BbgOdFxHdHXzX9i0nfzwQeAtw+4vKNyx56kmNfA1y+0wUYB0m5dDlfdvo7qU8HzgSmgH9c/1Pa/YDjIy6/e9Pb780VwNVbLtsHXDvuOzcOknLper5MHIj1rz1cATxy/e/LUkpLbS1sB+5iLVhbnbHp7SOllI4CRzdf1uSXfRgHSbmUmC+TfJvrmRHxQeCTwJ3AU1JKr6skDrD2VNJDRly+cdltOd6pcZCUS6n5MskZxN8Du4A3Ab+fUlptd0k79nfAMyNiZssXqp+46e2tMg6Scik5Xyb5NtcvAo9NKf1uhXEA+ChwGvCqjQsiYgp4JfCllNKoL6RPzDhIyqX0fGl8BpFSem6OhbQlpfSliLga+E8RcRZwE/By1l7g9x/afF+lN0/ScNUwX3b6XUy1+nesfevty4CfBr4GPC+l9Nm23kENmydpmGqZL4MMxPorp9+4/qd1tWyepOGpab4M8qe55lTT5kkaltrmi4FooLbNkzQcNc4XAzGmGjdP0jDUOl8G+TWIHA5ed5C5pbmqNk9S/9UaB/AMYmxzh42DpHbVHAcwEGM7sO9AdZsnqb9qjwMYiLHN7p+tbvMk9VMf4gAGYmw1bp6k/ulLHMBA9E5KqfQSJE2oT3EAA9ErK6srLCwtlF6GpAn0LQ5gIHpj4861eHzrr9qWVLs+xgEMRC9svnPNTM2UXo6kBlJKvYwD+EK56m39zGP+6HzpJUlqYGFpgUPHDvUuDuAZRNVGnZY2+R3ZkspbPL7YyziAgahWX5+zlHRPM1MzvX38GogKGQdpOPbu3tvbx6+BqIxxkIalz08LG4iKGAdJuaysrnBk+UijYwxEJYyDpFw25svyieVGxxmIChgHSblsni/Tu6YbHWsgCjMOknLZOl/2TO9pdLyBKMg4SMpl1HxpykAUYhwk5dLWfDEQBRgHSbm0OV8MRMeMg6Rc2p4vBqJDxkFSLjnmi4HoiHGQlEuu+WIgOmAcJOWSc74YiMyMg6Rccs8XA5GRcZCUSxfzxUBkYhwk5dLVfDEQGRgHSbl0OV8MRMuMg6Rcup4vBqJFxkFSLiXmi4FoiXGQlEup+WIgWmAcJOVScr4YiB0yDpJyKT1fDMQOlN48ScNVw3wxEBOqYfMkDVMt88VATKCWzZM0PDXNFwPRUE2bJ2lYapsvBqKB2jZP0nDUOF8MxJhq3DxJw1DrfDm99AL64uB1B5lbmqtq8yT1X61xAM8gxjZ32DhIalfNcQADMbYD+w5Ut3mS+qv2OICBGNvs/tnqNk9SP/UhDmAgxlbj5knqn77EAQxE76SUSi9B0oT6FAcwEL2ysrrCwtJC6WVImkDf4gAGojc27lyLxxdLL0VSQ32MAxiIXth855qZmim9HEkNpJR6GQfwhXLV2/qZx/zR+dJLktTAwtICh44d6l0cwDOIqo06LY2I0suS1MDi8cVexgEMRLX6+pylpHuamZrp7ePXQFTIOEjDsXf33t4+fg1EZYyDNCx9flrYQFTEOEjKZWV1hSPLRxodYyAqYRwk5bIxX5ZPLDc6blCBiIhnR8T7I+KbEXFnRNwcEe+LiIeUXtvJGAdJuWyeL9O7phsdO6hAALPAM4A/A14H/AnwS8BXIuLsguu6V8ZBUi5b58ue6T2Njh/aC+V+FfhcSulHGxdExP8APgO8FvjNUgsbxThIymXUfDn/q+c3uo1BBSKl9NlRl0XEHcAFBZZ0r4yDpFzami+DCsQoEXF/4P7AsTGuexZw5paL97W9JuMgKZc258vgAwFcCuwCPjLGdV8DXJ5zMcZBUi5tz5dqAxER92FtsI/jeBrxm3Qi4kLWBv5VKaVPjXE7VwBXb7lsH3DtmOs4KeMgKZcc86XaQAAXAp8e87oXAN/YfEFEnM/adzPNA788zo2klI4CR7fczphLODnjICmXXPOl5kB8A3jlmNe9ffN/RMQ5wBzwA+C5KaWlltfWiHGQlEvO+VJtIFJK3wM+0PS4iHgQa3GYAp6dUrp9m0OyMg6Scsk9X6oNxCQiYhr4BLAXeGZK6Vsl12McJOXSxXwZVCCADwFPAN4PXBARm1/78MOU0jVdLcQ4SMqlq/kytEA8bv3vf7/+Z7NbgE4CYRwk5dLlfBlUIFJK55Zeg3GQlEvX82VoP6yvKOMgKZcS88VAtMQ4SMql1HwxEC0wDpJyKTlfDMQOGQdJuZSeLwZiB0pvnqThqmG+GIgJ1bB5koaplvliICZQy+ZJGp6a5ouBaKimzZM0LLXNFwPRQG2bJ2k4apwvBmJMNW6epGGodb4M6kdt5HTwuoPMLc1VtXmS+q/WOIBnEGObO2wcJLWr5jiAgRjbgX0Hqts8Sf1VexzAQIxtdv9sdZsnqZ/6EAcwEGOrcfMk9U9f4gAGondSSqWXIGlCfYoDGIheWVldYWFpofQyJE2gb3EAA9EbG3euxeOLpZciqaE+xgEMRC9svnPNTM2UXo6kBlJKvYwD+EK56m39zGP+6HzpJUlqYGFpgUPHDvUuDuAZRNVGnZZGROllSWpg8fhiL+MABqJafX3OUtI9zUzN9PbxayAqZByk4di7e29vH78GojLGQRqWPj8tbCAqYhwk5bKyusKR5SONjjEQlTAOknLZmC/LJ5YbHWcgKmAcJOWyeb5M75pudKyBKMw4SMpl63zZM72n0fEGoiDjICmXUfOlKQNRiHGQlEtb88VAFGAcJOXS5nwxEB0zDpJyaXu+GIgOGQdJueSYLwaiI8ZBUi655ouB6IBxkJRLzvliIDIzDpJyyT1fDERGxkFSLl3MFwORiXGQlEtX88VAZGAcJOXS5XwxEC0zDpJy6Xq+GIgWGQdJuZSYLwaiJcZBUi6l5ouBaIFxkJRLyfliIHbIOEjKpfR8MRA7UHrzJA1XDfPFQEyohs2TNEy1zBcDMYFaNk/S8NQ0XwxEQzVtnqRhqW2+GIgGats8ScNR43wxEGOqcfMkDUOt8+X00gvoi4PXHWRuaa6qzZPUf7XGATyDGNvcYeMgqV01xwEMxNgO7DtQ3eZJ6q/a4wAGYmyz+2er2zxJ/dSHOICBGFuNmyepf/oSBzAQvZNSKr0ESRPqUxzAQPTKyuoKC0sLpZchaQJ9iwMYiN7YuHMtHl8svRRJDfUxDnAKBCIi/jAiUkT8Rem1TGrznWtmaqb0ciQ1kFLqZRxg4C+Ui4ifB14B3F14KRPb+pnH/NH50kuS1MDC0gKHjh3qXRxgwGcQERHAu4D/BhwpvJyJjDotXfvfktQXi8cXexkHGHAggJcBjwUuK72QSfT1OUtJ9zQzNdPbx+8gn2KKiN3ALPD2lNL3xv2sOyLOAs7ccvG+lpe3LeMgDcfe3Xt7+/gdZCCANwN3AX/Q8LjXAJe3v5zxGQdpWPr8tHDVgYiI+wC7xrz68ZRSiohHAa8HXpxSOt7wXV4BXL3lsn3AtQ1vZyLGQVIuK6srHFlu9uXYqgMBXAh8eszrXgB8A3gn8PmU0p82fWcppaPA0c2XdVV/4yApl435snxiudFxtQfiG8Arx7zu7RHxLOAi4EURce6mt50O3G/9sjtSSlW92sw4SMpl83yZ3jXNMuNHoupApJS+B3xg3OtHxMPX//mxEW/eC3wbeAPwjh0vriXGQVIuW+fL9V+9npu5eezjqw7EBD4FvHDE5VcCtwBvA27odEUnYRwk5TJqvpz/1fMb3cagApFS+g7wna2XR8Q7gCMppWu6X9VoxkFSLm3NlyG/UK5axkFSLm3Ol0GdQdyblNK5pdewwThIyqXt+eIZRIeMg6RccswXA9ER4yApl1zzxUB0wDhIyiXnfDEQmRkHSbnkni8GIiPjICmXLuaLgcjEOEjKpav5YiAyMA6SculyvhiIlhkHSbl0PV8MRIuMg6RcSswXA9ES4yApl1LzxUC0wDhIyqXkfDEQO2QcJOVSer4YiB0ovXmShquG+WIgJlTD5kkaplrmi4GYQC2bJ2l4apovBqKhmjZP0rDUNl8MRAO1bZ6k4ahxvhiIMdW4eZKGodb5ckr8ytE2HLzuIHNLc1VtnqT+qzUO4BnE2OYOGwdJ7ao5DmAgxnZg34HqNk9Sf9UeBzAQY5vdP1vd5knqpz7EAQzE2GrcPEn905c4gIHonZRS6SVImlCf4gAGoldWVldYWFoovQxJE+hbHMBA9MbGnWvx+GLppUhqqI9xAAPRC5vvXDNTM6WXI6mBlFIv4wC+UG4cuwAuetdF7DpzV5EFHFk+wvKJZaZ3TXPnP93J3T+8mxtvvLHIWrK46aaT/7cGa+hbf/dtd/Pt//ttDn39ENO7prn+q9dz/lfPL7aeW26+ZeOfYw2z8IueJxcRzweuLb0OSWrRC1JKH9/uSgZiGxHxAODpwHeBE/dytX2sReQFwOGOltYnfny258fo5Pz4bG+cj9Eu4BzgMymlH2x3gz7FtI31D+JJSxsRG/88nFIa0HM/7fDjsz0/Rifnx2d7DT5GXxn3Nv0itSRpJAMhSRrJQEiSRjIQ7fg+8Nvrf+sn+fHZnh+jk/Pjs73WP0Z+F5MkaSTPICRJIxkISdJIBkKSNJKBkCSNZCAkSSMZiMwi4g8jIkXEX5ReSy0i4tkR8f6I+GZE3BkRN0fE+yLiIaXX1rWImIqI2Yi4LSLuiogvRcRzSq+rBhHx+Ih4T0TcGBHLEfGdiLgqIh5Vem21iojL1ufNfCu357e55hMRPw98Afgn4H+mlJ5XeElViIi/AR4IXA18C3gk8FrgTuBxKaXvFVxepyLiw8DFwDtY+1i8Ang88MyU0ucKLq24iPgo8Aus3U++BpzN2v3k/sCTUkqtDMGhiIiHAX8PJOAfUkqP3fFtGog8Yu0nZ/0f4BDwbGDeQKyJiAuBz6WUfrTlss8Ab0sp/WaxxXUoIp4AfAl4Y0rp99YvOwOYB46mlJ5Scn2lRcRTgL9JKZ3YdNnPADcAH00pvbTY4ioUEX8CnAmcBjy4jUD4FFM+LwMeC1xWeiG1SSl9dnMcNi4D7gAuKLOqIi4GVoErNy5IKd0N/BHw5Ig4p9TCapBS+vzmOKxf9i3gRk6t+8m21j/Buhi4tM3bNRAZRMRuYBZ4+6n0dMlORMT9WXvq4FjptXToZ4FvppS2/qLxL6///biO11O99TPzPZxa95OTiojTgHcD70sp3dDmbfv7IPJ4M3AX8AelF9Ijl7L2y0w+UnohHXoIcPuIyzcue2iHa+mLlwB7WXuMac2rgUcA+9u+YQNxEhFxH8b83a3A8ZRSWv8Oi9cDL04pHc+3ujpM8jEacRsXApcDV6WUPtXm+ip3P2DUfeTuTW/Xuog4H3gva9/48ceFl1OFiHgQ8DvAW1JKrf8gQ59iOrkLWTsTGOfPo9ePeSfw+ZTSn3a+2jIm+Rj92PqD/s9Y+8LsL3ez5GrcBUyNuPyMTW8XEBFnA38J/AC4OKW0WnhJtXgra1+7e3eOG/cM4uS+AbxyzOveHhHPAi4CXhQR52562+nA/dYvu2PEc8591uhjtPk/1r8IO8fag/65KaWlltdWu9tZe7pkq43Xg9zW4Vqqtf574f8K+CngaSklPy78+Du6XsXa07MP3fQrR88A7rs+bxZTSndM/D78Ntf2RMQrgP+6zdXekFJ6RwfLqdr6qfHnWHs9xFPXvzvllBIRvwu8AXjg5k8aIuI3gLcBD08pfbfU+mqw/m2/c8DPAftTSl8ovKRqRMQzgE9vc7V3ppQm/s4mA9GiiHg48C9HvOlK4BbWHvQ3pJQOd7qwykTENPAp1r5V8ZkppesLL6mIiHgi8EXu+TqIKdaebvvHlNKTSq6vtPXvzvkY8FzgBSmlTxReUlUi4sHAU0e86a3Abta+Fnp4J9/ZZCA6EBH/gC+U+7GIuAZ4AfB+fvIzoB+mlK7pflVlRMRVwAtZ+463m4CXA08Anr3+2pBTVkS8g7Uh9+fAVVvfnlL6YOeL6oGI+F+09EI5A9EBA3FP6x+PR9zLm29JKZ3b3WrKWn8K5S3AS4GfZu1HSvxWSumTRRdWgfVB9/R7e3tKKe7tbacyAyFJys5vc5UkjWQgJEkjGQhJ0kgGQpI0koGQJI1kICRJIxkISdJIBkKSNJKBkCSNZCAkSSMZCEnSSAZCKiQiPhgRd6//mtqtb3tTRKSI8Ac8qhh/WJ9USEScxdpv5Pu7lNKzNl3+z4AbgU+klC4utT7JMwipkJTSUeAg8MyIePmmN10BrLD2uxCkYjyDkAqKtV8k/L+BRwPnA88BPgy8LqWU5RfRS+MyEFJhEfEY4CvANcDTgFuBJ6aUflR0YTrlGQipAhHxduDXgVXgCSmlvy28JMmvQUiVOLb+923AfMmFSBsMhFRYRJwD/DZrYTgH+LWyK5LWGAipvPes//2vgKuByyLikQXXIwEGQioqIl4IPB/4rZTSrcClwAngvUUXJuEXqaViImI38HXg+8DjU0qr65e/Dngn8EsppasLLlGnOAMhFRIR7wReCzwppfTXm3CFIkkAAAB7SURBVC4/DfgycDZwfkppqdASdYrzKSapgIj4OeBXgCs2xwFg/Uzi1awF4q0FlicBnkFIku6FZxCSpJEMhCRpJAMhSRrJQEiSRjIQkqSRDIQkaSQDIUkayUBIkkYyEJKkkQyEJGkkAyFJGslASJJGMhCSpJEMhCRppP8HnDSqQdS4hYAAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ "resolution = 50 # pixels/μm\n", "\n", "dpml = 1.0 # PML thickness\n", @@ -281,15 +120,13 @@ "\n", "k_point = mp.Vector3(0,0,0)\n", "\n", - "glass = mp.Medium(index=1.5)\n", - "\n", "symmetries=[mp.Mirror(mp.Y)]\n", "\n", "sim = mp.Simulation(resolution=resolution,\n", " cell_size=cell_size,\n", " boundary_layers=pml_layers,\n", " k_point=k_point,\n", - " default_material=glass,\n", + " default_material=fused_quartz,\n", " sources=sources,\n", " symmetries=symmetries)\n", "\n", @@ -297,14 +134,83 @@ "mon_pt = mp.Vector3(0.5*sx-dpml-0.5*dpad)\n", "flux_mon = sim.add_flux(fcen, df, nfreq, mp.FluxRegion(center=mon_pt, size=mp.Vector3(y=sy)))\n", "\n", - "sim.run(until_after_sources=mp.stop_when_fields_decayed(50, mp.Ez, mon_pt, 1e-9))\n", - "\n", + "f = plt.figure(dpi=120)\n", + "sim.plot2D(ax=f.gca())\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now, we'll run the simulation and record the fields." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "field decay(t = 50.01): 0.11139427530016409 / 0.11139427530016409 = 1.0\n", + "field decay(t = 100.01): 1.824305440068526e-15 / 0.11139427530016409 = 1.637701250941967e-14\n", + "run 0 finished at t = 100.01 (10001 timesteps)\n" + ] + } + ], + "source": [ + "sim.run(until_after_sources=mp.stop_when_fields_decayed(50, mp.Ez, mon_pt, 1e-9))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Next, we'll simulate the actual grating." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "-----------\n", + "Initializing structure...\n", + " block, center = (-2.25,0,0)\n", + " size (4,1e+20,1e+20)\n", + " axes (1,0,0), (0,1,0), (0,0,1)\n", + " block, center = (0,0,0)\n", + " size (0.5,5,1e+20)\n", + " axes (1,0,0), (0,1,0), (0,0,1)\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYgAAAG4CAYAAABfOXCLAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAASdAAAEnQB3mYfeAAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nO3de5BcZ3mg8ecdC0nUWAMxyLKZGLxIATumaskmXAPmZqUCReyINanNMiywm6IowhqTguDECa5w2/LmxtV/OIQlWbkAm2A7F7JgLywsyy1xiLGNCMgmBstGQjEwYrCkYfTtHz3jtNstTZ+e853vnJ7nV6WS50yfnpdG6kenu893IqWEJEmDpkoPIElqJwMhSRrKQEiShjIQkqShDIQkaSgDIUkaykBIkoYyEJKkoQyEJGmoDaUHaLuIeBjwLODbwNHC40jSWmwEzgA+nVL6wWo3NhCrexZwfekhJKlGFwB/udqNDMTqvl16AALYCewAjgALwIeKTlSrx/LAP6nnA3cUmiWXSy65hLm5OY4dO8bUlK/srti7F375l//16+uugx07ys1Tt/M/eD4AO07ZwSdu/wS/sP0XuPy8y3nISQ9pfJaUEs9/9/O568q7YMTnNQOxurIvK00B/x44B7gN2ApsKjpR7TbT+5/X//WkOf300znnnHMMxCp27IBzzln9dl2x+VGbuWv+Lu44dAcvfvaLuepFVxWJA/QCsXHrxpUvR3pe809qmw3G4S/KjiOpuvkj87z4p8vGYVwGoq2GxeFY0YkkjWFm00wn4wAGop2MgzQxZrfMdjIOYCDaxzhIEyUiSo8wNgPRJsZBUiaLS4vsX9hfaR8D0RbGQVImi0uLzF07x8LRhUr7GYg2MA6SMllcWuQlH30J13z1GqY3Tlfa10CUZhwkZdIfhxf/9IvZNr2t0v4GoiTjICmTwTjs3rW78n14JnUpxkFSJoNxuOpFV7FhqvrTvUcQJRgHSZkMi8O452EYiKYZB0mZ1BkHMBDNMg6SMqk7DmAgmmMcJGWSIw5gIJphHCRlkisOYCDyMw6SMskZBzAQeRkHSZnkjgMYiHyMg6RMmogDGIg8jIOkTJqKAxiI+hkHSZk0GQcwEPUyDpIyaToOYCDqYxwkZVIiDmAg6mEcJGVSKg5gINbOOEjKpGQcwECsjXGQlEnpOICBGJ9xkJRJG+IABmI8xkFSJm2JAxiI6oyDpEzaFAdYB4GIiEsjIkXErWu+M+MgKZO2xQEmPBAR8ZPAbwMLa78zjIOkLNoYB4DqV7Hulj8AvgCcBDxyTfe0E+MgqXZtjQNM8BFERJwLXAhcXMsd7sA4SKpVm+MAE3oEEREnAe8G3pdSuiUi1n6ne4EbMQ6SatH2OMCEBgJ4FfAY4LwqO0XEqcDWgc3bAbgBSHWMJmm960IcYAIDERGPAN4MvCWl9N2Ku78auGzod4yDpBp0JQ4wgYEA3grcS+8lpqquAK4Z2LYduH6tQ0lSl+IAExaIiPgp4JX03ph+VN97D5uBh0TEmcB8SuneYfunlA4ABwbuM9e41U0BM8B86UEkVdW1OMDkfYpplt7/pncB3+z79RTgccv//aZi063Fykl6m0sPIqmqLsYBJuwIArgV2DVk+1uBLcBrgdsbnagO/WdwHy48i6RKUkqdjANMWCBSSgeB6wa3R8TFy99/0Pdab3B5j8HPWElqtX2H9rHn4J7OxQEm7yWmyTJs7SdJnTJ/ZL6TcYAJO4I4npTSs0vPUJkLA0oTYWbTTCfjAB5BtJNxkCbG7JbZTsYBDET7GAdporTqo/IVGYg2MQ6SMllcWmT/wv5K+xiItjAOkjJZXFpk7to5Fo5WuzSOgWgD4yApk/6T9KY3Tlfa10CUZhwkZTJ4Bve26W2V9jcQJRkHSZkMxmH3rt2V72NdnAfRSsZBUibD1n7aMFX96d4jiBKMg6RM6lwY0EA0zThIyqTuVWMNRJOMg6RMciwpbiCaYhwkZZLrehMGognGQVImOS9GZCByMw6SMsl9pToDkZNxkJRJE5cxNRC5GAdJmTR1jWsDkYNxkJRJU3EAA1E/4yApkybjAAaiXsZBUiZNxwEMRH2Mg6RMSsQBDEQ9jIOkTErFAQzE2hkHSZmUjAMYiLUxDpIyKR0HMBDjMw6SMmlDHMBAjMc4SMqkLXEAA1GdcZCUSZviAAaiGuMgKZO2xQEMxOgC4yApizbGAQzE6HZiHCTVrq1xAAMxuh0YB0m1anMcADaUHqAz9gI3Yhwk1aLtcQADMbobgFR6CEmToAtxAF9iGp1xkFSDrsQBDIQkNaZLcQAD0S1TwEzpISSNo2txAAPRHSsn6W0uPYikqroYBzAQ3dB/BvfhwrNIqiSl1Mk4gJ9iar/B5T22lh1HUjX7Du1jz8E9nYsDeATRbsPWfpLUKfNH5jsZBzAQ7eXCgNJEmNk008k4gIFoJ+MgTYzZLbOdjAMYiPYxDtJEiYjSI4zNQLSJcZCUyeLSIvsX9lfax0C0hXFYF1JyzRY1b3Fpkblr51g4ulBpPwPRBsZh4k1N9f6qnXTSSYUn0XrTf5Le9MbpSvt6HkRpxmFd+N73vsf3v/99FhYW7o9FVSklNm/ezCmnnFLzdJpUg2dw33TzTdzBHSPvbyBKMg7rxuWXX8673vUujh0b7//gDRs2cOjQIV7/+tfz5je/mZRSp9/8VH6Dcdi9azdn33x2pfswEKUYh3VlYWGBhYVqr/8O88Mf/rCGaTTphq39tGGq+tO970GUYBxUke9haFR1LgxoIJpmHDSGlU8/jfsSldaHuleNNRBNMg6SMsmxpLiBaIpxkJRJrutNGIgmGAdJmeS8GJGByM04SMok95XqDEROxkFSJk1cxtRA5GIcJGXS1DWuDUQOxkFSJk3FAQxE/YyDpEyajAMYiHoZB0mZNB0HmMBARMSTIuI9EXFbRCxExLci4uqIeFzWH2wcJGVSIg4wmYv1vRH4eeAa4CvAacBrgH+IiKemlG6t/ScaB0mZlIoDTGYg/gj4jymloysbIuLDwC3AJcBcrT/NOEjKpGQcYAIDkVL63JBt34iI24Bqi6GvxjhIyqR0HGACAzFM9K6sso3e0/iJbncqsHVg8/ahNzYOkjJpQxxgnQQCeAkwC7xpldu9Grhs1XszDpIyaUscYB0EIiLOAt4LfB74s1VufgW9N7f7bQeuv/8r4yApkzbFASY8EBFxGvA3wA+AC1NKSye6fUrpAHBg4D7+9QvjICmTtsUBJjgQEfEw4G+BhwPPTCndvbY7xDhIyqKNcYAJDUREbAb+CngccF5K6atrvtOdGAdJtWtrHGACAxERJwEfBp4GXJBS+nwtd7wD4yCpVm2OA0xgIIA/BM6ndwRxSkQ84MS4lNLuse51L3AjxkFSLdoeB5jMQDxx+fdfWv41aLxA3ACkMSeSpD5diANMYCBSSs/Oc8dZ7lXSOtOVOMAEruYqSW3VpTiAgeiWKWCm9BCSxtG1OICB6I6Vk/Q2lx5EUlVdjAMYiG7oP4P7cOFZJFWSUupkHGAC36SeOIPLewyuNSup1fYd2seeg3s6FwfwCKLdhq39JKlT5o/MdzIOYCDay4UBpYkws2mmk3EAA9FOxkGaGLNbZjsZBzAQ7WMcpInygEsGdIyBaBPjICmTxaVF9i/sr7SPgWgL4yApk8WlReaunWPh6EKl/QxEGxgHSZn0n6Q3vXG60r4GojTjICmTwTO4t01vq7S/gSjJOEjKZDAOu3dVv9KBZ1KXYhwkZTJs7acNU9Wf7j2CKME4SMqkzoUBDUTTjIOkTOpeNdZANMk4SMokx5LiBqIpxkFSJrmuN2EgmmAcJGWS82JEBiI34yApk9xXqjMQORkHSZk0cRlTA5GLcZCUSVPXuDYQORgHSZk0FQcwEPUzDpIyaTIOYCDqZRwkZdJ0HMBA1Mc4SMqkRBzAQNTDOEjKpFQcwECsnXGQlEnJOICBWBvjICmT0nEAAzE+4yApkzbEAQzEeIyDpEzaEgcwENUZB0mZtCkOYCCqMQ6SMmlbHMBAjC4wDpKyaGMcwECMbifGQVLt2hoHMBCj24FxkFSrNscBYEPpATpjL3AjxkFSLdoeBzAQo7sBSKWHkDQJuhAH8CWm0RkHSTXoShzAQEhSY7oUBzAQ3TIFzJQeQtI4uhYHMBDdsXKS3ubSg0iqqotxAAPRDf1ncB8uPIukSlJKnYwD+Cmm9htc3mNr2XEkVbPv0D72HNzTuTiARxDtNmztJ0mdMn9kvpNxAAPRXi4MKE2EmU0znYwDGIh2Mg7SxJjdMtvJOICBaB/jIE2UiCg9wtgMRJsYB0mZLC4tsn9hf6V9DERbGAdJmSwuLTJ37RwLRxcq7Wcg2sA4SMqk/yS96Y3TlfY1EKUZB0mZDJ7BvW16W6X9DURJxkFSJoNx2L1rd+X78EzqUoyDpEyGrf20Yar6071HECUYB0mZ1LkwoIFomnGQlEndq8YaiCYZB0mZ5FhSfCIDERGbIuLyiLg7Iu6LiC9GxM6iQxkHSZnkut5E5UBExOcj4glr/sl5fQD4DeAq4LXAEvCxiHhGkWmMg6RMcl6MaJwjiDOBmyLi7RHRuuubRcSTgf8A/FZK6Q0ppSuB5wJ3Av+98YGMg6RMcl+pbpxAPB54H/CbwC0RcV5t09TjQnpHDFeubEgpHQb+FHhaRJzR2CTGQVImTVzGtHIgUkrzKaVfB54GzAMfj4j/GRFtudbZzwBfTynND2z/0vLvTzzejhFxakSc0/8L2D7WFMZBUiZNXeN67BPlUkp/FxFPAv4r8BbghRHx7eE3Tf923J8zhtOBe4ZsX9n2qBPs+2rgsjVPYBwkZdJUHGDtZ1JvoHeV5E3Avyz/Ku2hwJEh2w/3ff94rgCuGdi2Hbh+5J9uHCRl0mQcYA2BWH7v4Qrgscu/X5pSOlTXYGtwH71gDdrc9/2hUkoHgAP92ypd7MM4SMqk6TjAeB9z3RoRu4GPAz8Cnp5SuqglcYDeS0mnD9m+su3uLD/VOEjKpEQcYLwjiH8CNgKXAH+UUlqqd6Q1+0fgORExM/BG9VP6vl8v4yApk1JxgPE+5voF4Akppd9vYRwAPgKcBLxyZUNEbAJeAXwxpTTsjfTxGQdJmZSMA4xxBJFSekGOQeqSUvpiRFwD/LeIOBXYC7yM3gl+/6XWH2YcJGVSOg4wudeD+E/0Pnr7UuAngK8AL0wpfaa2n2AcJGXShjjAhAZi+czpNyz/qp9xkJRJW+IAE7qaa1bGQVImbYoDGIhqjIOkTNoWBzAQowuMg6Qs2hgHMBCj24lxkFS7tsYBDMTodmAcJNWqzXGACf0UUxZ7gRsxDpJq0fY4gIEY3Q1AKj2EpEnQhTiALzGNzjhIqkFX4gAGQpIa06U4gIHolilgpvQQksbRtTiAgeiOlZP0Nq92Q0lt08U4gIHohv4zuA+vcltJrZJS6mQcwE8xtd/g8h5by44jqZp9h/ax5+CezsUBPIJot2FrP0nqlPkj852MAxiI9nJhQGkizGya6WQcwEC0k3GQJsbsltlOxgEMRPsYB2miRETpEcZmINrEOEjKZHFpkf0L+yvtYyDawjhIymRxaZG5a+dYOLpQaT8D0QbGQVIm/SfpTW+crrSvgSjNOEjKZPAM7m3T2yrtbyBKMg6SMhmMw+5duyvfh2dSl2IcJGUybO2nDVPVn+49gijBOEjKpM6FAQ1E04yDpEzqXjXWQDTJOEjKJMeS4gaiKcZBUia5rjdhIJpgHCRlkvNiRAYiN+MgKZPcV6ozEDkZB0mZNHEZUwORi3GQlElT17g2EDkYB0mZNBUHMBD1Mw6SMmkyDmAg6mUcJGXSdBzAQNTHOEjKpEQcwEDUwzhIyqRUHMBArJ1xkJRJyTiAgVgb4yApk9JxAAMxPuMgKZM2xAEMxHiMg6RM2hIHMBDVGQdJmbQpDmAgqjEOkjJpWxzAQIwuMA6SsmhjHMBAjG4nxkFS7doaBzAQo9uBcZBUqzbHAWBD6QE6Yy9wI8ZBUi3aHgcwEKO7AUilh5A0CboQB/AlptEZB0k16EocwEBIUmO6FAcwEN0yBcyUHkLSOLoWBzAQ3bFykt7m0oNIqqqLcQAD0Q39Z3AfLjyLpEpSSp2MA/gppvYbXN5ja9lxJFWz79A+9hzc07k4gEcQ7TZs7SdJnTJ/ZL6TcQAD0V4uDChNhJlNM52MAxiIdjIO0sSY3TLbyTiAgWgf4yBNlIgoPcLYDESbGAdJmSwuLbJ/YX+lfQxEWxgHSZksLi0yd+0cC0cXKu03UYGIiOdFxPsj4usR8aOIuCMi3hcRp5ee7YSMg6RM+k/Sm944XWnfiQoEcDnwbOBa4CLgQ8CvAF+OiNMKznV8xkFSJoNncG+b3lZp/0k7Ue43gM+mlO5/io2I/wV8GngN8DulBhvKOEjKZDAOu3ft5uybz650HxMViJTSZ4Zti4h7gWqPTG7GQVImw9Z+2jBV/el+ogIxTEScDJwMHBzhtqfy4MUsttc+lHGQlMnxFgZMqfpFbSY+EMDFwEbgwyPc9tXAZVmnMQ6SMql71djWBiIipug9sY/iSBqSx4g4l94T/tUppU+OcD9XANcMbNsOXD/iHCdmHCRlkmNJ8dYGAjgX+NSItz0b+Fr/hog4i96nmW4Ffm2UO0kpHQAODNzPiCOswjhIyiTX9SbaHIivAa8Y8bb39H8REWcAnwB+ALwgpXSo5tmqMQ6SMsl5MaLWBiKl9B3gA1X3i4hH0IvDJuB5KaV7VtklL+MgKZPcV6prbSDGERHTwMeAWeA5KaVvFB3IOEjKpInLmE5UIICrgCcD7wfOjoj+cx9+mFK6rrFJjIOkTJq6xvWkBeKJy7//5+Vf/e4EmgmEcZCUSVNxgAkLRErpzNIzGAdJuTQZB5i8xfrKMg6SMmk6DmAg6mMcJGVSIg5gIOphHCRlUioOYCDWzjhIyqRkHMBArI1xkJRJ6TiAgRifcZCUSRviAAZiPMZBDVtZNHJqyr+yk64tcQADUZ1xUAHHjvX+kP34xz8uPIlyalMcYMJOlMvOOGhMJ598MtPT02Nd1Qt6Rw4LCwvMzMzUPJnaom1xAAMxusA4aGxvfOMbueiii1hYWBj7ZaKUEps2bQJqvE6JWqGNcQADMbqdGAeN7eEPfzgzMzMeAehB2hoH8D2I0e3AOGhsK+8hLC0tFZ5EbdLmOIBHEKPbC9yIcdCa+NKQVrQ9DmAgRncDMN77i5L0AF2IA/gS0+iMg6QadCUOYCAkqTFdigMYiG6ZAvwQjNRJXYsDGIjuWDlJb3PpQSRV1cU4gIHohv4zuA8XnkVSJSmlTsYB/BRT+w0u77G17DiSqtl3aB97Du7pXBzAI4h2G7b2k6ROmT8y38k4gIFoLxcGlCbCzKaZTsYBDEQ7GQdpYsxume1kHMBAtI9xkCZKl5dXMRBtYhwkZbK4tMj+hf2V9jEQbWEcJGWyuLTI3LVzLBxdqLSfgWgD4yApk/6T9KY3Tlfa10CUZhwkZTJ4Bve26W2V9jcQJRkHSZkMxmH3rt2V78MzqUsxDpIyGbb204ap6k/3HkGUYBwkZVLnwoAGomnGQVImda8aayCaZBwkZZJjSXED0RTjICmTXNebMBBNMA6SMsl5MSIDkZtxkJRJ7ivVGYicjIOkTJq4jKmByMU4SMqkqWtcG4gcjIOkTJqKAxiI+hkHSZk0GQcwEPUyDpIyaToOYCDqYxwkZVIiDmAg6mEcJGVSKg5gINbOOEjKpGQcwECsjXGQlEnpOICBGJ9xkJRJG+IABmI8xkFSJm2JAxiI6oyDpEzaFAcwENUYB0mZtC0OYCBGFxgHSVm0MQ5gIEa3E+MgqXZtjQMYiNHtwDhIqlWb4wCwofQAnbEXuBHjIKkWbY8DGIjR3QCk0kNImgRdiAP4EtPojIOkGnQlDmAgJKkxXYoDGIhumQJmSg8haRxdiwMYiO5YOUlvc+lBJFXVxTjAOghERPxJRKSI+OvSs4yt/wzuw4VnkVRJSqmTcYAJ/xRTRPwc8HK6/LQ6uLzH1rLjSKpm36F97Dm4p3NxgAk+goiIAN4F/Dmwv/A44xm29pOkTpk/Mt/JOMAEBwJ4KfAE4NLSg4zFhQGliTCzaaaTcYAJfYkpIrYAlwNvTyl9p3cwMdJ+p/LgF3G21zze6oyDNDFmt8x2Mg4woYEA3gTcB/xxxf1eDVxW/zgVGAdpooz6D9Q2anUgImIK2DjizY+klFJEPA54LfCrKaUjFX/kFcA1A9u2A9dXvJ/xGAdJmSwuLbJ/odrbsa0OBHAu8KkRb3s28DXgncDnUkqV39JNKR0ADvRva6z+xkFSJotLi8xdO8fC0YVK+7U9EF8DXjHibe+JiOcCvwi8KCLO7PveBuChy9vuTSnN1zjj2hkHSZn0n6Q3vXGaBUaPRKsDkVL6DvCBUW8fEY9e/s+PDvn2LPBN4HXAO9Y8XF2Mg6RMBs/gvunmm7iDO0bev9WBGMMngV1Dtl8J3Am8Dbil0YlOxDhIymQwDrt37ebsm8+udB8TFYiU0reAbw1uj4h3APtTStc1P9VxGAdJmQxb+2nDVPWn+0k+Ua69jIOkTOpcGHCijiCOJ6V0ZukZ7mccJGVS96qxHkE0yThIyiTHkuIGoinGQVImua43YSCaYBwkZZLzYkQGIjfjICmT3FeqMxA5GQdJmTRxGVMDkYtxkJRJU9e4NhA5GAdJmTQVBzAQ9TMOkjJpMg5gIOplHCRl0nQcwEDUxzhIyqREHMBA1MM4SMqkVBzAQKydcZCUSck4gIFYG+MgKZPScQADMT7jICmTNsQBDMR4jIOkTNoSBzAQ1RkHSZm0KQ5gIKoxDpIyaVscwECMLjAOkrJoYxzAQIxuJ8ZBUu3aGgcwEKPbgXGQVKs2xwFgQ+kBOmMvcCPGQVIt2h4HMBCjuwFIpYeQNAm6EAfwJabRGQdJNehKHMBASFJjuhQHMBDdMgXMlB5C0ji6FgcwEN2xcpLe5tKDSKqqi3EAA9EN/WdwHy48i6RKUkqdjAP4KaZRbATg+cDDCk0wDWwCvk3v/7EfFJojk8P0TjHp/3rS3HPPPdx2220cO3aMqSn/XbZi794Tf911h+8+zDe//032fHUP0xunuenmmzjr5rOKzXPnHXeu/OfGUW4fKfnxnBOJiPOB60vPIUk1uiCl9Jer3chArCIiHgY8i96/348e52bb6UXkAuD2hkbrEh+f1fkYnZiPz+pGeYw2AmcAn04prfpahC8xrWL5QTxhaSNi5T9vTynddqLbrkc+PqvzMToxH5/VVXiMvjzqffpiqCRpKAMhSRrKQEiShjIQ9fgu8HvLv+vBfHxW52N0Yj4+q6v9MfJTTJKkoTyCkCQNZSAkSUMZCEnSUAZCkjSUgZAkDWUgMouIP4mIFBF/XXqWtoiI50XE+yPi6xHxo4i4IyLeFxGnl56taRGxKSIuj4i7I+K+iPhiROwsPVcbRMSTIuI9EXFbRCxExLci4uqIeFzp2doqIi5dfr65tZb782Ou+UTEzwGfB34M/O+U0gsLj9QKEfH3wCnANcA3gMcCrwF+BDwxpfSdguM1KiI+CFwIvIPeY/Fy4EnAc1JKny04WnER8RHg5+n9OfkKcBq9PycnA09NKdXyJDgpIuIngX8CEvDPKaUnrPk+DUQe0Vs56/8Be4DnAbcaiJ6IOBf4bErp2MC2TwNvSyn9TrHhGhQRTwa+CLwhpfQHy9s2A7cCB1JKTy85X2kR8XTg71NKR/u2/RRwC/CRlNJcseFaKCI+BGwFTgIeWUcgfIkpn5cCTwAuLT1I26SUPtMfh5VtwL3A2WWmKuJCYAm4cmVDSukw8KfA0yLijFKDtUFK6XP9cVje9g1615daT39OVrX8D6wLgYvrvF8DkUFEbAEuB96+nl4uWYuIOJneSwcHS8/SoJ8Bvp5Smh/Y/qXl35/Y8Dytt3xkvo319efkhCLiJODdwPtSSrfUed9eDyKPNwH3AX9cepAOuZjexUw+XHqQBp0O3DNk+8q2RzU4S1e8BJil93dMPa8CHgOcV/cdG4gTiIgpRrx2K3AkpZSWP2HxWuBXU0pH8k3XDuM8RkPu41zgMuDqlNIn65yv5R4KDPszcrjv+1oWEWcB76X3wY8/KzxOK0TEI4A3A29JKdW+kKEvMZ3YufSOBEb59fjlfd4JfC6l9BeNT1vGOI/R/Zb/0l9L743ZX2tm5Na4D9g0ZPvmvu8LiIjTgL8BfgBcmFJaKjxSW7yV3nt3785x5x5BnNjXgFeMeNt7IuK5wC8CL4qIM/u+twF46PK2e4e85txllR6j/i+W34T9BL2/9C9IKR2qeba2u4feyyWDVs4HubvBWVpr+brwfws8HHhmSsnHhfs/0fVKei/PPqrvkqObgYcsP9/Mp5TuHftn+DHX+kTEy4H/scrNXpdSekcD47Ta8qHxZ+mdD/GM5U+nrCsR8fvA64BT+v/REBG/DbwNeHRK6dul5muD5Y/9fgL4WeC8lNLnC4/UGhHxbOBTq9zsnSmlsT/ZZCBqFBGPBv7dkG9dCdxJ7y/9LSml2xsdrGUiYhr4JL2PKj4npXRT4ZGKiIinAF/ggedBbKL3ctu/pJSeWnK+0pY/nfNR4AXABSmljxUeqVUi4pHAM4Z8663AFnrvhd6+lk82GYgGRMQ/44ly94uI64ALgPfz4H8B/TCldF3zU5UREVcDu+h94m0v8DLgycDzls8NWbci4h30nuT+Crh68Psppd2ND9UBEfF/qOlEOQPRAAPxQMuPx2OO8+07U0pnNjdNWcsvobwFmAN+gt6SEr+bUvp40cFaYPmJ7lnH+35KKY73vfXMQEiSsvNjrpKkoQyEJGkoAyFJGspASJKGMhCSpKEMhCRpKAMhSRrKQEiShjIQkqShDIQkaSgDIUkaykBIhUTE7og4vHyZ2sHvXRIRKSJc4FHFuFifVEhEnErvinz/mFJ6bt/2fwPcBnwspXRhqfkkjyCkQlJKB4A3As+JiJf1fesKYJHetRCkYjyCkAqK3oWE/y/weOAsYCfwQeCilFKWC9FLozIQUmERcQ7wZeA64JnAXcBTUkrHig6mdc9ASC0QEW8HfgtYAqkzrIoAAAD+SURBVJ6cUvqHwiNJvgchtcTB5d/vBm4tOYi0wkBIhUXEGcDv0QvDGcBvlp1I6jEQUnnvWf79+cA1wKUR8diC80iAgZCKiohdwPnA76aU7gIuBo4C7y06mIRvUkvFRMQW4KvAd4EnpZSWlrdfBLwT+JWU0jUFR9Q6ZyCkQiLincBrgKemlP6ub/tJwJeA04CzUkqHCo2odc6XmKQCIuJngV8HruiPA8DykcSr6AXirQXGkwCPICRJx+ERhCRpKAMhSRrKQEiShjIQkqShDIQkaSgDIUkaykBIkoYyEJKkoQyEJGkoAyFJGspASJKGMhCSpKEMhCRpKAMhSRrq/wPOxG6lGK/cdwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ "input_flux = mp.get_fluxes(flux_mon)\n", "\n", "sim.reset_meep()\n", "\n", - "geometry = [mp.Block(material=glass, size=mp.Vector3(dpml+dsub,mp.inf,mp.inf), center=mp.Vector3(-0.5*sx+0.5*(dpml+dsub))),\n", - " mp.Block(material=glass, size=mp.Vector3(gh,gdc*gp,mp.inf), center=mp.Vector3(-0.5*sx+dpml+dsub+0.5*gh))]\n", + "geometry = [mp.Block(material=fused_quartz, size=mp.Vector3(dpml+dsub,mp.inf,mp.inf), center=mp.Vector3(-0.5*sx+0.5*(dpml+dsub))),\n", + " mp.Block(material=fused_quartz, size=mp.Vector3(gh,gdc*gp,mp.inf), center=mp.Vector3(-0.5*sx+dpml+dsub+0.5*gh))]\n", "\n", "sim = mp.Simulation(resolution=resolution,\n", " cell_size=cell_size,\n", @@ -316,8 +222,267 @@ "\n", "mode_mon = sim.add_flux(fcen, df, nfreq, mp.FluxRegion(center=mon_pt, size=mp.Vector3(y=sy)))\n", "\n", - "sim.run(until_after_sources=mp.stop_when_fields_decayed(50, mp.Ez, mon_pt, 1e-9))\n", - "\n", + "f2 = plt.figure(dpi=120)\n", + "sim.plot2D(ax=f2.gca())\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "field decay(t = 50.01): 0.1082498119209954 / 0.1082498119209954 = 1.0\n", + "field decay(t = 100.01): 7.512926070352665e-06 / 0.1082498119209954 = 6.940359467632024e-05\n", + "field decay(t = 150.02): 6.732414916367269e-06 / 0.1082498119209954 = 6.219331744687766e-05\n", + "field decay(t = 200.03): 2.3712635292765586e-06 / 0.1082498119209954 = 2.1905474819736332e-05\n", + "field decay(t = 250.04): 9.494875348809632e-07 / 0.1082498119209954 = 8.771262675023706e-06\n", + "field decay(t = 300.04): 3.8220269083178343e-07 / 0.1082498119209954 = 3.530746927400933e-06\n", + "field decay(t = 350.05): 1.5689447663324306e-07 / 0.1082498119209954 = 1.4493741268368232e-06\n", + "field decay(t = 400.06): 6.492618040375044e-08 / 0.1082498119209954 = 5.997809996301509e-07\n", + "field decay(t = 450.07): 2.9338161615346314e-08 / 0.1082498119209954 = 2.710227490903943e-07\n", + "field decay(t = 500.08): 1.115652431764312e-08 / 0.1082498119209954 = 1.0306275936798441e-07\n", + "field decay(t = 550.08): 4.421515879496221e-09 / 0.1082498119209954 = 4.084548324872104e-08\n", + "field decay(t = 600.09): 1.6989786783603636e-09 / 0.1082498119209954 = 1.5694980418075362e-08\n", + "field decay(t = 650.1): 8.779199940057175e-10 / 0.1082498119209954 = 8.110129509014344e-09\n", + "field decay(t = 700.11): 2.64630974046326e-10 / 0.1082498119209954 = 2.444632183189964e-09\n", + "field decay(t = 750.12): 1.5056115102443512e-10 / 0.1082498119209954 = 1.39086755304776e-09\n", + "field decay(t = 800.13): 6.39132960275918e-11 / 0.1082498119209954 = 5.904240838241642e-10\n", + "run 0 finished at t = 800.13 (80013 timesteps)\n" + ] + } + ], + "source": [ + "sim.run(until_after_sources=mp.stop_when_fields_decayed(50, mp.Ez, mon_pt, 1e-9))" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "grating0:, 0.60000, 0.00, 0.12884455\n", + "grating0:, 0.58537, 0.00, 0.10877453\n", + "grating0:, 0.57143, 0.00, 0.09019427\n", + "grating0:, 0.55814, 0.00, 0.07312453\n", + "grating0:, 0.54545, 0.00, 0.05778349\n", + "grating0:, 0.53333, 0.00, 0.04394176\n", + "grating0:, 0.52174, 0.00, 0.03203070\n", + "grating0:, 0.51064, 0.00, 0.02188719\n", + "grating0:, 0.50000, 0.00, 0.01363406\n", + "grating0:, 0.48980, 0.00, 0.00741318\n", + "grating0:, 0.48000, 0.00, 0.00318863\n", + "grating0:, 0.47059, 0.00, 0.00103727\n", + "grating0:, 0.46154, 0.00, 0.00101454\n", + "grating0:, 0.45283, 0.00, 0.00313542\n", + "grating0:, 0.44444, 0.00, 0.00745115\n", + "grating0:, 0.43636, 0.00, 0.01396620\n", + "grating0:, 0.42857, 0.00, 0.02252241\n", + "grating0:, 0.42105, 0.00, 0.03341204\n", + "grating0:, 0.41379, 0.00, 0.04635643\n", + "grating0:, 0.40678, 0.00, 0.06143255\n", + "grating0:, 0.40000, 0.00, 0.07872147\n", + "grating1:, 0.60000, 3.44, 0.34156387\n", + "grating1:, 0.58537, 3.36, 0.34944613\n", + "grating1:, 0.57143, 3.28, 0.35680089\n", + "grating1:, 0.55814, 3.20, 0.36346042\n", + "grating1:, 0.54545, 3.13, 0.36942481\n", + "grating1:, 0.53333, 3.06, 0.37469297\n", + "grating1:, 0.52174, 2.99, 0.37921459\n", + "grating1:, 0.51064, 2.93, 0.38293085\n", + "grating1:, 0.50000, 2.87, 0.38587902\n", + "grating1:, 0.48980, 2.81, 0.38798872\n", + "grating1:, 0.48000, 2.75, 0.38921779\n", + "grating1:, 0.47059, 2.70, 0.38962522\n", + "grating1:, 0.46154, 2.65, 0.38915071\n", + "grating1:, 0.45283, 2.60, 0.38774251\n", + "grating1:, 0.44444, 2.55, 0.38545472\n", + "grating1:, 0.43636, 2.50, 0.38227119\n", + "grating1:, 0.42857, 2.46, 0.37815922\n", + "grating1:, 0.42105, 2.41, 0.37313255\n", + "grating1:, 0.41379, 2.37, 0.36725057\n", + "grating1:, 0.40678, 2.33, 0.36045351\n", + "grating1:, 0.40000, 2.29, 0.35278267\n", + "grating2:, 0.60000, 6.89, 0.00060165\n", + "grating2:, 0.58537, 6.72, 0.00063926\n", + "grating2:, 0.57143, 6.56, 0.00067111\n", + "grating2:, 0.55814, 6.41, 0.00070492\n", + "grating2:, 0.54545, 6.26, 0.00075251\n", + "grating2:, 0.53333, 6.12, 0.00078270\n", + "grating2:, 0.52174, 5.99, 0.00081829\n", + "grating2:, 0.51064, 5.86, 0.00086701\n", + "grating2:, 0.50000, 5.74, 0.00089301\n", + "grating2:, 0.48980, 5.62, 0.00093682\n", + "grating2:, 0.48000, 5.51, 0.00097960\n", + "grating2:, 0.47059, 5.40, 0.00100195\n", + "grating2:, 0.46154, 5.30, 0.00103900\n", + "grating2:, 0.45283, 5.20, 0.00108483\n", + "grating2:, 0.44444, 5.10, 0.00111937\n", + "grating2:, 0.43636, 5.01, 0.00113271\n", + "grating2:, 0.42857, 4.92, 0.00118188\n", + "grating2:, 0.42105, 4.83, 0.00121476\n", + "grating2:, 0.41379, 4.75, 0.00123868\n", + "grating2:, 0.40678, 4.67, 0.00127956\n", + "grating2:, 0.40000, 4.59, 0.00130116\n", + "grating3:, 0.60000, 10.37, 0.03778326\n", + "grating3:, 0.58537, 10.11, 0.03859258\n", + "grating3:, 0.57143, 9.87, 0.03942088\n", + "grating3:, 0.55814, 9.64, 0.04012895\n", + "grating3:, 0.54545, 9.42, 0.04074844\n", + "grating3:, 0.53333, 9.21, 0.04131042\n", + "grating3:, 0.52174, 9.01, 0.04179088\n", + "grating3:, 0.51064, 8.81, 0.04215646\n", + "grating3:, 0.50000, 8.63, 0.04247568\n", + "grating3:, 0.48980, 8.45, 0.04268933\n", + "grating3:, 0.48000, 8.28, 0.04278248\n", + "grating3:, 0.47059, 8.12, 0.04282523\n", + "grating3:, 0.46154, 7.96, 0.04277566\n", + "grating3:, 0.45283, 7.81, 0.04258704\n", + "grating3:, 0.44444, 7.66, 0.04232569\n", + "grating3:, 0.43636, 7.52, 0.04197688\n", + "grating3:, 0.42857, 7.39, 0.04150865\n", + "grating3:, 0.42105, 7.26, 0.04093166\n", + "grating3:, 0.41379, 7.13, 0.04029251\n", + "grating3:, 0.40678, 7.01, 0.03952707\n", + "grating3:, 0.40000, 6.89, 0.03865716\n", + "grating4:, 0.60000, 13.89, 0.00061845\n", + "grating4:, 0.58537, 13.54, 0.00065654\n", + "grating4:, 0.57143, 13.21, 0.00068831\n", + "grating4:, 0.55814, 12.90, 0.00071970\n", + "grating4:, 0.54545, 12.60, 0.00076721\n", + "grating4:, 0.53333, 12.32, 0.00079643\n", + "grating4:, 0.52174, 12.05, 0.00083103\n", + "grating4:, 0.51064, 11.79, 0.00088004\n", + "grating4:, 0.50000, 11.54, 0.00090551\n", + "grating4:, 0.48980, 11.30, 0.00094845\n", + "grating4:, 0.48000, 11.07, 0.00099106\n", + "grating4:, 0.47059, 10.85, 0.00101440\n", + "grating4:, 0.46154, 10.64, 0.00105076\n", + "grating4:, 0.45283, 10.44, 0.00109609\n", + "grating4:, 0.44444, 10.24, 0.00113118\n", + "grating4:, 0.43636, 10.05, 0.00114358\n", + "grating4:, 0.42857, 9.87, 0.00119209\n", + "grating4:, 0.42105, 9.70, 0.00122465\n", + "grating4:, 0.41379, 9.53, 0.00124821\n", + "grating4:, 0.40678, 9.36, 0.00128798\n", + "grating4:, 0.40000, 9.21, 0.00130878\n", + "grating5:, 0.60000, 17.46, 0.01343974\n", + "grating5:, 0.58537, 17.02, 0.01368150\n", + "grating5:, 0.57143, 16.60, 0.01399264\n", + "grating5:, 0.55814, 16.20, 0.01422852\n", + "grating5:, 0.54545, 15.83, 0.01442234\n", + "grating5:, 0.53333, 15.47, 0.01461010\n", + "grating5:, 0.52174, 15.12, 0.01477063\n", + "grating5:, 0.51064, 14.79, 0.01486755\n", + "grating5:, 0.50000, 14.48, 0.01497820\n", + "grating5:, 0.48980, 14.18, 0.01504258\n", + "grating5:, 0.48000, 13.89, 0.01504400\n", + "grating5:, 0.47059, 13.61, 0.01505723\n", + "grating5:, 0.46154, 13.34, 0.01504421\n", + "grating5:, 0.45283, 13.09, 0.01495468\n", + "grating5:, 0.44444, 12.84, 0.01485445\n", + "grating5:, 0.43636, 12.60, 0.01473364\n", + "grating5:, 0.42857, 12.37, 0.01456012\n", + "grating5:, 0.42105, 12.15, 0.01434018\n", + "grating5:, 0.41379, 11.94, 0.01412183\n", + "grating5:, 0.40678, 11.74, 0.01384159\n", + "grating5:, 0.40000, 11.54, 0.01351756\n", + "grating6:, 0.60000, 21.10, 0.00064734\n", + "grating6:, 0.58537, 20.56, 0.00068587\n", + "grating6:, 0.57143, 20.05, 0.00071786\n", + "grating6:, 0.55814, 19.57, 0.00074436\n", + "grating6:, 0.54545, 19.10, 0.00079178\n", + "grating6:, 0.53333, 18.66, 0.00081937\n", + "grating6:, 0.52174, 18.24, 0.00085160\n", + "grating6:, 0.51064, 17.84, 0.00090064\n", + "grating6:, 0.50000, 17.46, 0.00092589\n", + "grating6:, 0.48980, 17.09, 0.00096662\n", + "grating6:, 0.48000, 16.74, 0.00100832\n", + "grating6:, 0.47059, 16.40, 0.00103371\n", + "grating6:, 0.46154, 16.08, 0.00106905\n", + "grating6:, 0.45283, 15.77, 0.00111300\n", + "grating6:, 0.44444, 15.47, 0.00114934\n", + "grating6:, 0.43636, 15.18, 0.00116022\n", + "grating6:, 0.42857, 14.90, 0.00120761\n", + "grating6:, 0.42105, 14.63, 0.00123951\n", + "grating6:, 0.41379, 14.38, 0.00126300\n", + "grating6:, 0.40678, 14.13, 0.00130068\n", + "grating6:, 0.40000, 13.89, 0.00131970\n", + "grating7:, 0.60000, 24.83, 0.00667501\n", + "grating7:, 0.58537, 24.19, 0.00675842\n", + "grating7:, 0.57143, 23.58, 0.00693378\n", + "grating7:, 0.55814, 23.00, 0.00704600\n", + "grating7:, 0.54545, 22.45, 0.00712578\n", + "grating7:, 0.53333, 21.92, 0.00721375\n", + "grating7:, 0.52174, 21.42, 0.00729197\n", + "grating7:, 0.51064, 20.94, 0.00731446\n", + "grating7:, 0.50000, 20.49, 0.00737075\n", + "grating7:, 0.48980, 20.05, 0.00739756\n", + "grating7:, 0.48000, 19.63, 0.00737302\n", + "grating7:, 0.47059, 19.23, 0.00737750\n", + "grating7:, 0.46154, 18.85, 0.00737796\n", + "grating7:, 0.45283, 18.48, 0.00731808\n", + "grating7:, 0.44444, 18.13, 0.00726095\n", + "grating7:, 0.43636, 17.79, 0.00720401\n", + "grating7:, 0.42857, 17.46, 0.00711631\n", + "grating7:, 0.42105, 17.14, 0.00699564\n", + "grating7:, 0.41379, 16.84, 0.00689523\n", + "grating7:, 0.40678, 16.54, 0.00675169\n", + "grating7:, 0.40000, 16.26, 0.00658026\n", + "grating8:, 0.60000, 28.69, 0.00068832\n", + "grating8:, 0.58537, 27.92, 0.00072766\n", + "grating8:, 0.57143, 27.20, 0.00076099\n", + "grating8:, 0.55814, 26.52, 0.00077899\n", + "grating8:, 0.54545, 25.87, 0.00082616\n", + "grating8:, 0.53333, 25.26, 0.00085115\n", + "grating8:, 0.52174, 24.67, 0.00087912\n", + "grating8:, 0.51064, 24.11, 0.00092748\n", + "grating8:, 0.50000, 23.58, 0.00095268\n", + "grating8:, 0.48980, 23.07, 0.00098912\n", + "grating8:, 0.48000, 22.58, 0.00102872\n", + "grating8:, 0.47059, 22.12, 0.00105772\n", + "grating8:, 0.46154, 21.67, 0.00109142\n", + "grating8:, 0.45283, 21.24, 0.00113269\n", + "grating8:, 0.44444, 20.83, 0.00117105\n", + "grating8:, 0.43636, 20.43, 0.00118006\n", + "grating8:, 0.42857, 20.05, 0.00122584\n", + "grating8:, 0.42105, 19.68, 0.00125676\n", + "grating8:, 0.41379, 19.33, 0.00128083\n", + "grating8:, 0.40678, 18.99, 0.00131512\n", + "grating8:, 0.40000, 18.66, 0.00133206\n", + "grating9:, 0.60000, 32.68, 0.00381720\n", + "grating9:, 0.58537, 31.79, 0.00383343\n", + "grating9:, 0.57143, 30.95, 0.00396032\n", + "grating9:, 0.55814, 30.15, 0.00403152\n", + "grating9:, 0.54545, 29.40, 0.00406905\n", + "grating9:, 0.53333, 28.69, 0.00412086\n", + "grating9:, 0.52174, 28.01, 0.00417458\n", + "grating9:, 0.51064, 27.36, 0.00416693\n", + "grating9:, 0.50000, 26.74, 0.00420448\n", + "grating9:, 0.48980, 26.16, 0.00422216\n", + "grating9:, 0.48000, 25.59, 0.00418744\n", + "grating9:, 0.47059, 25.06, 0.00418665\n", + "grating9:, 0.46154, 24.54, 0.00419713\n", + "grating9:, 0.45283, 24.05, 0.00415325\n", + "grating9:, 0.44444, 23.58, 0.00411170\n", + "grating9:, 0.43636, 23.12, 0.00408157\n", + "grating9:, 0.42857, 22.69, 0.00403487\n", + "grating9:, 0.42105, 22.27, 0.00395612\n", + "grating9:, 0.41379, 21.86, 0.00390576\n", + "grating9:, 0.40678, 21.48, 0.00382198\n", + "grating9:, 0.40000, 21.10, 0.00371561\n" + ] + } + ], + "source": [ "freqs = mp.get_eigenmode_freqs(mode_mon)\n", "\n", "nmode = 10\n", @@ -342,12 +507,12 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 7, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA/oAAAMFCAYAAADEIo1tAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAewgAAHsIBbtB1PgAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3Xe4PGV99/H39wciVUWEUBXFArEhAgELYIka0agRewSM5dEYn4gaNWoS1GhijIk+Ym8gEgMWLGBBpYhYKIJiQQRFUFFQAWk/fpTv88c965mzbjvnzM7Z8n5d11w7u3vPzL19PzP33HdkJpIkSZIkaTasWe0KSJIkSZKk5hj0JUmSJEmaIQZ9SZIkSZJmiEFfkiRJkqQZYtCXJEmSJGmGGPQlSZIkSZohBn1JkiRJkmaIQV+SJEmSpBli0JckSZIkaYYY9CVJkiRJmiEGfUmSJEmSZohBX5IkSZKkGWLQlyRJkiRphhj0JUmSJEmaIQZ9SZIkSZJmiEFfkiRJkqQZYtCXJEmSJGmGGPQlSZIkSZohBn1JkiRJkmaIQV/SXIqIiyIiq2nH1a6Ppl9E3CMi3hER34+Iq2vvr1beYxFxcm17+/Upc3itzMEjrPNhEXFM9Xm5vrbsRT3KrhcRz46IEyLi1xGxrlb+8JU+vlkSEQf73EyPpX5uJGkSrL/aFZAkadpFxGOAjwEbrnZdmhIRrwdeM2LZDYDPAw8da6UkSdJIDPrSENWRqztVV++cmRetXm3UpupI20HV1Wdl5uHjWEbTLSI2AY5gIeRfCnwNuBzI6rbfr0LVli0i9mZxyP8+cDZwVXX9t12LvJTFIf8U4AJgbXX9m2Oo5kSojvB+qLp6RGYevHq1kSSpMOhLkrQyjwVuX81/H9gjM69fxfo04aDa/AeB52Rm9ivcVf6gzPzweKolSZJGYdCXNJcyc8fVroNmxm61+Y9OcsivjjYfPELR+mP64KCQHxEbA/eorq4DPrLc+s2LqqXP4atcDUnSDLMzPkmSVmbz2vylq1aLZi3lMdXL/jozbxlDfSRJ0hIY9CVJWplb1eZnJeQu5THN4uOXJGmqGfSlHiJix85QOix0xAfw064hs3oOZVW/r3bbfSPibRHxvYj4XXX/p3ps+/4R8Y8RcVxE/CQirqmGqfp1RHw9It4QEXcc8XH80RByEbF9RLw+Ir4TEVdGxLURcV5EvD0i7jR4jX9Y76YR8fyIOD4iLo6I6yJibUT8PCLOiYhjI+JvI+KufZb/o6GlqqG5DoyIL0XEL6rH/MuIOCoi7t1jHZtFxIuq5+TX1dBf50fEWyLiDst5brrvY/F5xx/q89ofutxlurZ524h4WkS8JyK+FRG/qZ6D30fEBRHxPxHxpIgY+r3db+iuiHhCRHy2es1uiIjLogyF9tcREcPW27WNu0TEoRHx1er1Wlu9D34SEZ+qXputRljPJhHxgqpeP6vWcXVE/DgiPhgRY+vFPSLuGBGvi4hvxsJwcL+urr82InYYsOyhsfAZH/aa79dAXZ9Ufd5+WT3XP4vyHXHAUl67GDBMWNSG52PI915VvjP/01rZO/V4/Cd3bWcivh+71rthRPxNlKEEL6w+d+uqz8ipEfHvEfFnvZ5LFjriAzioz2e++zlY0vB6UTwpIj5a1e+aarowynfDSO+D6DEEY0TcPiJeERFnRPneub56bj8QEfca4elblojYKyIOizIc5RWx8BvyhYj4uyidXA5bx6G1x3NoddtGsTDM48WxMMzjrn3W8efV635JVYdfRMRXqtfoVr2WGaFeEeX79ogov0tXVeu+JMr340ERMfD02aj9D4nacJYR8aCIeH+U3+2rqvvf2mP5h1av4blRfutvrF7fH1bvgzdExD7LfYySpkBmOjk5dU3AjpTesked9uta/g/3VdcPBW7qsdynupY7fcTtrQNePsLjuKi2zI7A44ErB6z3OmD/IevcG/j5Ep6b9Xus4+Da/YcDW1F66e63jhuAv6gtvxfwiwHlLwXusZTnZsB9w6ZDl7tMbXt/RemdfJRlz+6u7wjP722BTw9Z7+eBjUZ4T90aOAy4cYS6rgM2G7CuJ1Wv1bD1fBa4bcOf8VcB1w/Z7vXAK/ssf+gSXu/9VlDP2wBfHLL+z1TlTh62zer90ClzcNd9Jw/Zzh+m7u+5IdPJk/j92PX5G/U77fl9nsulPgcH1+47fEj97gZ8e4RtnAnsNGRdi94jwAOHPPabgOc2/NnbBPjfER7PL6l974/wOTwU2AX4Xp/17dq17K2ADw+pwzeAbRnwuelRp/tQvqeHPb7zgD8dsJ4da2UvAjYA3tVnXW+tLbcpw7/v69Nzmnx9nZycJmeyMz6pt98D76jmDwQ2q+Y/DFzdo/wv+q0oIv4B+Jfq6oWUP6vXUX7Eb+wq3jkSdQOl9+4LKMNZBbAN8GfAHSh/UN4UEWTmf4z4mB4GvAdYD7iY8gfm98CdKX/41gc2Ao6JiHtl5k97PJYdKKGj83zcCJxR1fM6yh+4HYH7UoLHKNYHPkn5w3kd5Y/oLyjh/+HVOjcAPlkdXdoAOKGqw6+BU4ErgJ2qx7EG2Bo4NiLum5ndz/EojgC2oDxnO1e3fYXyx6zb6StYpmMrSoCG8qf7B8CvKM/HppQ/r7tR3ge7AqdGxK6Z2T3EWS/rAZ+o6rUO+Drlfbgh8GAW3nOPAv4LeEG/FUXEppTnfu/azddRhpL7eVW/7YD7U56LW1Xb77WuQ4C3VMtA+Vx9A7ikWuZPgT2q+x8DnBIRD8jM60Z4zANFxGHAC2s3XQucSHnOtwYeQnneNwT+LSL+JDMP6VrN6Sx8Rwx7zft+Pwyp5wbA5yifjfq6TqU877tQdno9lmY6djuWEpJgtO+9zuPfrCpPVa67x/0f99vgan8/RsRLgTez8D5M4DuUz+A1lNEU7s1CZ4Mb1hb/clVmZ8p7AMpr/5Uem+r7HAyp3y6UnaBb1m4+Fzinquv9qvpB+dydFhH7ZOb5I6z+XsC/Ud7rl1HeV7+lfIYfSvk9WA94d0R8LzO/sZzH0PV4NqZ81vas3fzLatvXAHcFHlRtdxvgMxHxtMz8+Air3wL4AuV9srZa588o78+9epQ/irKzseO3wEmUneF3AfapljuW8l4b5fHtQ9kx2fn9u4myA+ZHlPfzjtXj25Dynvp6ROydmT8cYfX/DTy/mj+X8j69Ebg7i0+ZORL4y9r1Cyg7Hn5H+WxsSXnP7DjKY5I0xVZ7T4OT06RPDDjyO2CZ+t7yGyl/HB7fo9ytu66/E3g0fY6sUv78HEz5Q9Q5cnXnEeu+tlrur4HoKndPFh/V+WCf9b21VuarwLZ9yq0P7EvpfXu9HvcfXFvPDdXlx4Etuspty+KjM0dQ/jTdQjkie6uu8g+g7LzolD9oJa8rSziKs8JlHgu8ErjrgDJ3pvyJ7az7/QPK1p/fTkuBzwHb9Xid3lwre8ug9ziLj8LdBPwzsEmPcmsoYflT9DgSTwlFN9few6/us55dKYGus813ruSzXK3zybX1dd5Tt+kqcxvKn+V6uSc2+ZqPWNdDu16blwJrusrsRgnI9c9Ssowj+kv9fNTK7lgre9EIj2tSvh8fXT2vnbp8Bdh5wOfvdfT4TmEJR+eXsgxlp+Y5tXKXAY/oUe4RwOW1cmfR9d1YK3tyrdxayuf4JXS1vAJ2oITJTtkTG3pPv7O2zpuAQ3q8p+9G+Z7vlLuq3+vY9RnptDL6GHCHrnJr6s9J1/OflJ2O3e+3nWr1qH+2en5uKDsJf1Ur9z90fedW5f6EsnO7U+679P6d3LHruUrKTvoH9/usUL4zO8tczYAWEZSdGa8GHtvEa+vk5DR506pXwMlp0idWHvRvAfZpuE5Pqa3/TSPW/RbgUQPK7t/1B6FXk/v6n6++oXSE+nf/yfpK95+9Wtm9usom8JoB6/7HWrnPr+R1paWgv4Tn7VaUozhJaVa++YjP71d7vZ5V2WBxk+hX9Cn38K51PnWZj2ENcH5tPc8YUn5rSsuNTnDbfgXP3xrgJ7Vtf5yunV5dz8unamUvGPAebfw1B25HObLdWe+rB5TdiYVw25n2W0ldR/l81MruWCt70QiPbdW/Hyk7uX5aK/fZfp+REbZX/7wd3tQywLNqZdYB9x+wvj1YfDrNgX3Kndz1/D9vwDrvxcKOkFuAbVb4uuzEwg6+BF40oOzmXa9Pv53Ph3Y9ni/2+5zWllmP0nKos8z7BpTdgj8+taHn5wb4wCjrrNXhxFr5p/Qos2PXdq8F7j5kvX9XK/+vTXyenJycpneyMz5p/D6WmV9teJ0fp/yxhxLARnFcZn5hwP2foxyNgNKUc+ceZerN8S8fcbujeEn2GZIrM79JaX7Z8SvgTQPW9b+1+T0aqNvEyHIawlHV1Q0pTUBHcUhm3tRnncnizsT6PWcvrc0fnZn/26fcMI+lHLED+EpmHjWocGb+itJkFcqOjicvc7tQjnzeuZpfRwka2We7SWne32k+vhPw5yvY9lI9ndJ0GspRvL5N0DPzQsppF9Notb4fn8hC0+VrgWf1+4ysov9Tm393Zp7Vr2BmngG8r3ZT31Nwas7NzPcOWOf3KKdmQdnxdf8R1jnIc1noBPq7lL4++m37CuAVtZueHhG3HWEbL+73W1LzSGD7av464OUD6vFbSsulgSJiS+AZ1dWrKC0V+srMmymt0jqe0a9szWE5/JSMcf1GS5pCnqMvjd+yAlGUnuZ3o/wZvQ0L53B3dALKvSNizQh/bj426M7MzIj4DuUIKtV2v9dV7GIWQtoLgTcO2eYoLsjM7wwp830WegH/bA447z4zfxoR11LO7d8iIjbLzF7nF0+kiLgdpRXDPSlHkzZl8Qgp9R0wu1KORA7yk0EBoXJ2bX7HHnW6NaX/g463D1nfII+uzY/62TixNv8glh9q6z34fz4zB44Pn5m/iIgvUHZOQDkd4YvL3PZSPaQ2f/Sg93zlw8A/jbE+47Ja34+Pqs1/NDN/s5x6jEvVH8butZs+OMJi72ch4O8REZtk5rUDyg/8TaiczcL59DuOUH6Q+ufvQ/12stUcSzmv/PaU13dvyulL/Xw3RzvXvf7ZOr7aqTDIMZRTDrrfY3UPr91/XGZeM6Bsx7coOxo2ZrSdtqN8Vi6uzR8UEe8f8h6QNMMM+tL4DQtZi0TEQZQ9/XcfcZFbUXpVH/Zn5dwR1lXv3K3X0ZOjWeh06g0R8QjKEeYvZeZFI6y/l++PUKb+2H4wQvkrKUEfSgiY+KAfEdsD/w4cwOA/lHVDhxGkmdd9VxY6IbuO8gd1ueod+e3fb8irLvU69R3ybgT3q82fNuIyp7EQ9HdbwbaXqv68DH2+M/OCiPgtZefQNFmt78d652wnLaUOLbkvCx1ZXkM5Aj7MOZTWCZtUy96X0vlmP018N4ykGvqv/p4e+vnLzBsj4nQWdsrsxuCgP+p7aamfrWsi4nsMbtFQ/167e9Xh5yg6Ozs2H7Jj5kZGe70+R3m/bEr5vvtRRHwIOB44a4QdhpJmiEFfGr+Rms9Vf4Q+QDkvc6k2Y3jQv2qE9dT/BPQaW/cDlObPB1TX960mIqLTc/KJwLGZOWqzwVHqVW9Su9TyEz9GcETcj9JPweZLXHSz4UUaed3/pDZ/yQqbOG9bm3/8MpZf6nNUV++5/Gd9Sy12UW1+lB0rTanX9eK+pRa7hOkL+qv1/Vh/T/9kGesct/rrf8kILbbIzFsi4hIWWv0Me7828d0wqtt2LT+Oz9+ovznL/WwNCvr177U9WN5pY5tTdtT0csUo37uZ+buIeBZlB/wGlBEUXlNN11c7Tk4BPjNCSy9JU85z9KUxy8zrRyz6XBb/iT0OeCalQ6TNKb3qRmdi8R+lUT7Lw5pJDl9B+bP5ZEpHUt1HmLaldIL1HuCXEfH+iLj9GOq14scxSapm8Z9gIcD+Gngtpan8DpSjc2tqr3v9PdLK687iHQqjNEkdZNlHBSsr2UG9aW1+1Oas9XKj7FhpSr2uow4pOHVNdFfx+7HJ9/Q4LOe92l122Pu1ze/STbuuj+PzN+p7aRyfrZV+r8Hg77ZRHxtZhiLcnXJqxrraXRtRdsz/M3BmRJxZDQcoaUZ5RF+aHC+rzb86M4ed/95m6PiD6rzKI4AjImInyh+HfShjst+lKrY+8Gxgv2qMYDsF6u+JLHQQ93Ng98z89YDyq/G610996P7DvlTXsvCneNcR+mdoUj3QbdK31GL1cm2eAnINC8/TxiMuM+pjmkZNfz9ezcLOtZW+p8dhOe/V7rKTdMpS986UTRgt7I/j8dTr0tRnq/5YXpyZb1talZqVmecCT46I21B+mzu/0buz0LLi/sBJEfHUzBylvwZJU8Yj+tIEiIgdWOjk7goG9LBdlb8NK2vC3IjMvDAzP5iZB2fmTpTzZv+ThabzOwH/smoVnA4Pq83/95CQDwudErapXqcdImIlO4nr67pb31LjUd/hdMcRl6k/32122Lacuq6k/4KJNabvx/r78M59S62e+uu/Q3XqwkARsYbF74FJ6mDwKhafBrCan79xfLZW83utr8z8fWYen5mvyMwHUE5/OJiFUyLWAO+MiI36rELSFDPoS8O10byxfn7fj0Y4F+9BlOGOJkpm/jgz/4HFwxH95WrVpwHLee2Xukz9tR+lY8LVaGp5DrC2mt8Y+LMVrKve+dUjV7Ce5aiPLvCAEZd5YG3+2w3WZZhzavN79S1ViYi7Mn3n549qHN+P36zNP7RvqdGM4zfiO5Qx56G0OLj3CMvcl4UjzzdX65gIVUuw+nt66Oev2qG4Z+2mpj5/S/1sbUo5RWSQ1fxeG1kV/I+gvOdvqG6+A4s7E5Q0Iwz60nBra/Pj6tit3tHSKE0JRxkjeTUdV5v/k76lJt9yXvulLjPyax8R92d5nTytSGbewOKeyf9uBaurvzeeHhFbrWBdS1Ufpu/Rw7YdEVuzeBi2E/uVHYP68/2UiBj2XjponJVZZeP4fvx8bf6pEbGSjhYb/42ohmc7s3bTwSMsVu/D4PQJHFat/vk5aIRWCn/Jws6rtcA3GqpH/bP16BH6knkKw0dC+SILLdnuGhGPWW7l2pCZP2XxjuVp/p2W1IdBXxquPrzQdmPaxk9ZOCp0r+rc954i4inAqvyJWMKf4XpzyGk+P385r/1Sl6n3+P24foUiYmPgvSPWYRzqY9c/NSKeusz1fAK4oJrfGPjICCEWKEfWImIl56GfQPmsQfnj/tYB2wrg/1F6rga4EPjyCra9VP/DQgdcOwAv71ew+r44pI1KrZJxfD9+koUO+zYFPrSCU1LG9Rvxntr8CyPiPv0KViN3PL9207sbrEdT3sfCTpvdgOf1KxgRt2XxKRofzcxRRgkYxReBX1TzGwNvGlCPLSidow6Umb8APlK76d0RMdJ7ISLWRMSWw0uOtK6RfqOr9/o2tZum+XdaUh8GfWm4+ti1Tx7HBjLzNyw0/VsDfCwi7lEvU/0ZeCFwJKVZ5lrad3FEvDci9ouI9XoViIi9gPoYwp9rp2pjUX/tHx8RG/Qtufxl6ke4D4yIl3Y/t1Wz7BMof45X5ShdZn6Z0otzx0ci4p+rHRCLVO/Vh0TEsdUf9vp6bqYcce00S/5z4KsR0belQkTcJyL+jTIU1rLPp65GjXhl7aanRcT7qqa59e1tRhnK7Um1m18xyhBnTcnMKyn9XXS8PiJeUp2H/QdVwDuB0mS73sP2zBjH92PV/P+FLOxAeAzwxYjYuVf5iNgxIl4XEQf2uLv+mf+ziBj1vO9hjmKh+f0GVf0e0qNuD6OML9/ZYfZt4KMN1aExmXkhi3deHBYRL+zxnt6J8p7u7ND5PfD6ButxM4tPL3tORLy5+7s6Iu5C2SmwHaN9tl4FXFrNbwecEREHdD++2vq3i4i/B86jtBpowpsj4tSIOCgievZTUe1U+CALQf/3wGkNbV/SBLHXfWm4T7BwpOQFEbEb5Y9UfVied1V/YlbiNZQ/N2uA+wHnRsRplCO+m1J6zO38ML+acjSk7Y7ZNqIMc/Vc4OqIOIcSvq6lnOe3M/CntfKXA4e2XMcmfZ7yOm9MOf/1hxFxMnAlCwHhhMw8YbnLZOYXI+IUyugFQQl3L4yIb1M6sLob5XzW9ShHod7GkM7Ixug5lPfcnlV9Xgu8vHqfXkKp/3aUnp07TW7/qHluZn45Il4AvKtaz17A6RHxY8p59FdQ3mtbA7sCjTXvz8xjqiGlXlh7TE+JiJMoHWptRTl/td5r+1sz8xNN1WEJ3kDZEbIX5Xl8C3BIRJxKeY/tTHlvBPApSgd0+65CPdvQ+PdjZh4fEf8I/Ht100OBH0TEdyjNmq8Bbg/cB+jsWPijlhOZ+euqLg8ENgS+ExFfoIS+zs6hCzPzXUt5wJm5LiKeRhn3fEvK5+HEqn6d88x3pXzPdFwGPC0zb2QyvYzy/bAH5T/oYcArI+JrlOd7J0o/JJ2dnTcBz66amjcmMz8YEfsDf1Wr18HV98BVlB2K+1Z1PAP4MfD0Ieu8NCIeR9m5fQfK+/FjwGUR8S3K98saynfjvSij1DTd105Q+qh4EHBzRPwI+AEL36nbU74z6js1XraEYS4lTZPMdHJyGjJRjhLlgGm/rvJ/uG+J23k+pWfiftu5mRKugtJrbuf2Hfusb2iZrvKH18of3OP+q4c8D/XpHGDnPts5uFbu8JXWazmPe9TnhrJT4+YBj/PQlS5DOT/yrCHP5/cpO1GGPnfLeH53rJW/aEjZjSinENw0wnvgemCzAet6CHD+Et5T3wO2begz/RrKUd9h9f/Hpt+fS6znbSmnDAyq5/FVuZNrt+23krqO+vlY6vunKj8R34+19T4F+NWI78Hn9lnHbpSA2G+5k5f7GaWMZvLtEep2FrDTkHUNfY90lT+0Vv7Qht7TmwJHj/B4fgn8xbjqRwm7Rw2pw7coOy9H+txU670Twz+z9elXwCNX+rmqlnn7Erb7+37vZycnp9mYPKIvjeZAyp/pZ1COoNyBcuSmUZn57urI0CGUELQtJWz8gtKR0Qcz82yAEUZbGoctKEdb9qUckbkbJaRuSDnC+HPKn81PAJ/JFps6j0tmvi8ivkcJGXtR/vRtzIAjMUtdJssRwQdQji4/lXK0Z2PK0bkfUf4UH5WZ10XEnr3W0ZYsR36eFxH/RflcPIzyh/T2lOatlwLfBb4EHJ2Zfce+zsyTqqbSTwD2pzxXWwO3obyffk1p1vp14POZeU6/dS3jcfxrRBxJec4fSTmCdztKy4ufUJrsvj8zL25qm8uR5bzkh1fnnh9ECZSbU94b5wJHAMdkZq7Sd0JrxvX9mJlHR8RxlPfzX1COkG9JOap8BeUz+DXg453191jHt6tz6F9EaRlwF0qg7XmK01Jk5vkRsTtwAPBESouaTiuXyyhh9OPAJzIzV7q9ccvS0eBTIuKtwDOB/Siv5UaUIfS+Rzml6YM5xg4FM3Md8IyI+DBl5+zelN/231Je8/8BjsjSsmIp6/0Z5TO7N+X0n30o/WxsTtlB+ltKC4EzKa1UTs7hI0mMuu0XRcQ7gYdTvk/vSekzZ7Patr9fbffIzLysie1KmkwxBb8JkiRJkiRpRHbGJ0mSJEnSDDHoS5IkSZI0Qwz6kiRJkiTNEIO+JEmSJEkzxKAvSZIkSdIMMehLkiRJkjRDDPqSJEmSpLkQEXeMiP+MiB9GxLUR8buIOD0iXhYRG49pm9tExJURkdV08ji2s2ibmTnubUiSJEmStKoiYn/gKOC2fYr8CHh0Zv6k4e1+HHhi7aZTMnO/JrfRzSP6kiRJkqSZFhH3BY6hhPxrgFcDDwAeBryvKnYP4PiI2LTB7T6WEvIva2qdozDoS5IkSZJm3VuBjYGbgEdk5hsz8xuZeWJmPg94eVVuZ+AlTWyw2mHwjurqy5pY56gM+pIkSZKkmRURewD7VVc/kJnf6FHsLcAPq/kXR8StGtj0G4EdgJMy88gG1jcyg74kSZIkaZY9vjb/oV4FMvMW4MPV1c1Z2DGwLBGxJ/BCYB3wgpWsazkM+pIkSZKkWfbg6vJa4KwB5U6pzT9ouRuLiPWB91Ly9psy80fLXddyrd/2BtWsiLg1cO/q6uXAzatYHUmSJGnerQdsWc2fm5k3rGZlRlWF061XuRpbM0KmycyfL3G9u1SXF2TmTQPKnddjmeV4GXBf4EJK8/3WGfSn372BM1a7EpIkSZL+yB7AmatdiRFtDVyy2pUYUYxcMGJD4A7V1YE7CDLzioi4FtiEcm790isWcRfgn6urf5uZa5eznpWy6b4kSZIkaVZtVpu/ZoTy11aXyx1i7z3ARsDRmXnCMtexYh7Rn36Xd2ZOP/10ttlmm9WsiyRJkjRX1nY1BL/00kvZ5wF7dq5e3l1+Gmxw9wOI9TdpbXt507WsO//jnat7AL9qcPUb1ubXjVC+c6rFRkvdUEQcCDwc+D1wyFKXb5JBf/r94fyVbbbZhu2333416yJJkiTNvO5wP8BU9p8V629CbLDcA9or9qtlnIM/SL3p/AYjlL91dXn9UjYSEXegDNEH8OrMvHQpyzfNoC9JkiRJQywh3E+/WFOmNrc3PlfX5kfZe9FpyjBKM/+6/6L0BXAm8M4lLts4g74kSZIkdZmrYD/DMnNtRPyGEsIHNn+OiM1ZCPojd0wYEdsCz6yungg8OWJgf4FbRcRTq/mfZua3Rt3WqAz6kiRJkoThfob9EHgwcNeIWH/AEHs7dy0zqvopAS8fofwuwEer+SOAxoO+ve5LkiRJmltrb1qYVAkgosVp7I/oa9XlJsD9B5TbtzZ/2viqM34GfUmSJElzxXA/dz5Vm39WrwIRsQY4sLp6JXDSqCvPzIsyM4ZNtUVOqd1+8FIfzCgM+pIkSZJmWj3YG+5H0OmMr81pjDLzdODU6uqzI2LvHsVeSmlSD/C2zLyxfmdEHBwRWU2Hjq+2zfAcfUmSJEkzx0CvLn9PaY6/EXBCRLyRctR+I+CpwPOqcuezMEze1DLoS5IkSZoJhvuGdM6db3N7Y5aZZ0fEU4CPALcB3tij2PnA/pl5dY/7popBX5IkSdJUMthrKTLzsxFxH8rR/f0pw+2tAy4APgYclpnXrWKK1AqXAAAgAElEQVQVG2PQlyRJkjQ1DPdaicz8GfCSalrKcocDh69w2601kzDoS5IkSZpohvuWtdBB3h9tT40y6EuSJEmaKAZ7aWUM+pIkSZJWneF+gsxgZ3zzxqAvSZIkaVUY7qXxMOhLkiRJaoXBflq0fI4+nqPfNIO+JEmSpLEx3EvtM+hLkiRJapThXlpdBn1JkiRJK2KwnzFBy53xtbepeWHQlyRJkrRkhntpchn0JUmSJI3EcD8nouXO+Frt+G8+GPQlSZIk9WSwl6aTQV+SJEnSHxjupeln0JckSZLmnOFei0S03BmfvfE1zaAvSZIkzRmDvTTbDPqSJEnSHDDca2R2xjf1DPqSJEnSjDLcS/PJoC9JkiTNCIO9GuE5+lPPoC9JkiRNMcO9pG4GfUmSJGnKGO4lDWLQlyRJkiacwV6tsjO+qWfQlyRJkiaQ4V7Schn0JUmSpAlhuNdEiGj5iL6d8TXNoC9JkiStEoO9pHEw6EuSJEktMtxr4kXAGofXm2YGfUmSJGnMDPeS2mTQlyRJkhpmsJe0mgz6kiRJUgMM95oZDq839ebyGY2I20TEUyPiLRFxSkRcEBFXRcS6iLgsIk6OiJdHxBYjru9REfHJiPh5RNxQXX4yIh417sciSZKk1bP2poVJkibFvB7R3xP4aJ/7tgT2raZ/iIi/zswv9ioYEQG8G3he113bAU8AnhAR7wWen5nZSM0lSZK0agz0mgsR7XaQZ2d8jZvXoA9wCXAScFY1fymlhcP2wAHAXwF3AD4TEXtk5nd7rONfWQj5ZwP/AVwI7AS8HLhfdf/lwGvG9kgkSZI0NoZ7SdNmXoP+SZl5xwH3HxMRjweOBTYA/gV4Yr1ARNyVEuYBzgT2yczrq+tnRMRngFOA3YFXRMSHMvPCJh+EJEmSmmew19zzHP2pN5fPaGbePEKZTwHnVVf36VHkEBZ2lLyoFvI7y18HvKi6uj7w4uXVVpIkSePmufaSZslcBv0luLa63LB+Y3Vu/uOqq+dl5jd7LVzd/qPq6uOr5SRJkjQBDPeSZtW8Nt0fKiJ2AXatrp7XdfedKR3uQWmeP8gpwD0o5/7vCPy0oSpKkiRpCQz00ojsjG/qeUS/JiI2joi7RcRLKB31rVfd9bauorvU5rt3AnSr379L31KSJElqnEftJc2juT+iHxEHAx8aUOQ/gaO6btuhNv/zIZu4pM9yI4mI7YcU2Xqp65QkSZplhnpphSJa7ozPI/pNm/ugP8A5wPMz81s97tusNn/NkPVcW5vfdBn1uGR4EUmSpPllsJekxQz68CnK8HgAGwE7AU8GngAcFREvzszjupapd863bsj6b6jNb7SSikqSJKkw3Etj5Dn6U2/ug35mXglcWbvpDOB/I+KZwBHApyPi2Zl5eK3M2tr8BkM2ceva/PV9S/U3rLn/1pQ6S5IkzSyDvSSNbu6Dfj+ZeWREPIZydP+wiPh0Zl5R3X11reiw5vib1OaHNfPvVY+BfQA4Yp8kSZpVhntJWh573R/s09XlJsBf1G6vh+9hneXVj8h7vr0kSdIA9pIvTYBY0/6kRnlEf7DLa/N3qs3/oDa/85B11O//4YprJEmSNEMM9JLUPIP+YNvV5uvN7n8K/BLYFth3yDr2qS5/AVzUWM0kSZKmlOFemnB2xjf1bCMx2JNq8+d2ZjIzWWjWv3NE7NVr4er2zhH9T1fLSZIkzR2b5EtSe+Yy6EfEwRGx4ZAyhwCPrq5eBHytq8hbgc5P1dsjYtHQedX1t1dXb6rKS5IkzYV6sDfcS1K75rXp/qHAWyLiE5QAfyGlaf5mwL2BZwAPrMquA56bmYt+ojLz/Ij4T+CVwO7AaRHxpmpdOwGvAO5XFX9zZv54rI9IkiRplRnopVnRdgd5c3n8eazmNegD3B54bjX183PgbzLzy33ufzWwFfA3lFD/vz3KfAB4zQrqKUmSNJEM9pI0meY16D8MeDjwEGAX4E+ALYC1wK+Bc4DjgGMy87p+K8nMW4BnVy0DngfsAdwB+A1wBvCezPz8GB+HJElSqwz30hywM76pN5dBPzMvpDSxf09D6/sc8Lkm1iVJkjRpDPeSNF3mMuhLkiSpP4O9NOci2j1H3yP6jTPoS5IkyXAvSTPEoC9JkjSHDPaSNLsM+pIkSXPCcC9pJNHy8HqtDuU3Hwz6kiRJM8pgL0nzyaAvSZI0Qwz3klbM4fWmnkFfkiRpyhnuJUl1Bn1JkqQpY7CXNFaeoz/1DPqSJElTwHAvSRqVQV+SJGkCGewlSctl0JckSZoQhntJE8HO+KaeQV+SJGkVGe4lSU0z6EuSJLXIYC9p4kW03BmfR/SbZtCXJEkaM8O9ND9uuSVXuwqSQV+SJKlpBntpftw8i8Hec/SnnkFfkiSpAYZ7aT7MZLDXzDHoS5IkLYPBXpoPBntNI4O+JEnSiAz30uwz2EMQRKvN6W263zSDviRJ0gCGe2m2Gew1iwz6kiRJNQZ7abYZ7EcQ7R7RTzvja5xBX5IkzT3DvTS7DPaaRwZ9SZI0dwz20mwz3GveGfQlSdJcMNxLs8tg37Cg3f7xbLnfOIO+JEmaSQZ7aXYZ7KXBDPqSJGlmGO6l2WSwb1e03Blfu0P5zQeDviRJmloGe2k2GeyllTHoS5KkqWK4l2aPwX6yeER/+hn0JUnSxDPcS7PFYC+Nl0FfkiRNHIO9NHsM91J7DPqSJGkiGO6l2WKwn1423Z9+Bn1JkrQqDPbSbDHYS5PDoC9JklpjuJdmh8F+dnlEf/oZ9CVJ0tgY7KXZYbCXpodBX5IkNcpwL80Gg/0ci2pqc3tqlEFfkiStiMFemg0Ge2l2GPQlSdKSGe6l6Wewl2aXQV+SJA1lsJemn8Feo7Izvuln0JckST0Z7qXpZrCX5pdBX5Ik/YHhXppuhns1IaLdo+we0G+eQV+SpDlmsJemm8FeUi8GfUmS5ozhXppeBnu1IWj5HH3H12ucQV+SpBlnsJeml8Fe0nIY9CVJmkGGe2k6GewlNcGgL0nSDDDYS9PJYK9J5PB608+gL0nSlDLcS9PHYC+pDQZ9SZKmhMFemj4Ge02lqKY2t6dGGfQlSZpghntpuhjsJU0Cg74kSRPEYC9NF4O9ZlLL5+jjOfqNM+hLkrTKDPfS9DDYS5oGBn1JklpmsJemi+Fe0rQx6EuS1ALDvTQ9DPaadw6vN/0M+pIkjYHBXpoeBntJs8agL0lSQwz30nQw2EuDeUR/+hn0JUlaJoO9NB0M9pLmjUFfkqQlMNxLk89gL2neGfQlSRrAYC9NPoO91LCopja3p0YZ9CVJ6mK4lyabwV6SBjPoS5LmnsFemmwGe6lddsY3/VoN+hGxHrArsD2wJbAFcD1weTWdm5m/brNOkqT5ZLiXJpfBXpJWZuxBPyLuBjwF2A/YC9hoSPkLgVOB44HjMnPduOsoSZp9BntpchnspcniEf3pN7agHxFPBP4eeGDnphEXvSuwE3AwcFVEfAB4e2Ze3HglJUkzzXAvTSaDvSSNV+NBPyKeALwe2IWFcL8WOAc4HTgLuAz4HXAF5Qj/7YHNgbsDewB7AjsAtwNeArwoIj4IvNam/ZKkfgz20mQy2EtSuxoN+hFxIrAvJeCvBT4HHAUcv9Qm+BFxV+DpwNOAewD/B3h6RPx1Zh7XZL0lSdPLcC9NHoO9NN2ClpvuO75e49Y0vL79gN8Crwa2zswDMvPY5Zxnn5kXZObrMnMXYB/gy8BtgN2arLAkabqsvWnxJGn13XxLLpokSaur6ab7rwDekZnXNbnSzPwa8MiI2AO4Q5PrliRNPgO9NFkM89JsszO+6ddo0M/MNze5vh7rP2Oc65ckTQaDvTR5DPeSND3GPryeJEmjMNxLk8VgL82xYPQx05ranhpl0JckrQqDvTRZDPaSNDsmJuhHxGOBJ1POwf8p8L7MPHt1ayVJapLhXpocBntJml2tBP2IeAhwNGXIvftk5pVd978eeFXXYs+JiGdl5lFt1FGS1DyDvTQ5DPaSRhXRbgd59sXXvKaH1+vn0ZQj9d/sEfLvQwn5nTNBrqwu1wfeGxF3aqmOkqQGOPSdNBkc8k6S5ldbQf9BQAJf6nHfCyjB/grg/pm5BbAn8DtgQ+D546hQROwWEa+KiM9HxCURcUNEXBMR50fE4RHx4BHWcXBE5IjTweN4HJK02hzXXpoMBntJTekMr9fmpGa1FfS3ri7P63HfYyg7Ad7ROSc/M88EDqPsAHh405WJiFOAs4A3AI8Ctgc2ADYB7gYcBHw1Ij4cERs0vX1JmnYGe2n1GewlSf201RnfVtXlVfUbI2InYDtK0P9k1zKnVpd3HUN9tqsufwl8rNrWxcB6wN7AS6syz6Q8R08fYZ2PrNbXz8+XW1lJWm0Gemn1GeYltabto+we0W9cW0G/88rdtuv2TvP4qzLznK77fltdbjyG+pxH6RfgE5l5c9d934yII4HTgLsDT4uId2Xmqd0r6XJ+Zl7UfFUlqX0Ge2n1GewlScvVVtP9X1WXu3Td/sjq8rQey2xSXV7RdGUy8zGZeUyPkN+5/zeUo/odBzRdB0maNDbHl1aXTfElSU1pK+h/k3JU/wURsTFARNwFeBz9O+m7e3X5qx73teHk2vxOq1QHSRobO9GTVpfBXtLEilWY1Ki2gv77q8v7AN+LiI9Twv+GwPXA//RYZp/q8gfjr15P9U74blmlOkhSowz20uox2EuS2tLKOfqZeWJEvBV4MbAjcCcW9tv8Q9VU/g8iYkMGH+1vw761+V6jBXQ7PCJ2ATYHfg9cAHwZeFdm/mK5lYiI7YcU2XrI/ZLmmIFeWj2GeUnTqu0h7xxer3ltdcZHZr4kIk4EnkQJp5cCH87ME3sU/0tKWL6KVQj6EbEGeGXtpmNGWKy+Y2CLavoz4KUR8eLMfM8yq3PJMpeTNKcM99LqMNhLkiZFa0EfIDOPA44bodwxjBaux+UQYM9q/tjMPHNA2Z9Qhgb8Bguh/C7AEymd+G0IvDsiMjPfO6b6SppjBntpdRjsJWn6RMQdgf8L7A/cEbiB0hr7GOCdmXndCta9O+UA8B7AnwJbArcH1lGGYv8mcHhmnrSSxzCKVoP+NIiIfYF/r65eBrxgQPFjgSMys/uX/gzg6Ih4DGUnwK2A/46Iz2TmUjsX3GHI/VtX25M0Rwz3UvsM9pLmxaw23Y+I/YGjWDzs+8aUYL4H8JyIeHRm/mSZm3gr8MAet29A6Wz+7sCBEfEx4MDMXLvM7Qy1akE/yqt5e8oT+8t+Q921KSLuSQnv61P27Dw5M3/dr3xmXjVofZl5XES8FvhXyuN8NvCGpdQpM38+pM5LWZ2kKWWwl9pnsJek2RER96Uctd8YuAb4N+AkYCPgqcBzgXsAx0fEHpl5zTI2cwNwCvB14IeUEeR+Szmyf1/g+cCdKaez31JtdyxaDfoRsR5wIPAsyh6TDSgd7t2HWu/61ZHwfYCrMnNJwXgFdbszcAKlM72bgadl5ikNrPp9wOspnQ/uyxKDvqT5ZbiX2mWwl6QiaPmIfjvj672VEvJvAh6Rmd+o3XdiRPwY+A9gZ+AlwOuWsY1HZma/f3BfjIi3A18B9gaeEhFvyMxzl7GdodoaXo+I2Ao4lTLU3oOAW9N/1MSfAi8DXhcRu7ZQt20pPeRvS9nx8DeZeWwT687My4DOqALbNbFOSbPJce2ldjncnaRxWLPGFreTJiL2AParrn6gK+R3vIVyFB7gxRFxq6VuZ0DI79x/PfC22k379Cu7Uq0E/aoX+88Ae1GC9DHA3/Urn5nfp3RuB/CEMdftDpSe/e9S3fSizPxw05tpeH2SZoTBXmqPwV5S09ZbE380zYLOOfptTmP2+Nr8h3oVyMxbgE4O3JyFHQNNu7Y2v+GYttHaEf0DKb3Y3wjsn5lPzcx3Dlnms5SA/KBxVSoibgt8kdIjIsArM/MdDW9jK8pQe1B6WpQ0xzxqL7XHYC+pabMY6ufEg6vLa4GzBpSrn7o9rhz6tNr8eWPaRmvn6D+NciT/PZn5xRGXObu6vMc4KhQRGwPHA7tVN70hM980hk09j4Uj+k2c8y9pihjmpfYY5iU1ySC/arYedoR/WIflPexSXV4wpHl9PXjv0rfUElSt27cE7gm8iIXWBT+iHHQei7aCfuc8+88sYZnLqsstBpZahojYgNK7fmfog7dl5muWuI4dgc0z8+wBZR4D/FN1dS19molImi2Ge6kdBntJTTLY1/TrSW2c21swytDhI9cuIjYE7lBdHbiDIDOviIhrgU0YPsz5sO1eBNypz90/A5447Jz+lWgr6N+uurxsYKnFOp0f3NJwXQA+Cjyimj8R+EBE3GtA+XWZeX7XbTsCJ0XENyinGZxDeXxBOd//gGrqvAlflpm/aKb6kiaJwV5qh8FeUlMM9XNls9r8KEPmdYL+pmOoy02U3vzflpm/H8P6/6CtoH8FpbnCUo7Od5rsX958dfir2vxDge8OKf8zSrDvZe9q6uc64JDMfO/ItZM08Qz30vgZ7CU1wVC/dC11kLdoezV7UMafb0q9w7t1I5S/obrcaIXbfQRlOPk1lBz8QOAFwGuAu0XE32bmKDselqWtoP8DyhjyDwJOGnGZp1PO6x/UWcJqOgv4a0rI3x3YhtIkZH3Kjo3vU8ZIfH81xJ6kKWawl8bPYC+pCQb7qferZZyDP8ja2vwGI5S/dXV5/Uo22qNF+EkR8Q7KefnPBO4bEQ/KzKtXsp1+2gr6n6EMT/C3EfGOzPzdoMIR8SzgkZSg38h49nWZueJPf/WCHFVNkmaQ4V4aL4O9pJUy1I/HKh/Rb1o9SI/SHH+T6rLxo+1VHwAHUQ6E3wf4R+BVTW8H2hte7z2UoeW2Ar4UEffsVSgidoiItwPvo4T8HwP/01IdJc05h76Txsvh7iStlMPbaakycy3wm+rq9oPKRsTmLAT9S8ZUnx9Sci6UPt3GopUj+pl5fUQ8gdLx3a7AdyPiR7Ui746ILYG7V9eDsuflgMwcR2d8kgQY6KVxMsxLWgmDvBr0Q+DBwF0jYv0Bvd3v3LXMuFwO3I3+vfKvWFtH9MnMM4AHAN+jBPn6k/hASud7nYEcfgg8MDO/11b9JM0Hj9pL4+MRe0kr4dH6yRHR/jRmX6suNwHuP6DcvrX508ZXHbarLqe+Mz4AMvNcSqcD+wOPo3RitxWwHvBb4GzK+fyf8Ei+pCYY5qXxMcxLWi6DvFr2Kcr58ADPAr7VXSAi1gAHVlevZPRO5JckIvZg4Uj+uePYBrQc9Dsy83jg+NXYtqTZZ7iXxsNgL2k5DPXTpxxlb7MzvvGuPzNPj4hTKc33nx0RR2TmN7qKvRTYpZp/W2beuLiOcTDwoerqazPz0K779wRuysxv96tHRGwHHFG76cilPpZRrUrQl6QmGeyl8TDYS1oOg70m1N9TmuNvBJwQEW+kHLXfCHgq8Lyq3PnAW5ax/j8FPhQRXwc+C5xDORcfSlP9h1BaE9y2uu3LLOw4aJxBX9JUMtxLzTPYS1oqQ/2Maue8+UXbG7fMPDsingJ8BLgN8MYexc4H9l/h2PYPqKZBDgdeOM7T1VsP+hHR2ZOxN7A1ZQ/KfTLzB7UyDwbuDfw+Mz/Sdh0lTR6DvdQ8g72kpTLYa5pl5mcj4j6Uo/v7U4bbWwdcAHwMOCwzr1vm6o+mDCn/UErQ347SH90GwO8pQ+qdBhyZmd9dyeMYRWtBPyI2ppyP8Fedm6rLXv8ybgYOAzIivpWZP+5RRtKMM9xLzTLYS1oKQ71mUWb+DHhJNS1lucMpR+L73X89cEI1rbrWhtej7OH4K0rAPwP4z34FM/PrLPRA+MTxV03SJHDoO6lZDncnaVTdQ9sZ8udbRLQ+qVmtBP2IeAKlaQTA8zJzr8x8+ZDFPknZKbDvkHKSppTBXmqWwV7SqAz10mxrq+n+QdXlRzLz/SMuc1Z1ucvAUpKmioFeao5hXtIoDPJaqqDdzvh8hzavraC/B+Vc/KOXsMyl1eWWzVdHUlsM9lJzDPaSRmGwl9RW0N+iuvzFMpZtsx8BSQ0w3EvNMNhLGsZQr3FYsyZY0+J7q81tzYu2gv7VwO0p4xWOaqfq8rfNV0dSkwz2UjMM9pKGMdhLGkVbR8s7w+PtuYRlOr3tf6fhukhqgJ3oSStn53mSBrEnfEnL1VbQ/xylj4W/jYgNhxWOiEdRgn4Cx425bpJGYA/50soZ7CX1Y6jXJIlof1Kz2gr6hwFXAjsCn4yILXoViogNI+KllKH11gC/Aj7UUh0l1RjspZUz2Evqx1AvaZxaOUc/M6+MiL8GPg08Erg4Ik6pFfmniLgd8EBgE8rR/xuBZ2Tm2jbqKMlAL62UYV5SLwZ5TZuIIFo8zN7mtuZFW53xkZmfi4hHA0cCWwGPojTNB3hyddl5hX8DPC0zT26rftI8MthLK2Owl9TNUC9pErQW9AEy80sRcRfgWcDjgN2B21V3XwecDXwGeHdmXt1m3aR5YbiXls9gL6mbwV7SJGo16ANk5nXAO6qJiFgfWC8zb2i7LtI8MNhLy2ewl1RnqNe8aLuDPFvuN6+VoB8R+1Szl2bmj+v3ZeZNgFFEapDhXloeg72kOoO9pGnV1hH9kynn4z8b+PHgopKWymAvLY/BXlKHoV5aYGd806+toH8NpTf9c1vanjTTDPbS8hjsJYGhXtLsayvoXwzsAmzc0vakmWO4l5bOYC8JDPbSkrV8RN+T9Ju3pqXtHF9dPryl7UlTb+1NiydJw918Sy6aJM2f9dbEH02SNG/aCvr/DfwOeHFE3KulbUpTx2Avja471BvspflkqJekP9ZK0M/MXwGPAa4GTouIV0XEjm1sW5pkHrWXRmeol+TReqkdneH12pzUrLaG1/tJNbsBsBnweuD1EXENcCVw84DFMzN3GnMVpVYY5qXRGeal+WaIl6Tla6szvh27rne+uTerpkH8p6epZriXRmOwl+abwV6aHEHLw+vh579pbQX9I1rajrTqDPbSaAz20vwy1EvSeLUS9DPzWW1sR1othntpOIO9NJ8M9dL0afu8ec/Rb15bR/SlmWKwl4Yz2EvzyWAvSavPoC+NwGAvDWewl+aPoV6SJpNBX+rDcC8NZrCX5ouhXpofES13xmfb/ca1NbzegctYLIG1wFXAjzPzp83WSlrMYC8NZrCX5ovBXpKmV1tH9A9nhcPkRcTllN7735SZv2uiUppvBntpMIO9ND8M9ZLq7Ixv+q1pcVuxwmkr4GXAuRFxnxbrrRmy9qaFSdJiN9+SiyZJs2u9NbFokiTNlraO6N8ZuB3wbuDPgG8DRwJnApdXZbYEdgeeCewGfAv4W+AW4F7A04BHA9sAx0fEzpl5bUv115Qy0Ev9Geal+WCQl7RUnqM//doK+r8Ejgb2AF6amf/do8z5wGnA2yLipcCbgfcCD8zM7wBHRcSzgfcB2wL/B/ivNiqv6WK4l3oz2Euzz1AvSYL2mu6/ENgTOKpPyF8kM98CHEU5sv/3tds/AHya0pT/L8dTVU2benN8Q760wKb40uyzCb4kqZe2gv4zKJ3xfWQJyxxJCfRP7br9f6vLXRqol6aQwV7qzWAvzbbuUG+wlzQunc742pzUrLaa7t+1urx8YKnFOmV36rr9wurydiuqkaaKgV76Y4Z5aXYZ4iVJK9FW0F+vurwbcPaIy3R2DnT/0t1SXV690kppchnspcUM9dJsM9hLmiTlKHubnfG1tqm50VbT/fOqyxfFCO+YiFgDvLi6+qOuu+9UXS6ldYCmgM3xpQU2w5dml03wJUnj1lbQP4pyZP4BwMcjYst+Bav7Pg7sTTmv/8iuIvtVlz9svppqk+faSwsM9tJsMtRLmkptn5/vV2Pj2mq6/w7g6ZTh9R4PPCoivgCcBVxWldkK2B14JLBhddvpwDs7K4mIDSmd8yXwhVZqrsYY5qUFhnlpNhnkJUmToJWgn5k3RcQjgKOBRwAbUQL/43sU7/xCngA8JTNvrt13e+Dl1fxnx1RdNchwLxUGe2n2GOolSZOqrSP6ZOZVlCP5TwCeB+xDCfx1a4GvAu/JzGN7rOOXwBHjrquWz2AvFQZ7abYY6iXNk4houTM+v2Ob1lrQ76gC/LERsR5l6LzNq7uuAC7sOoKvCWewlwqDvTRbDPaSpGnWetDvqAL9+au1fS2f4V4y2EuzxFAvSYsF7Q5557dw81Yt6Gt6GOwlg700Kwz1kqR50HrQj4jbAAdQhs/bGtgY+JvM/FmtzLbA7YC1mfmTtusow71ksJdmg8FekjSPWg36EfFC4A3AZp2bKEPlbdJVdF/gKGBtRGyfmb9rr5bzyWCveWewl6afoV6SmmFnfNNvTVsbiohDgf8H3AZYB5w1oPjRwKXArYEnjr1yc2jtTYsnad7cfEsumiRNl/XWxB9NkiSpaCXoR8T9gH+qrn4E2Doz9+xXPjNvAT5GOeL/5+Ov4Xww2GtedYd6g700fQz1ktSeiPYnNautI/ovooT2b2TmgZl51QjLfKO6vPf4qjXbPGqveWWol6abR+slSVqZts7R35dyLv5hS1jmoupyu8ZrM6MM9JpXhnlpehniJWnyeI7+9Gsr6G9TXf5oCcvcUF3euuG6SJpyBntpehnsJUkav7aC/jpKYL/VEpbp7By4svnqSJomBntpOhnqJc2bG268hXU33rLa1ZBaC/o/B3YB7gmcPuIyj6guLxhLjSRNLIO9NH0M9ZLmzQ0zHOhtuj/92uqM70RKZ3zPGqVwRNwFeDblvP4vjbFekiaAnedJ08fO8iTNixtuvKXnJE2ytoL+YcBNwAMj4tBBBSNid+AEYFPKefrvGXvtJLXKYC9NF3vBlzQvDPSFw+tNv1aa7mfm+RHxeuC1wD9FxF8An6gVeVREPJbSXH+/zmLAKzPz0jbqKGl8DPPS9DDES5oX8xriNR/aOkefzHx9RNwKeIIwa0UAACAASURBVBWwB7A7JcwDvLlWNKrbX5eZ/6+t+klqjsFemg6GeknzwEC/dJ6jP/3aaroPQGb+M7AX8Engekqor083Ap8HHpyZr22zbpKWp7sZviFfmlw2v5c062x6LxWtHdHvyMwzgQMiYn3gT4GtgPWA3wLfz8zr266TpNEZ5KXpYJCXNMsM8NJgrQf9jsy8Cfjuam1f0mgM9tLkM9RLmmWG+lXQdgd5/ow1btWCvqTJZLCXJp/BXtIsMtBLzZnboB8RuwGPAh4M3ItyCsGNwC+BrwMfyMxTl7C+RwHPA/YEtgQuB04H3puZX2i29lJzDPbSZDPUS5pFhvrJZmd806/RoB8RH2xyfZXMzGc3ucKIOAXYp8ddGwB3q6aDIuJI4DmZuW7AugJ4NyXk120HPAF4QkS8F3h+ZpqotOoM9tLkMtRLmjUGeml1NH1E/2AWhsxrQmeovUaDPiWEQzl6/zHgVOBiSqeAewMvrco8k/IcPX3Auv6VhZB/NvAfwIXATsDLgftV918OvKbJByGNwmAvTS6DvaRZYqifHUG75+j7a9i8poP+xQwO+htTmrV3rAN+R3ltN6ccUadax2+A6xquX8d5wKuAT2TmzV33fbM6kn8acHfgaRHxrl7N+CPirpQwD3AmsE9t1IAzIuIzwCnA7sArIuJDmXnhGB6P9AcGe2kyGeolzQoDvTT51jS5sszcMTPv3GsCnghcC9wEvAvYA9gkM7fNzG2ATSiB+F3AzVXZJ1bLNiozH5OZx/QI+Z37f0M5qt9xQJ9VHcLCzpIXdQ8NmJnXAS+qrq4PvHj5tZZ6cwx7afJ0j1dvyJc0rRyXXppOrXTGFxHbAJ8Dbgs8MjNP6i5The5vA9+OiGOALwCfi4j7ZealbdSzy8m1+Z2676zOzX9cdfW8zPxmr5Vk5jcj4kfAPYDHR8T/9Vx9LZdBXpo8hnhJs8AAr7o1Eaxpse1+m9uaF40e0R/gZZRe7d/aK+R3y8xTgLdWy/zDmOvWzwa1+V7ffHdm4Vz/U4asq3P/9sCOK6uW5olH66XJ45F6SdPOo/TS7Gsr6D+Gct798UtYplN2/+arM5J9a/Pn9bh/lyH30+f+XfqW0twz2EuTxSb4kqZZr0BvqNcoItqf1KxWmu5TjmQDrF3CMp2y2w8sNQYRsQZ4Ze2mY3oU26E2//Mhq7ykz3Kj1GXY4996KevTZDHMS5PDEC9pmhngJdW1FfSvBTakdMB35ojL7Fldjqvn/UEOqW3/2MzsVefNavPXDFnftbX5TZdYl0uGF9G0MNhLk8NgL2kaGegljaKtoH8m8CjgVRHx8cy8fFDhiNgK+P/s3XmYZVV97//3t5qmoQG1AZGAIgKJoFFDpJ0VVEQDDmj0iolRJo3mxmiUn+g1XhETZ1RijIkGGRSnqIhcFAFBVERtpygCAWSeIYAy9kB/f3/sXd2ni6o6Q+2zzvR+1bOfPa291yq6qa7PWWuv/Xaq4f4rCrSvte49gffXuzcBr5+j6CYt26va3HZly/amPTZNI8hgLw0HQ72kUWSo16BEBFFwPH3JuiZFqaD/L1RBfzvgxxHxZuAbmbnBT696yPwLgI9QTXSXwD8XaiMR8WjgJKr/LiuB/5WZN85RvPUxhI3nKDNtScv2PXOWml27of7bUvjDEM3NYC8NnqFe0qgx0EtqWpGgn5nfjIh/Bv4OeDjwVeC2iPgFVa95Ag8B/gTYEpj+Le2fM/O0Em2MiEcApwPLgPuAV9Sz/8/ljpbtdsPxN2vZbjfMfwOZOe/z/376NVgGe2nwDPaSRomhXqNgKqqlZH1qVqkefTLzTRFxNfBuYClVoH/WjGLTf8T3AO/MzI+UaFtEbAecSTXiIIGDM/OkNpe1BvB2E+a19sr7zP2IMtRLg2eolzQqDPSSBqlY0AfIzKMi4rPAq4G9gcdQ9aAD3Ab8mipwH5+ZN5VoU0RsDZwB7FQfekNmntDBpRe0bO/apmzr+Qu7aJ4GyGAvDZahXtKoMNRr7EThkcP+k9+4okEfoA7wH6qXgYqIBwLfBh5VH3pbZn6iw8svB66jGgWwZ5uyz6jX1wJXdNlMFWKwlwbHUC9pFBjoJY2KqUE3YFAiYilwKvCn9aF/yswPdHp9ZiZwcr27a0Q8aY56nsT6Hv2T6+s0BO5bmxsskspZNBUbLJI0bFauXnu/RZJGxUQG/YjYmGp2/afWh47OzH/o4VYfA9bU2x+PiA1enVfvf7zeXVOX14AY7KXBmBnqDfaShslsgd5Qr0kXUX5Rsxoduh8RSzPz7ibv2ac6vgDsU2+fBRwTEX88T/lVmXnxzIOZeXFEfBh4G7AHcG5EfAD4LbAzcDiwe138Q5l5yQLbrS4Y5qXyDPGShpkBXtKkaPoZ/cvr4PuJpgN/RDwReBdwHvCeBd7uJS3bzwJ+1ab8lcCOc5x7B7ANcDBVqP/iLGWOAXoZMaAuGOylsgz1koaVgV5amKi/StanZjU9dP/BwPuBKyLiyIh45EJuFhGbRMTLI+J04IfAc5toZJMyc21mHgLsR/XM/nXAqnp9MrBvZh6amf6L0zCH4ktlOfxe0jBy2L0k3V/TPfrPBI4GHkvV0/2OiPg58FXgR8DPMvOO+W4QEbsBTwCeDbwI2JzqhQurqJ5x/+hCG5mZjf+GmpnfBL7Z9H1VMchLZRnkJQ0bA7xUzlRUS8n61KxGg35mnhMRuwMHUAX9RwGPZ/3M9hkRlwE3AbfVy6bAlsAyqufaN2+5ZQD3AsdTzYp/TZPt1fAy2EvlGOolDRtDvSQtTNM9+tOvnfsC8IWI2Bs4FHgBVaAPYBeqQD/TzN80LwA+CxyTmbc03U4NF4O9VIahXtIwMdBLUn80HvRbZeaZwJkRsQR4IvB04CnAQ6me59+Sqsf+5nr5NfB94PuZeWU/26bBMthLZRjsJQ0DA700WiKCKPjOu5J1TYq+Bv1pmbkS+F69aAIZ7KX+M9RLGgaGekkavCJBX5PHYC/1l6Fe0qAZ6KXxFUDJTnZ/q2meQV8LZqiX+s9gL2mQDPWSNFoM+uqawV7qL0O9pEEx0EsCmIpgqmCXfsm6JoVBX20Z7KX+MdRLGhRDvSSNL4O+7sdgL/WHoV7SIBjoJWnyGPRlsJf6xGAvqTRDvaRGRNnJ+JyNr3kG/QlksJeaZ6iXVJKBXpI0H4P+BDDYS80y1EsqyVAvqbSIIAp26Zesa1IY9MeMoV5qlqFeUikGeklSUwz6Y2StIV9aMIO9pBIM9ZKGWRR+Rt8O/eYZ9CVNLEO9pH4z0EuSBmFgQT8itge2BZYCP83MewbVFknjz1AvqZ8M9JKkYVI06EfEFsBhwMHAdi2nHgNc0FLuAOAlwO8y8zUl2yhp9BnqJfWToV7SuJuKYKrgePqSdU2KYkE/InYBvgXsxIZvSpztwfLzgM8CUxFxfGb+oEATJY0gQ72kfjHQS5JG1VSJSiJiCXAqsDNwN/BB4Plzlc/MK4Gz690X9r2BkkbGoqnYYJGkJqxcvfZ+iyRNqhjAomaV6tF/HfCHwF3A0zPzl9D2fYnfAvYGntz31kkaSgZ5SU0zwEuSJkGpoP8SqiH6R0+H/A78ql7/YX+aJGmYGOolNc1QL0maVKWC/qPq9eldXPM/9fpBDbdF0oAZ6iU1yUAvSc2KiHajrxuvT80qFfS3qNe/6+KaTer16obbIqkwg72kphjqJUlqr1TQ/x9gW+AhXVzzmHp9Y/PNkdQvhnpJTTDQS9LgTEW1lKxPzSoy6z4w/Vz+s7u45mCq5/p/3HxzJDVh5gz4hnxJ3ZpttntDviRJC1Mq6H+N6q0Jfx0RD29XOCLeBTyx3v1SPxsmqTOGekkLZaCXpNEw/Yx+yUXNKhX0jwMupHpW/5yI2C82/NPMiJiKiKdHxCnA/6XqzV+Rmd8o1EZJLQz1knplL70kSYNV5Bn9zLwvIl4InAvsAHwDuLulyClUz+8vrfcDuA54WYn2SZPOIC+pVwZ4SZKGT6nJ+MjM30bEnwCfBvYDNqtPBbDTjOKnAwdl5vWl2idNCkO9pF4Y6CVpsjiafrQVC/oAmXkD8IKIeDTwImAPYBtgEdXM/L8ATs7Mn5ZslzSuDPWSemGolyRptBUN+tMy8zfAbwZRtzSuDPWSumWglyTNpvQEeU7G17yBBH1JC2ewl9QpA70kSZPFoC+NAEO9pE4Z6iVJCzUV1VKyPjXLoC8NGUO9pE4Y6CVJ0lwaDfoRcV+T96tlZvqBhMaSoV5SJwz1kiSpG00HaFOLNA+DvaT5GOglScMgouwEec7F17ymg/67G76fNLIM9ZLmY6iXpNG2ZPHUrMc3nuO4VFKjQT8zDfqaSIZ6SXMx0EvS6JorzI+7oOxQbX+Tbp7PvktdMtRLmo2BXpJG16QGeo0vg740D0O9pNkY6iVp9BjmOzcVwVTBB+dL1jUpDPpSC4O9pFYGekkaLYZ5qVIk6EfEq3q4LIF7gd8Bl2Tm5c22SpPOUC+plaFekkaHgV6aX6ke/eOognvPIuJm4HjgA5l5axON0uQw1EuaZqCXpNFgmB+c6vV6ZetTs0oO3V/oH982wGHAKyPizzLzVw20SWPIUC8JDPSSNAoM81J/lAr6jwAeBPwb8ETg58BngZ8CN9dlHgzsAfwV8KfAj4G/AdYCfwy8AtgX+APg1IjYNTPvKtR+DSlDvSQw1EvSMDPMj6AIwi79kVYq6F8HfAlYDrwlMz86S5mLgXOBoyPiLcCHgE8BT83M/wJOjIhDgE8D2wF/DXykROM1PAz20mQz0EvS8DLQS8Oj1P+N/xt4AnDiHCF/A5l5FHAiVc/+G1uOHwOcTPUYwAv701QNi0VTcb9F0uRYuXrt/RZJ0mAtWTw15yKNgojYISI+HBEXRsRdEXFrRPwkIg6LiKULvPcDIuKAiPh0RPw8Im6PiFURcXNEfLeu40FNfS/zKdWj/5dUk/F9rotrPltfdwBV7/60LwIvAnZrrHUaOEO8NLkM8JI0XAztGtfJ+CJiP6oO5Qe2HF5KNfJ8OXBoROybmZf1cO8/A04Clsxyemtgz3o5LCJekZlnd1tHN0oF/V3q9c3zltrQdNmdZxz/bb0u8kmImmeolyaTgV6ShouBXpMkIh4HfJkq2N8JvA84G9iUqnP5NcAjqeaDW56Zd3ZZxVZUIX8tcAZwGvBfwO3AQ6k6sV8OPAT4fxHx1Mz85UK/r7mUCvqL6vUfAr/o8JrpDwdmpsLp3xTvWGij1H+GemkyGeolaTgY5tWLqQimCnbpF6rrY1Qhfw2wT2ae13LurIi4BPggsCvwZuDILu+/Gvh34L2ZedWMc78ATomIc4F/rttxFPDsrr+LDpX6P/+iev2G6GD6xoiYAt5U7/73jNMPr9fdjA5QIT5TL02W2Z6jN+RLUlk+Ny/NLyKWA3vVu8fMCPnTjgIurLffFBGLu6kjM7+Uma+bJeS3lvk41ZvnAPaKiK26qaMbpf7vP5GqZ/4pwFci4sFzFazPfQV4MtVz/Z+dUWSven0hGigny5Mmi4FekgbHMK+Spp/RL7n02f4t28fOViAz1wIn1LvLWJ87m/bdej1F9Rr6vig1dP8TwF9QTXCwP/C8iDgN+BlwU11mG2AP4LnAJvWxnwD/On2TiNiE6vmJpHrmQYUY4qXJYYCXpMExuEt98fR6fRdVBp3LOS3bT6N61r5prZP19e2XriJBPzPXRMQ+wJeAfagmPNifDT9ZmTadKE8HXp6Z97Wc2xJ4a719Sp+aO/EM9dJkMNBL0mAY5qV5bdvuae/MvKbLe06/se3SzFwzT7mLWrb79Za3Pev1GuDSPtVRrEefzPwdVU/+i4HXAs+gCvyt7gW+B/x7Zp40yz2uA47vd1sniaFemgyGekkqyzCvURYEHUyt1mh9LVZ0dEmn965GhW9d7877AUFm3hYRdwGbAQ/rtI4u2rIf8Nh699uZ+fum65hWLOhPqwP8SRGxiOrVecvqU7cBv53Rg6+GGeyl8Wagl6RyDPPSSNiiZbuTV+ZNB/3Nm2xERGxJ9Ug7wH3AO5u8/0zFg/60OtBfPKj6J4GhXhpfBnpJKsdAr0kzRblZ26fra7EcuKHB22/Ssr2qg/Ir6/XM0ec9qzu5T2T9G+T+MTM7fe18TwYW9NW8KWe+l8aSoV6S+s8wLw2NG3p4Bn8+97Zsb9xB+enJ8u5psA3/Cjyv3j4VeE+D956VQV+ShoSBXpL6yzAvdSai8DP6/a3rjpbtTobjb1avOxnm31ZEvI9qjjqAHwAvK/G4etGgHxFbAa+ker3BTlTPSyxqc1lm5s79bpsklWSol6T+MMxLapWZ90bELVQT8j10vrIRsYz1Qf/qhdYdEYcDb6t3fw48PzObHCkwp2JBPyJeBnwKeMD0oQ4vzf60SJL6z0AvSf1hoJfUhQupOpt3iYiN5nnF3q4zrulZRPwN8P6Wez23fhNdEUWCfkQ8Efg81TwLAVwH/AK4FfC3YEkjz0AvSc0zzEuDEQElp/4q8JTAD6iC/mbA44Efz1Fuz5btc3utLCL+CviXevcyYO/MvKXX+/WiVI/+4VRD9O8BXpOZny9UryQ1zlAvSc0xzEsq4OvA2+vtg5gl6EfEFPCqevd24OxeKoqIlwDHUnVwXwM8OzOv6+VeC1HqJ+tTqIbgv9+QL2lUrFy9dtZFktSdJYun5lwkDZ+pKL/0U2b+BPh+vXtIRDx5lmJvAXart4/OzNWtJyPiwIjIejlitnoiYh/gC1Sd3DdR9eRf0cC30LVSPfoPqtffLlSfJHXM8C5JzTC4Sxpib6Qajr8pcHpEvJeq135T4ADWz4x/MXBUtzePiCcBJ1G9wm818PfA4oj443kuuyYzb++2rk6UCvrXAzvgxHqSBsxQL0kLY5iXxt+YvV4PgMz8RUS8HPgc1QTx752l2MXAfpl5xyzn2nkesLTeXgyc2ME1BwHH9VBXW6V+Up9Zrx9fqD5JE85h95LUO4faSxpHmXkK8Fjgo1Sh/m6q5/F/SjWv3O6ZeengWticUj36RwGvAA6LiBN7/IREkmZlgJek7hnaJU2izLwSeHO9dHPdcczT+56ZRwBH9N6yZhUJ+pl5Uf2KgROBMyPi4Mz8TYm6JY0PA70kdc9AL6lbJSbIm1mfmlUk6EfEZ+rNC4HlwK8i4tfARVTDJeaTmXlIP9snabgY6CWpO4Z5SVKrUkP3D2T9RHxJ9U7Bx9TLfKIu33jQj4htgCfUy/J62ao+fXxmHtjBPQ6kekdiJw6qh3tIamGol6TOGOYllRJRLSXrU7NKBf2rGL4Z928cdAOkSWKgl6T2DPOSpCaUekZ/xxL1LMDVVI8V7LOAezwXuG6e89cs4N7SyDDQS1J7BnpJwywimBqz1+tNmlI9+sPoSGAFsCIzb4yIHYHLF3C/izPzigbaJY0MQ70kzc0wL0kalIkN+pn5rkG3QRoVBnpJmp1hXpI0jCY26Eu6PwO9JN2fYV7SpJmql5L1qVkDC/oRsQhYBmxKNbv+nDLzqiKNkiaIoV6S1jPMS5LGSdGgHxFbA28A9gceRWcf3iSjMfLguIjYjerDi98DlwJnAp/MzGsH2jJNtFVr1pLD9s4LSRoQA70ktefr9UZfsQAdEU8BvgY8mDY9+CNqz5btrerlicBbIuJNmfnvvdw0Ih7apsi2vdxX42fVGnvoJQkM85IkFQn6EbEVcDJV+L0T+A/gduAIqh77Q6l6wvcAXgRsApwLHFOifQt0GdUHGOdRvaYPYCfgz4GXUn0v/xYRmZmf6uH+V7cvokljqJc06QzzkiTNrVSP/t9ShfyVwJMz8zcR8WiqoE9mHjtdMCK2BT5P1UN+XmYeXqiNvTgJOD7zfgOjVwBfiojnU30IsBj4aER8IzNvKN1IjS4DvaRJZpiXpMGYIpgqOJ5+aiwHfA9WqX9B/4yq5/4zmfmb+QrWQXg/4LfAYRHxrALt60lm/m6WkN96/v8B7653lwKH9FDNw9osy3u4p4bMqjVrZ10kaRIsWTw16yJJknpT6l/RXer1mS3H1gXkegb+9Scy7wE+SvUs/+v63rr++jTrv9c95ys4m8y8Zr4FcITAiDHQS5pEc4V5A70kDZ/pyfhKLmpWqaH7D6jXV7Ycu7dlewuqZ/Zb/bReP7FfjSohM2+KiFuoJiHcftDtUTkGeEmTxtAuSdJwKBX07wQeOKO+W1u2dwR+OeOaTer1Nv1rVjF+RjXGDPSSJolhXpLG31RUS8n61KxS/1pfWq93mD6Qmbezftj5M2e55in1+q4+tqvvImIbqokIAa4bZFu0cA67lzQJHGYvSdJoK/Uv9o/r9cyJ406j6u1+a0T80fTBiHgC8FaqZ9tXFGlh/7yW9T365wyyIeqck+NJmgSGeUmSxlOpf82/TRV2XzLj+EeANVTD88+PiBUR8RvgXGBZXeboQm3sSkTsGBG7tynzfOCd9e69wLHzFNcAGOgljTt75yVJ3YqAqYhii5PxNa/UM/rfBk4AFkXEIzLzcoDMPD8iXg98sm7L42dcd0RmntaPBkXE01j/NgCArVu2d4mIA1vLZ+ZxM26xI3B2RJwHnEI1x8BNVB9o7AS8tF6m/9oelpnXNtR89cAAL2lcGdolSVKrIkE/M1cDB85x7piI+EF9/tF1my4BPpuZP53tmoYcCrx6jnNPrZdWx81R9sn1Mpe7gb/PzE911Tr1zEAvaRwZ5iVJpZR+5Z09+s0r1aM/r8z8b+Dtg25Hl34GvJIq5O8B/AHVqICNgNuA3wDfAf4jM28aVCPHmYFe0rgxzEuSpCYMRdAfhMw8kDlGGXR4/R3AifWiPjPUSxonBnpJ0jDz9Xqjb2KDvoaTgV7SuDDMS5KkQTHoayAM9JLGgWFekiQNI4O++s5QL2mUGeYlSZMm6q+S9alZBn01xkAvaVQZ5iVJ0jgx6KtrBnpJo8pAL0lSe07GN/oM+pqXoV7SqDHMS5KkSWfQF2CglzRaDPOSJPVPFO7RD3v0G2fQnzAGekmjwjAvSZLUG4P+GDPUSxp2hnlJkqTmGfTHyOo1aw33koaOYV6SpNESEUTB8fQl65oUxYN+REwBjwJ2ArYAFrW7JjNP6He7JEkLY6CXJE2CW+5YNe/52+6c/7xUQrGgHxGbAv8AvAbYqotLEzDoS9IQMMxLksZZuxA/KaYo/Hq9clVNjCJBvw75ZwFPAByXIUlDzDAvSRpXBnlNilI9+n8PPLHePh/4F+BnwK2AD5VLUmGGeUnSuDHENyei7CvvfES/eaWC/svr9Q+BZ2Wm/xdKUp8Z5iVJ48QgL3WuVNDfmepZ+w8a8iWpOYZ5SdI4MMRLzSoV9FcBmwJXFapPksaKgV6SNMpuuWPlPGcdtz1spiKYKjievmRdk6JU0L+I6hn9bQvVJ0kjxzAvSRpF84d4SYNQKugfBzwJeBlwWqE6JWnoGOYlSaPGID95pqLw6/Xs0G9cqaD/aaoJ+V4VEWdm5hcK1StJxRnmJUmjwhAvjadSQf9hwBuATwGfi4gXA5+nGtJ/d7uLM9Nn+yUNFcO8JGkUGOSlyVQq6F9BNes+VLNt/Hm9dCIp105JWscwL0kaZoZ49U0Ufre9Q/cbVzJAxxzbkjRQBnpJ0rAxxEtaiFJB/6BC9UjSrAzzkqRhYpDXMJsimCrYN1uyrklRJOhn5vEl6pE02QzzkqRhYIiXNGg++y5ppBjmJUmDZpDXuIvCz+gXnQ9gQhj0JQ0dw7wkaVAM8ZLGwUCCfkQ8BNgL+GNgy/rwrcD5wHcz88ZBtEtSOYZ5SdIgGOQlTYKiQT8i/gD4CPCSeeq+LyK+ArwlM68v1jhJfWGglySVYoiXmjEV1VKyPjWrWNCPiMcBZ1L14M/3R7kR8HJg74h4dmb+ukT7JPXOMC9JKsEgL0mdKRL0I2Iz4FRgq/rQmcCngR8DN9THtgWeABwK7ANsDZwaEbtm5t0l2ilpboZ5SVI/GeKl4TEVwVTBGfJK1jUpSvXo/y2wHbAW+OvMPGaWMlfVy1ci4mCqDwK2B/438KFC7ZQmmmFektQPhnhJKqtU0H8RkMBxc4T8DWTmZyLiKcDBwIsx6EuNMcxLkppmkJfGi6/XG32lgv4f1esvdnHNF6iC/h+1KyhpQxtvZJiXJDXj5t9vGOL9hVyShl+poL95vb61i2tuq9ebNdwWaSwY5iVJTZgZ5CVJo69U0L+Z6hn93YCfd3jNbvX6lr60SBoRBnpJUq8M8ZJ6EZSdjC/mfSmbelEq6P8I+HPgzRHxpcxcM1/hiFgMvIXquf4fFWifNFCGeUlSLwzykqTZlAr6J1AF/T+hemXeQZl53WwFI2J74DN12QSOK9RGqa8M85KkbhjiJQ2Kk/GNviJBPzNPiYivA/sDewOXRcQZwI+BG6kC/bbAE4HnAIvrS0/KzFNLtFFqgmFektQJQ7wkqZ9K9egDvIKqZ/9lwMbAvvUy0/TnOf8JvKpM06TOGeYlSe0Y5CWNsql6KVmfmlUs6GfmSuDlEXEC8DfAnsDSGcXuBs4BPpGZ3yzVNmkmw7wkaS6GeEnSsCvZow9APRT/1IhYBOwEbFmfuhW4LDPvK90mTSbDvCRpNgZ5SdKoKx70p9WB/pJB1a/JYJiXJLUyxEtSexFBlHy9nrPxNW5gQV9qkoFekmSIlySpYtDXyDDMS9JkM8hLUhnB+hnSS9WnZjUa9CPiM/VmZuYhsxzvxQb30ngzzEvSZDLES5LUnKZ79A8Est4+ZI7j3Yj6OoP+GDHMS9LkMchLklRO00H/KmYP9HMd15gyzEvS5DDES9J4mYpgquAEeSXrmhSNBv3M3LGb4xpthnlJGn+GeEmSRo+T8WlehnlJGm8GeUnSbOxjH20GfRnmJWlMGeIlSZpMRYJ+RFwOrAWem5mXdnjNDsB3qWbd37mPzZsYBnpJGi8GeUlSP0RUS8n61KxSPfoPp5qMb+MurlkMG8pr8AAAIABJREFU7IiT+HXFMC9J48EQL0mSeuXQ/TGy2JAvSSPBEC9JkvppmIP+A+v13QNthSRJXTLIS5JGWTV0v9x4eofuN2+Yg/4r6/WVA22FJEktDPGSJGnY9SXoR8RZc5w6NiLuanP5EmAnYBuq5/NPb7JtkiTNxyAvSZp0U/VSsj41q189+ntRhfTWQRgBLO/yPpcB72uoTZKkCWeIlyRJk6BfQf97bDhb/p71/s+A+Xr0E7gXuB74IfDFzGw3AkCSJEO8JEkNiYjCz+j7kH7T+hL0M3Ov1v2IWFtvHpiZF/SjTknSeDPIS5IkdabUZHwnUPXW31aoPknSCDHES5IkNadI0M/MA0vUI0kaTgZ5SZJGR7DhZGsl6lOzhvn1epKkEWCIlyRJGi5Fgn5E/BFwGrAG2Cszr2tTfnvgHKoPd56VmVf2v5WSpJkM8ZIkTR4n4xt9pXr0Xw7sCJzWLuQDZOa1EXEx8FzgAOAD/W2eJE0mg7wkSdL4KRX0n0s1Gd8pXVxzMvA8YF8M+pLUtVvuWElm+3KSJEmtpuqlZH1qVqmgv0O9/lUX15w/41pJUu2WO+yJlyRJ0uxKBf1t6vWdXVwzXXbbhtsiSUPPIC9JkqRelQr6vwO2pgrt/9XhNdMB/+6+tEiSBsQQL0mShlrhyfhwMr7GlQr6l1AF/ecB3+7wmj+r17/tS4skqU8M8pIkSRqkUkH/28BTgNdGxKcy88L5CkfEo4HXUE3gd1qB9klSRwzxkiRp3EW9lKxPzSo1weEngbuATYCzIuIFcxWMiBcCZwKbAvcAn+hHgyJim4h4fkQcGRHfiohbIiLr5bge7ve8iPhaRFwTESvr9dci4nl9aL6kPrjljpVtF0mSJGnYFenRz8xbIuJ1wGepJub7ekRcDnwfuJ6q53474OnAI6g+1Eng9Zl5Y5+a1ch9o3p45d+A1844tT3wYuDFEfEp4HWZvuhKGiSDuiRJUntB2cfm7dFvXqmh+2TmiRGxCPhXYCmwE1WobzX9Z3wXVcj/XKHmXQ1cCOzTw7X/yPqQ/wvgg1TzCuwMvBXYvT5/M/APC26ppFkZ4iVJkqRKsaAPkJknRMQZwN8B+wJ/zPpwvxb4NXAK8C997MmfdiSwAliRmTdGxI7A5d3cICJ2oQrzAD8FnpGZ99T7KyLiG8A5wB7A4RFxbGY6uaDUJUO8JEkaFcs233jQTZDKBn2AzLweeDvw9ojYCNiyPnVrZq4p2I53NXCbv2f9f8M3tIT86Trujog3AOfV5d4EvKGBeqWxYpCXJEnDaustugvu1/yuTw0paIpgquCA+pJ1TYriQb9VHexvGmQbelU/m/+ieveizPzRbOUy80cR8d/AI4H9I+LvfFZfk8QQL0mShk234V0aNQMN+iPuEVQT7kE1PH8+51AF/YcCO9LlIwLSsLrljlVtSviZliRJ6j+De7MiCk/GZ4d+4wz6vdutZfuiNmVbz++GQV8jon2QlyRJ6g/Du9S74kE/Ip4J7A88Dtga2JT536iQmblzibZ16WEt29e0KXv1HNe1FREPbVNk227uJ00zxEuSpJK23mLJoJsgTYxiQT8itgG+COw5fWiOojnj3LCO/d2iZfvONmXvatnevMt6rm5fRLo/g7wkSeo3w/t4ivqrZH1qVpGgHxGLgW8Bf0IV4n8BXAfsRxXkPwcsA/4U2K4+9nPg/BLt69EmLdvtElXrbGSb9qEtmjCGeEmS1A8Gd2k8lOrRPxDYnSrAH5SZx0fEo6mCPpn56umCEfEi4BPAo4D3Z+ZXC7WxW/e2bLd7gKj1J+Y9c5aaXbuh/tsCK7q8p4aYIV6SJDXJ8K5uORnf6CsV9P+8Xp+WmcfPVzAzT46I84GfAsdFxK8y85K+t7B7d7RstxuOv1nLdrth/hvIzHmf/w//rxgphnhJkrRQBndJ7ZQK+o9j/RD9+4mIaH23fGb+NiKOBv4v8Ebgb4u0sjutAbzdhHmtvfI+cz/GDPKSJKlbBncNmyCY8hn9kVYq6G9Zr1tfK9eaiJay4YR1AN+hCvrP6WO7FuKClu1d25RtPX9hH9qiAgzxkiSpU4Z3SYNUKuivqutqTUq/b9neHrh4xjX3tpwbRpdTTSi4HevfJDCXZ9Tra4Er+tgmLYBBXpIkzcXgLmmUlAr6V1H1aj9k+kBm3hgRd1A93/5E7h/0Hz1dtEgLu5SZGREnA68Hdo2IJ2Xmj2aWi4gnsb5H/+TWRxRUzv/cOXeI909EkqTJZHiXZudkfKOvVND/OVXY3Z3qNXvTvkc18/4bI+LLmbkSICIeCLyVKuRfwPD6GPAaqv+OH4+IZ2Tmuln1I2JT4OP17pq6vBo2X4iXJEmTw+AuSZVSQf87wF9Shfr3thz/t/rY7sCv6x7ypcALqCa4S+CEfjQoIp4G7NJyaOuW7V0i4sDW8pl53Mx7ZObFEfFh4G3AHsC5EfEB4LfAzsDhVN8bwIeG9O0BQ88gL0nS5DK8S+XZoz/6SgX9rwNHAA+NiJ0z87cAmXlqRHwGOJgqdL+5Lj/9R3068Mk+telQ4NVznHtqvbQ6bo6y7wC2ofoedge+OEuZY4B/6L6J4+/WOUK8o+klSRpPBndJ6r8iQT8zbwd2nOPcoRFxHlXwfnTdpkuoevKPzsy1JdrYq7p9h0TEV4HXAsupRgfcAqwA/j0zvzXPLcbWXCFekiSNF8O7NF6i/ipZn5pVqkd/Xpl5DFWvd8k6DwQObPB+3wS+2dT9RoFBXpKk8fTgBxjcJWmUFQn6ETH9ernrfU59NBjiJUkaL4Z3SZocpXr0v0v12PUhVMPyNUCGeEmSRp/BXVK/TEW1lKxPzSoV9O8ENgN+Xai+iWaQlyRp9BjcJUlNKRX0rwJ2o3p1nvrk9rtWsdSQL0nS0DC8SxpFTsY3+koF/VOpgv7ewPcL1SlJktQog7skaRSUCvofpXrP/Jsi4j8z8/xC9UqSJM3L8C5JG4qolpL1qVlFgn5m3hARzwe+CpwbER8APp+ZV5SoX5IkTQ6DuyRp0pV6vd5l9ebGwBbAe4D3RMSdwO3AffNcnpm5c5+bKEmShpjhXZKkzpUaur/jjP3pwRlb1Mt8svHWSJKkgTK4S9LwCspOkOfI/eaVCvrHF6pHkiQNgMFdkqThUeoZ/YNK1CNJkppjeJekyRQBU07GN9IaDfoR8Xf15mcz87Ym7y1JkhbG4C5J0mRoukf/Y1TP1J8JrAv6EXFWffzgzLyy4TolSZpYhndJkjoXETsAfwfsB+wArAQuBb4M/Gtm3r2Ae28EPAZ4ArC8Xj8KWFQXeUSpN8+VekZ/L6qgv1mh+iRJGkkGd0nSoEX9VbK+IvVE7AecCDyw5fBSqlC+HDg0IvbNzMtmu74D7wCOWFAjG9J00L8XWAI8qOH7SpI0sgzvkiQNVkQ8jqrXfilwJ/A+4GxgU+AA4DXAI4FTI2J5Zt7ZSzUt2/cCvwQeDBR/XXzTQf8Kqv84zwd+2PC9JUkaCgZ3SdI4iyg7QV6huj5GFfLXAPtk5nkt586KiEuADwK7Am8GjuyhjvOA1wErgF9l5pqIOI4xCPrfpPoPc3hEPBu4GFjdcv4fI+L2Lu+ZmXlIUw2UJGkmg7skSeMrIpZTPU4OcMyMkD/tKOAgYDfgTRHxvsxcPUu5OWXmtxfU0AY1HfTfC7wQ2IXqGYc9Ws4F8KIu7xdUz/Yb9CVJXTG8S5LUm4CCT+gXqWv/lu1jZyuQmWsj4gSqIf3LqD4YOKP/TeuPRoN+Zt4aEXsAfws8G9ie6pn9h1MF9uvZsIdfkqSOGNwlSVKPnl6v7wJ+Nk+5c1q2n4ZBf73M/D1Vz/57p49FxNp6c5/MvKDpOiVJo8nwLkmSZtg22jy0n5nXdHnP3er1pZm5Zp5yF81yzUgq9Xo9SdIEMLhLkjT6pgimCs7GN7Xh4P0VHVzSceMiYhNg63p33g8IMvO2iLiL6rXwD+u0jmHUaNCPiK9RDdF/44xPWZ5ZH7+8yfokSf1neJckSSNsi5btTl6ZNx30N+9Pc8poukd/f6pA/84Zx88G1gKPBRy6L0kDZHCXJEnzGfBkfMuBGxq8/SYt26s6KL+yXm/aYBuK69fQ/dn+XpT8uyJJE2PrLQzukiRpbNzQwzP487m3ZXvjDspP/2J1T4NtKK7poH8H1RCHhwC/afjekjQxDO+SJGlgxuv9ene0bHcyHH+zet3JMP+h1XTQvwjYA3hjRPwkM2f+x8mG65OkkWBwlyRJKi8z742IW6gm5HvofGUjYhnrg/7V/W5bPzUd9D9P9UzF84FbI+JGYHXL+dMjYvWsV84tM3PnphooSU0xvEuSJI2EC4GnA7tExEbzvGJv1xnXjKymg/7HgacCL63vvX3LuZix3ylHAUgqwuAuSZIEUX+VrK/PfkAV9DcDHg/8eI5ye7Zsn9vvRvVTo0E/M9cC/ysingzsTRXslwCvpgrs3wBub7JOSZqLwV2SJEnA14G319sHMUvQj4gp4FX17u1Ub44bWX2ZdT8zzwPOm96PiFfXm+/ITF+vJ6lnhndJkqQ+C4jxmYyPzPxJRHyfqlf/kIg4vs6srd4C7FZvH52ZGzxyHhEHAsfWu+/OzCP62OQF69fr9SSpIwZ3SZIkFfBGquH4m1LNHfdeql77TYEDgNfW5S4GjuqlgojYnOox9la7tGy/tJ4YcNovM/OXvdTVTpGgn5lTJeqRNBy23qKTV5RKkiRpGI3X2/UqmfmLiHg58DngAcB7Zyl2MbBfZt4xy7lObM36Xv/ZfGjG/ruB0Q36kkabwV2SJEmjLjNPiYjHUvXu70f1ur1VwKXAfwL/kpl3D7CJjTHoSxPI4C5JkqRJlJlXAm+ul26uOw44rk2ZKyg7GGJOjQb9iDir3szMfPYsx3uxwb0kzc7wLkmSpEaM49j9CdN0j/5e9TpnOZ5090c4XX7mvaSJYHCXJEmS1Iumg/73mD2Yz3VcmhgGd0mSJI2CqL9K1qdmNRr0M3Ovbo5Lo87wLkmSJGnYOBmf1MLgLkmSpEkXUS0l61OzDPoae1ttbniXJEmSNDkM+ho5BndJkiRJmlvTr9fbocn7TcvMq/pxXw2HLQ3ukiRJ0tDw7Xqjr+ke/csbvh9Us/U78mDEGN4lSZIkaTCaDtB+GDOmDO6SJEnShLBLf+Q1HfQPanP+b4DlwGrgdOAnwI1Uf7Tb1Of2ARYDK4BPNtw+1QzukiRJkjSeGg36mXn8XOci4j+APagC/iGZee0c5bYHPg08F/h1Zr6myTaOswdttrEBXpIkSZImXJFn3yPipcDBVL30+2XmfXOVzcxrI+IFwHnAwRFxRmZ+uUQ7JUmSJAlg2fM/0tN1ee/tDbekvKi/StanZpWa5O6vqSbV+8h8IX9aZt4XEUcBXwBeCxj0JUmSJLXVa0CXxkmpoP/Yen1xF9dMl31Mw22RJEmSNIQM6cMholpK1qdmlQr6W9Trbbq4ZrrsFvOWkiRJkjRQy/7sA71fvGhxcw2RBJQL+lcCfwS8Cvh2h9e8ql5f1ZcWSZIkSVpYSNdY8u16o69U0D8ZeCtwQET8V2Z+cL7CEXEY8Aqq5/pPKtA+SZIkaeQY0iXNplTQfz9VD/1DgPdFxCuA46lm4b+JKtA/BFgO/BXwJ/V1NwD+9JIkSdJYWfac9/R+8Ua+TlnS/IoE/cy8PSL2phq2vz3V5HxHzXNJANcAz8vM0X8/hSRJksbGgkK6NAocuz/ySvXok5kXRMSjgXcBBwLL5ih6G3AscGRm/r5Q8yRJkjTmlj3rCFi0aNDNkKS+Kxb0Aerg/paIeDvweKpX5y2j+gznVuDXwM8yc1XJdkmSJGm4LXvWEYNugjQxov4qWZ+aVTToT6uD/Hn1IkmSpDFlQJek8gYS9CVJkjT8lu35jvsf9J3n0vgLCJ/RH2kGfUmSpDEza0CXJE0Mg74kSdIQMaRLkhbKoC9JktSAZc/4P91fVHRsrCR1xrfrjT6DviRJmng9hXRJkoaUQV+SJI2sZU9/2/0PxlT5hkjSuLGbfaQZ9CVJ0kDMGtIlSdKCGfQlSVLXDOmSNL6i/ipZn5pl0JckaYIse9rhC7uBk8dJkjT0DPqSJI2IBYd0SZI0EQz6kiT1mQFdkjRKIsoO4HKwWPMM+pIkzcOQLkmSRo1BX5I0ltpOFpdZpiGSJI2YoOzb9ezQb55Bf4EiotPfFM/JzL362RZJGhfO6C5JktQ7g74kqTHLnvF/5j6Za8s1RJIk9c4u/ZFn0G/OJ4F/nef8XaUaIkm9mDekS5IkaWQY9JtzU2aeP+hGSJo8y/Z659wn195XriGSJEkaCgZ9SRqgeUO6JEnSAET9VbI+NcugL0k9WPasI+YvYE+6JEmSBsSgL2nitA3pkiRJEyyiWkrWp2YZ9Jvzsoh4BbADsAa4AfghcFxmnj3QlkljYtk+/9R54TWr+9cQSZIkaYgZ9JvzqBn7u9TLqyLi68CBmfm7bm8aEQ9tU2Tbbu8pDUJXIV2SJElSzwz6C3c38A3gO8BFwJ3Ag4E9gdcBWwH7AydHxHMys9tuxqsbbKvUtWX7fqj3i9esaq4hkiRJKiIo+2p7R+43z6C/cNtn5u2zHD8jIj4OfAvYnSr4vx7455KN02Rb9sKjqw0DtyRJkjQxDPoLNEfInz53Y0S8FLgQ2Bh4A90H/Ye1Ob8tsKLLe2rIrQvokiRJUml26Y88g36fZeZlEXEGsB+wS0Rsl5nXdXH9NfOdD6eoHDrLXvLJ+QvYuy5JkiSpjwz6ZVxAFfQBtgc6Dvoqp21AlyRJkiZA1aFfrkPRrsvmGfTL8O9un2358s/0fG2uXtlgSyRJkiRpsAz6ZbS+es/e/BbbvPKEWY+vWb2mcEskSZIkaTwY9PssInYCnlPvXpaZ1w6yPU2aK6RLkiRJGmEBRacCc/xz4wz6CxARLwC+lZmzdj9HxEOArwCL60OfKNW2+Wx/8Bd6vnb1qtUNtkSSJEmS1DSD/sJ8HFgcEV8FzgOuAO4Btgb2Al4HbFWX/QF9DvrL3/J1pjbbqn1BSZIkSZqDb9cbfQb9hdsOeEO9zOWrwKGZ6axvkiRJkqS+MugvzKuBPYEnAztR9eQ/ALgTuBr4IXB8Zp43sBZKkiRJUjfs0h95Bv0FyMxzgHMG3Q5JkiRJkqZNDboBkiRJkiSpOfboS5IkSZLWifqrZH1qlj36kiRJkiSNEXv0JUmSJEnrRFRLyfrULHv0JUmSJEkaI/boS5IkSZLW8e16o88efUmSJEmSxohBX5IkSZKkMeLQfUmSJEnSeo7dH3n26EuSJEmSNEbs0ZckSZIkrRP1V8n61Cx79CVJkiRJGiMGfUmSJEmSxohD9yVJkiRJ6wQQBUfTO3C/efboS5IkSZI0RuzRlyRJkiSt49v1Rp89+pIkSZIkjRF79CVJkiRpAX5+7F+v277humt51h7vGWBrFi6i8DP6duk3zqAvSZIkaeS0hmtJGzLoS5IkSerIBV94Y+P3vHf1fY3fU5p0Bn1JkiRpiF160uEb7K9as3ZALdHkcDq+UWfQlyRJkmaYGa4laZQY9CVJkjQUrvrmP/S9DnvDpQ4UnozPDv3mGfQlSZIm2PVnHtlV+dX3ZZ9aIklqikFfkiSpsJvO/kcA7ltraJY0fHxCf/QZ9CVJ0kSYDteSJI07g74kSeqb//ne+4rXaS+5JGnSGfQlSRozt/3gA32799o0REvSuIvCk/EVnfhvQhj0JUlqQD/DtSRJUjcM+pKkkXTr996/oOvtPZAkaXZRf5WsT80y6EuSOvY/3/2nnq8Nk7UkSVIRBn1JGnI3fefdPV+7yHAtSZK65fv1Rp5BX5Jmcd1p71zQ9Rst8l8sSZIkDYZBX9LQuOrkwxu7l0FbkiRJk8qgL024S770xr7de8lGU327tyRJkvrDkfujz6AvDcD5x7+2aH1LNlpUtD5JkiRJg2PQ18T4wVEvnfX4JhuXDcFLFtvLLUmSpOEVUfY1tM4d3DyDvvrq1CNf0NN1mxUO35IkSZI0Lgz6Y+gz/98z+3bvLZcs6du9JUmSJA1e1F8l61OzDPpj5MOvewpbb7vdoJshSZIkSRogHxaWJEmSJGmM2KMvSZIkSVrP9+uNPHv0JUmSJEkaI/boS5IkSZLWsUN/9NmjL0mSJEnSGDHoS5IkSZI0Rhy6L0mSJElaJ6JaStanZtmjL0mSJEnSGLFHX5IkSZLUIgin4xtp9uhLkiRJkjRG7NGXJEmSJK3jM/qjzx59SZIkSZLGiEFfkiRJkqQxYtCXJEmSJGmMGPQlSZIkSRojTsYnSZIkSVonKDwZX7mqJoY9+pIkSZIkjRF79CVJkiRJ60T9VbI+NcsefUmSJEmSxohBX5IkSZKkMeLQfUmSJEnSOhGFJ+Nz5H7j7NGXJEmSJGmM2KMvSZIkSVonKPvKOzv0m2ePviRJkiRJY8QefUmSJEnSenbpjzx79CVJkiRJGiMGfUmSJEmSxohD9yVJkiRJ60T9VbI+NcsefUmSJEmSxog9+pIkSZKkdSKqpWR9apY9+pIkSZIkjRGDfoMiYoeI+HBEXBgRd0XErRHxk4g4LCKWDrp9kiRJkjTJSmW2iDggIr4dEddHxL0RcUVEfDYintRUHfNx6H5DImI/4ETggS2HlwLL6+XQiNg3My8bRPskSZIkqRNB2Vfbl6qrRGaLiE2A/wSeP+PUw+vlLyLiiMx8T691dMIe/QZExOOAL1P9hbkTeAfwFODZwKfrYo8ETo2IzQfSSEmSJEmaUAUz2zGsD/lnA/sDTwAOAX5LlcGPjIhDF1BHW/boN+NjVJ8ErQH2yczzWs6dFRGXAB8EdgXeDBxZvomSJEmS1IHx7NLve2aLiD2Bv6h3TwFenJn31fsrIuIbwM+AHYAPRsRXMvP2nr6bNuzRX6CIWA7sVe8eM+MvzLSjgAvr7TdFxOISbZMkSZKkSVcws721Xt8H/E1LyAcgM28BDq93l1H18veFQX/h9m/ZPna2Apm5Fjih3l3G+r9kkiRJkjRkouhXgS79vme2erj/s+vdMzLzmjmKfg34fb39km7q6IZBf+GeXq/vohqGMZdzWraf1r/mSJIkSZJalMhsTwCWzHKfDWTmKuBH09f0a7S3z+gv3G71+tLMXDNPuYtmuaatiHhomyLbT2/cevONnd62Z2uWbNz3OgCWLl5UpB6AJQXrAth4cckHnipLFpX9HqdtvNHgPktctKj8f+dWG00Ntv5pi2I42gHAMLWFoWvOyMjMQTehrfvWDn8bp41SW6etGcE2t1q1Zu2gm7Bgq+8b/e+h1crV4/X93HzjDa27g/klbIFuuOH6Qda3bbT5R3qe3vK59DWzzVL+ojlLrT+/D1Ue/0Pggi7rasugvwD1qxO2rnfn/cuWmbdFxF3AZsDDuqjm6k4LvvUv9+3itpIkSZL67MHAlYNuRLee8ZQnDLL6FR2U6fjj+kKZjRnl230Q0ZrxHkYfgr5D9xdmi5btOzsof1e99hV7kiRJ0vjbZtANULHM1k09d7Vs9yUb2qO/MJu0bK/qoPzKer1pF3W0+yRpB+DcevtJwLVd3FuSNDy2ZX0vxnLghnnKSpKG1/asfwa73RDuYXID3fdiN21b4GaqWeubUiKzdVvPypbtbuvpiEF/Ye5t2e7k4fXpyRnu6bSCds+fzHh+5doenleRJA2BGT/Pb/DnuSSNphk/zzsJlkOhfnZ90P/29KP+vme2HupZ0rLdbT0dcej+wtzRst3JkIvN6nUnQ0YkSZIkSQtTKrN1U89mLdt9yYYG/QXIzHuBW+rdeWfHj4hlrP8D7XiCPUmSJElSbwpmttbRCO3enNb6iERfsqFBf+EurNe7RMR8j0LsOss1kiRJkqT+KpHZWmfO33XOUhueXwNc2mU9HTHoL9wP6vVmwOPnKbdny/a5c5aSJEmSJDWpRGZbwfo5Gfacq1BEbEw1iTrAiszsyzwOBv2F+3rL9kGzFYiIKeBV9e7twNn9bpQkSZIkCSiQ2TLzDuA79e7eETHX8P2XAA+ot0/qpo5uGPQXKDN/Any/3j0kIp48S7G3ALvV20dn5uoijZMkSZKkCddEZouIAyMi6+WIOar6cL3eCPhERCyacY+tgQ/Uu7cD/9Hdd9I5g34z3kj1WoSNgNMj4u0R8aSIeGZE/DvwwbrcxcBRg2qkJEmSJE2ovme2zDwL+GK9+0LgjIh4YUTsEREHAT8CdqjPvy0zb+v1m2knMrNf954oEfEC4HOsH4Yx08XAfpnZl8kWJEmSJElzW0hmi4gDgWPr3Xdn5hFz1LEp8BVg3znqWAu8Z67rm2KPfkMy8xTgscBHqf6C3E01HOOnwOHA7oZ8SZIkSRqMEpktM+/JzP2AvwTOAG6imqTvauDzwNP6HfLBHn1JkiRJksaKPfqSJEmSJI0Rg74kSZIkSWPEoC9JkiRJ0hgx6EuSJEmSNEYM+pIkSZIkjRGDviRJkiRJY8SgL0mSJEnSGDHoS5IkSZI0Rgz6QyIidoiID0fEhRFxV0TcGhE/iYjDImJpn+r8g4i4PSKyXr7bj3okaZL08+d5RBzR8jO73bJXQ9+SJE2kkr+fR8TeEXFcRFxa1/W7iLg4Ir4SEa+PiM2brE/jLzJz0G2YeBGxH3Ai8MA5ivw3sG9mXtZwvV8B/rzl0DmZuVeTdUjSJOn3z/OIOAJ4V4fFn5mZ3+2lHkmadKV+P4+IZcCxwIvaFN09M3+5kLo0WTYadAMmXUQ8DvgysBS4E3gfcDawKXAA8BrgkcCpEbE8M+9sqN4XUIX8m4BtmrinJE2yAfw8f0yb85cv8P6SNJFK/TyPiAcCZwCPrw+dCnwRuBRYBDwcWA68tOdvRhPLoD94H6P6IbIG2Cczz2s5d1ZEXAJ8ENgVeDNw5EIrrIf+fKLePQw4YaH3lCSV/Xmemecv5HpJ0pxK/Tz/OFXIXwO8MjPLV0voAAAVHElEQVS/NOP8ucDnI+LNVMH//2/v3qMnKes7j78/MMhNEBDwAnIxHDYqShDwCAGZEPGExKzIJko0Ki6JoJGD0XjJuiETXdHgDXWjYnBBURFWBIJ4Nw5BRBSMLhCUEBkR0aBcldugPPtHPU3X9HT3r389v1/3TP/er3PqVFXXU8/zVE9PzXyrnos0MvvoT1GS/YHldffDPTeRjncC19btVyXZZAGKPgl4HPDVUsqZC5CfJC1pU7yfS5IW0KTu50kOAl5Ud/9XnyD/IaXxq/mWoaXNQH+6jmhtn94vQSnlQbpv3Lele+MZS5KnAX8BrAZevi55SZIeMvH7uSRpUUzqfv7Kuv4lzYMDaUEZ6E/XwXV9N3DlkHQXt7YPGrewJMuAD9H8uf99KeX74+YlSVrDRO/nkqRFs+j38yQPozv43uc6ffyTLEuyax3t/2HzyVPqZaA/XU+o6+vnaI7zvT7njOOvgL2B/6Bpvi9JWhiTvp+T5EtJbk2yOsktSVYmeUMdwVmSNJ5J3M/3Bjar25cleXSS04E7gFXAD4E7k3w2yYHzzFsCDPSnJslmwPZ196ZhaUspt9M8VYSmb/045T0eOLHuvqKUct84+UiS1jTp+3nLM4HtgE2AHYBDaEaG/kGSuaZpkiT1mOD9/Imt7c2Aq4CjgS17Pj8cuCTJq+aZv2SgP0VbtbZHmZKjcyN5+JjlnUozJcjZpZQvjpmHJGltk76fXwW8GfhDmtGanw68BOjc27cBzk1y+Jj5S9JSNan7+Xat7b+lebjwGWA/mgD/UcArgLto4rV3eU/XfDm93vRs1tpePUL6++t68/kWlOTFNG9+7gL+cr7nS5KGmtj9HDillLKiz+eXAx9NcizwQZppmE5Lskcp5d4xypGkpWhS9/P2m/tNgQuBI+ogfwC3AB9IchXNWAAbAScn+XwppcyzLC1RvtGfnnbT+VEG29i0ruf1H7Yk29MdyfONpZSfzOd8SdKcJnI/Byil3DHH8VOB0+ruY4Ej51uGJC1hk7qf93ahfW0ryH9IKeVrwKfr7l51kUZioD89v2htj9Lcp/Pkb5RmRG3vomkOdAXw/nmeK0ma26Tu56M6tbV9yCKVIUmzaFL383Y5N8wxE9YXWtv7z7McLWE23Z+SUsp9SX5OE4TvPCxtHUG5cyP50ahlJHks8KK6+8/A85IMO2XHJEfV7RtKKZePWpYkLVWTuJ/P07+1tndapDIkaeZM8H7eTj900L+etDvOsxwtYQb603UtzVydeyRZNmQKj9/sOWdU7SZHrxsh/ROAs+r2R2j6fEqS5rbY9/P5GPpEV5I01CTu59e0tjeeI237+LDp/qQ12HR/ur5W11vSjJw8SLvp5aWLVx1J0pjWp/t5e9qmmxepDEmaVYt+Py+l/BC4se7+xhzJ28d/PJ9ytLQZ6E/X+a3tl/ZLkGQj4MV19w7gq6NmXkpZVUrJXEvrlItbnx8934uRpCVsUe/n83Rsa/viRSpDkmbVpO7n59b1o5IcOCRde1DVS8YoR0uUgf4UlVK+Sfcv7DFJDuiT7DU0TeoB3lNKeaB9MMnRSUpdVixebSVJg0zifp7kyUn2GFaPOr3eMXX3p8B587gMSVryJvj/81Pojr7/3iRb9iZI8qfA8rp7USllrv780kPsoz99J9A099kc+GKSk2ieCm4OHAW8rKa7ju40eZKk9c9i38/3BU5L8lXgc8BVwK00/5b/JvCnwGE17a+BY0spd493KZK0pC36/89LKTcmORE4meb+/s0kJwNXA4+geZN/XE1+F/CX412KlioD/SkrpfxrkucDHwO2Bk7qk+w64A9KKb/oc0yStB6Y0P18Y+CZdRnkVuCYUso/jVmGJC1pk/r/eSnl7Um2A15PM77KGX2S3QIcUUr593HL0dJk0/31QCnlQuApwLtpbhr30PT3uYLmL/4+pZTrp1dDSdIoFvl+/lmaZvmnAVfSTMl0L03Tz5tp3vKfADy+lHLBOlyGJC15k/r/eSnlr4HfBs4EVgH3A3cC3wL+BtizlHLZupajpSellGnXQZIkSZIkLRDf6EuSJEmSNEMM9CVJkiRJmiEG+pIkSZIkzRADfUmSJEmSZoiBviRJkiRJM8RAX5IkSZKkGWKgL0mSJEnSDDHQlyRJkiRphhjoS5IkSZI0Qwz0JUmSJEmaIQb6kiRJkiTNEAN9SZIkSZJmiIG+JEmSJEkzxEBfkiRJkqQZYqAvSZIkSdIMMdCXJEmSJGmGGOhLkmZeklKXFdOuy/okyW6t7+boCZa7XZKf13KfPqlyF0uSnZPcn2R1kj2nXR9Jkgz0JUnSpK0AHgl8oZTyjSnXZZ2VUm4CTgc2Ad455epIkmSgL0nSrEmyqr4tP2PademVZBfg2Lq7YopVWWhvBR4Anp3kgGlXRpK0tBnoS5KkSXo98DDg67PwNr+jlPJD4Ny6+z+nWRdJkgz0JUnSRCTZBnhJ3f3YNOuySD5R14fbV1+SNE0G+pIkaVKOArakaeJ+zpTrshg+D9wKBHjplOsiSVrCDPQlaQOV5KLaD/uyAccPao2ofkeSjfuk2TbJgzXNX/Qc2yjJoUnekeTSOkr6AzWv79TPdxlQ9iGtsv9shGt5XSv9kwek2TnJW5N8O8ntSe5LcmOSs5P8zlxljCLJf0ny3iTXJLkzyb1JfpDk9CRPHXLe8lb9l9fPnpfkK0l+VvP5fpKTk2w3Qj12TfLB2tf+viQ3Jzm/c51JVnTK6zlvZf1s1/rRS1r16iwr5yj7sCQXJvlpHUn+hiQfSLLzXPUewfPqemUp5dYhdRhpjIEkZ9R0q/ocW2tGgSRHJvlikluS3J3ku0mOT7JJ67wkeUH9Lm9Jck/9zR2XJMPqU0p5ALiw7j5/WFpJkhaTgb4kbbhW1vV+SR7e5/jy1vYjgH36pDmE5u0jwMU9x04EvgK8BjiQZpT0ZTWvvevn1yZ5bp98/wW4sW6/cNhFVC+o66tLKVf1HkxyDHAd8IZ6HdsAmwKPowke/znJaUmWjVBWX0n+BrgaOB54IrA1sBmwO3A0cEWSvxshq42TfBw4GzgU2L7msyfwWuDyJI8eUo/DgGtoBqzbleY6HwM8B/hKkv8xzvWNIsnbgC8CzwYeRdOXfjfgOODbSZ6wDnlvCnQGqZt43/wk76fpQ38YsAOwBfAU4L3AJ5NsXOt4DvBxmr8bOwCb0/zmPgCcOkJRnWvbfdCDMEmSFpuBviRtuDqB+TLgoD7Hl8+x3/7s5zTBZdsy4CfA+4EXAb8N7AscAZwM/JImWPpEbwBYSinAWXX3GcPeBid5Is2DA+jTbzvJfwdOowm4OoH4QcBTgf8GfLYmPQb4+0HlDJPkTcCbaK7568Cf0QSl+9E8qLiM5oHIiUmOnyO7N9E8uDgfOJLmO/t94KJ6fA/g3QPqsUc9b0vg18A/AL8L7E/TFPxa4C3A4QPKfinwZODmun9B3W8vg5qU/znNQHkX1/rvBzwT+Gg9vgPwfwZd9Aj2p3ngAfCtdchnHMcBL6f5rXT+TI4ALq/Hj6T5Xt4O/BFNX/tn13RHAd+r6f48ye/NUdY3W9sHL0TlJUmat1KKi4uLi8sGuAAbA3cBBXhbz7FNgLvrsQvq+jN98vhOPXZun2O7AZsMKX9n4KZ6/pl9jj+5HivAXw3J5y01zYPALj3HHte6jjOAZXPk8Wtgzz7HO/VY0efY/vW8Arx5QP4bAWfWNHcB2/QcX94qowBv7JNHgC/U4w8AO/RJc0Erjz/qc3wLmuD0obIG1HdV5zub4ze0W0+9PwSkT7p/bKXZZ8zf6+taeew8R9pR639GTbdqhGt794Dv84Z6/Gf1N3hCn3SPpvt37YI56rQMWF3T/sM435WLi4uLi8u6Lr7Rl6QNVCnl18CldXd5z+Gn0QQxd9F9e3xQWv30k2xLE4xDtxtAO/9VpelzPKj8m2jegAL8197+y6Vpgt9phj+s+f6f1PUlpZQbe46dUK/jZuC4UsqvBuTxt8CPaQLyFw8pq5/X1/OupOmusJZSyoM0LQnuB7aiees7yJXASX3yKMC76u4yus3YAUiyE81bZIDzSimf6pPHPcDLhpS9Ln4CHF/r2esdre1x31K3W3XcMmYe4/oRzYOGNdTv8yN1d3vg8lLKe/qk+ylwXt0dev31N3pb3V2IcQ0kSZo3A31J2rCtrOt9e/rpL6/rS2iaot/L2v30n0H334He/vlrSbJ1kt2TPCnJXkn2Au6ph7em6cveq9MU/7f69e9OcmDrvI/3Of85dX1hKeW+QXWrwVVnUMIDBqXrU/4mdJvBf2pAkNsp4w66Dy6GlfGJIflc2dp+fM+x5XT/PD7CAKWU7wLfHVL+uD5VSrl/QJnfp+mqAWvXe1Q71PU9pZTVY+Yxrk8PeWj1/1rbZw/Jo/Odb5tmmsBhOoH+DkNTSZK0SAz0JWnDNqif/vK6XlmDqst6Pm9v30Y3gF1DHf39fXVU8zuBH9D0k++8rf9QK/n2fbI4i6YJM/R/q9/5bDWwxhvsJI+g6c8OcGyf0ePXWOi+ZR840F0fT6RpMQDw1hHK2G+EMr435Nhtre2teo7t1dq+kuGumOP4OIbVG+D2uu6t96g6sw3cPjTV4rhuyLE7xkg313fQucZHzpFOkqRFYaAvSRu2K+i+aV0OD72lPrB+trJnvbx1bmf7X/q9gU5yOPBvwCvpTtc2zOa9H5RSfkQzAj90R9bv5L+M7nRrnyultINggB1HKLOfLeZOsqhl3DPoQO0C0NE73eG2re25mrb/bI7j4xhY76pT97WmaRxRp0XGWr+TCRh2be0/k1HTzfUddK7x3jnSSZK0KMaehkiSNH2llF8l+TrwLLqB+/50++f/a/1sZV0fXPvpb0UztVj72EOSPJJm5PEtaB4kvINmILn/AO7sNL1OcijNFHzQnaavV2eqst2THFBK6bQueBbdVgD9mu23g6lTgA8PyL/XfJqFt8t4LfD5Ec+7ex5lqNF5OLFNkgzrJjEDOq0XFuOBjCRJczLQl6QN30qaoLnTT395/fySOmAfNCO130vTl34f4LEM75//xzRz1QMcWUr50oCytx3wedv/Bd5HMx98Z6o66Dbb/wXwmT7n3dra3qKUcvUIZc1Xu4xNFqmMUbWbtO9IM6PBIBti3+9O0LsRzXgRdwxJ2zHo4VHHw9apRoun8/fCQF+SNBU23ZekDV9vP/3ldX9lJ0GffvqdNLez5mBkHU+q69uGBPnQ7bM+UB3ErjPX/fOSLEuyBd2B9s4tpazVxLmU8jOakfQBntk7qv8CuYZuC4BnLUL+83FNa3uu73Wu4+vj2/L2OBB7jnjOXOMtPGbMuiyaJDvSPFCDAWNfSJK02Az0JWnD9y26TckPY+3++fTsL2fNt/4PsrZOi69Nk/T9t6IG66NOZddpmr9DreMRwJY9x/r5p7p+PMOntBtLnV6t0/VgeZKnLXQZ8/BVuv3AB36vSfYG9p4jr05/+E0XoF4L5ZLW9v4jnvOk9pSQbbX1yqj5TFL7N3TJwFSSJC0iA31J2sDVacM6b+uPoQmg2/3zO1bW9SF0A8WV9Pfvdb0lfQLsGnydRtMFYBSfodtU+4V0m+3/lCbAHeTtNHPXA3wwydA32Ul+P8lThqXp4y1034B/MslvDMl/4yQvSLLg86OXUn4MXFR3n5uk3/e+OWvOdDDIT+p64LVMWh2Y8Yd1d9QHKjsBLxtw7M10HxatTw80Otd2P81DOEmSJs5AX5Jmw8q6fkRdt/vnd3T66T+c4f3zAc6hG2CfkeSkJIcm2S/JS2pefwJcOkrl6vzs59bdI2je6gOc1aee7fNuAI6ru9sBlyY5LckRSZ6a5GlJjkzytiTX0wTKu4xSp1YZlwJvqru7A99Jckp9aLBPkqcnOSrJe4AbaVogzDWP+rheTXfk90/WqQ1/J8m+9Xu/giaQnCuA/Hpd75/kDUn2TrJHXXZapLqPovMg49ARu2IU4L1J3plkeZLfSvKcJOcBr6LbAuLRSf44yRGLUel5+t26/nL93UuSNHEOxidJs6E3YF/Zm6CUsjrJZcCh9aM7ge/0y6yUclOSl9O8td8c+Ou6tJ0N/CPw5RHr+HG6LQ7anw1VSjkjyb00b7K3rnkcMyD5g4wxIn4pZUWSO4C30TwIOaEu/aym2zR+QZVSrq/B6nk039Mr69L2dzQPavYfUo8PAC+neTjy1rp0XMya0yxO0pnAK4CdgYPpTr04yPnAXjQPQF7dc+xHwInA6XX/HJprO3+hKjtfSXYFDqi7H5tWPSRJ8o2+JM2Gb7LmHOArB6RrN5Mf1D8fgFLK6TTB2Pk0o4c/QNMk/PPA80spRwED38b3cTFrjiR/XSnlylFOLKWcDewGvIHm2m6p9bkH+AFwIU0guFspZVhXgGFlnELT1P3NwDeAnwO/onlwcB1Ni4TjgJ1KKdePU8aI9fgSTXB7Kk1T99XAf9K8Df+9UsoKuoO93Tkgjx/TvPn/MHA9i/RgYr5KKd8Avl13XzgsbXUXTeD8fprAfjXNAI0fBPYtpZxRj/2S5ndwzgJXeb5eQDNTwH8Cn55yXSRJS1hmexpbSZJmT5Iv0zQR/1op5eBp12c+khwFnEUzZsMupZRf9EmzCtgV+Egp5eiJVnBMddDKa2lmFHhjKeWkKVdJkrSE+UZfkqQNSJLHAs+ou9+YZl3GdA7NVILbsHa3hA3Z82mC/FuB9025LpKkJc5AX5Kk9UiSPYYc2xw4A9ikfvTRSdRpIdXuIq+tu6+p0+Rt0OrAgm+suyv6tVKQJGmSHIxPkqT1y2lJtqR5830lcBuwFbAfzUB2nQcBHy6lXDWdKq6bUsrnkhwPbE8z9sLV063ROnsM8CngEzQDIUqSNFUG+pIkrX/2q8sg5wHHT6gui6KU8r+nXYeFUkq5GVgx7XpIktRhoC9J0vrl1cBzaaZB3BnYgWYk91to+uR/tJRy0eDTJUnSUueo+5IkSZIkzRAH45MkSZIkaYYY6EuSJEmSNEMM9CVJkiRJmiEG+pIkSZIkzRADfUmSJEmSZoiBviRJkiRJM8RAX5IkSZKkGWKgL0mSJEnSDDHQlyRJkiRphhjoS5IkSZI0Qwz0JUmSJEmaIQb6kiRJkiTNEAN9SZIkSZJmiIG+JEmSJEkzxEBfkiRJkqQZYqAvSZIkSdIMMdCXJEmSJGmGGOhLkiRJkjRDDPQlSZIkSZoh/x8DQpsGz08NZQAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA/oAAAMFCAYAAADEIo1tAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAewgAAHsIBbtB1PgAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOzdd7w8VX3/8dfnS6+C0oX4FQz2jigqxV7A2GPLT782LInBrtFEjYldoiR2LIBGYi/Yg4AgStEgIopY6SgoSP1SP78/zix37rL13t25W17Px2MeO7t7ZubM3XL3PWfOmchMJEmSJEnSbFi10hWQJEmSJEmjY9CXJEmSJGmGGPQlSZIkSZohBn1JkiRJkmaIQV+SJEmSpBli0JckSZIkaYYY9CVJkiRJmiEGfUmSJEmSZohBX5IkSZKkGWLQlyRJkiRphhj0JUmSJEmaIQZ9SZIkSZJmiEFfkiRJkqQZYtCXJEmSJGmGGPQlSZIkSZohBn1JkiRJkmaIQV+SJEmSpBli0JckSZIkaYYY9CVJkiRJmiEGfUlzKSIOiYispjUrXR9Nv4i4VUS8MSJOjIhLIuKGJt9jEbGmtr1DupTZp1bmmAHWuVNEvCsifhIRf4mIG2vL79Oh/O4RcWhE/DoirqyVzWXv4IzxbzM9ImJ17fX6/UrXR5IGse5KV0CSpGkXETsDxwK3Xum6jEpE3Bf4FrDFgOVfBLwPGxEkSVpxBn2pj+ro/W2qu7fNzN+vXG3UpKoV9hPV3UMzc804ltFM+DALIf9q4EjgPOCG6rFfrESllioiAjiMhZB/KXAU8Afgxuqx82rlbwP8Jwsh/7fAicCfm6jvSqu3ymdmrGRdJEkCg74kScsSEdsDD63uXgPcPTN/tYJVGoX7ArtW8xcBd8rMi3uUfxoLvym+A+ybmdePsX6SJKkHg76kuVS1tK9Z4WpoNtyzNn/cJIf8zDwGGKTF+V61+a/0Cfnt5Q8z5Pdny78kaZzsRydJ0vJsWZu/YMVqMVrD7tMs/g0kSZpaBn1JkpZnvdr8jV1LTZdh92kW/waSJE0tg77UQf1SOiwMxAfwu/olkbpdZqrTZZMi4u4RcVBE/Cwi/lw9/+UO2753RPxTRHwtIn4bEVdExLUR8YeI+EFEvCUi/mrA/fh9rS6rq8d2jIh/i4hTI+LS6hJYZ0TEf1UDag2y3k0j4oUR8fWIODsiroqI66rLb50REUdExOsi4i5dlr/ZZcAiYlVEPD0ivhkR50TENdU+fyEi9uiwjvUj4v9FxHer8muruhwaEXccYB+6Xl6v9RwLg+oBPKvLa3/MUpdp2+Z6EfGIiHhnRBwdEedX+3R1RJxb/V1eGhGbDrBvHS8FFRG7RcRHI+LM6jW7JCJOql6rTfqtt20bm0fES6rX+vfV+/Saqt7fjXKZuTsPsJ6IiMdXr9uZ1XtobfWafjkinhURY+lmVr2P/zEivl39jddWf5OfRcT7oow6323Zmy5TR//X/JAR1PVeEXFwlO+EqyPiouq1e3VE3HKI9XS9vF79cwm8sfbUGzvs05vqnyFg71r5ozuU36e2nZt99iJii4g4ICKOjYjzIuL66vlFI/5HxDYR8ezq/XJKlO/S66J8l50REZ+IiEcM/IddvO4HRvmOPiUi/lit97KIOK3a3tMiYqNOf8u29XT6zN/0Hdyp3ID1u3OUSx2eEhEX1z5vx0TEayLiVgOso+MlGKvP4BFRvkOvqfb/OxHxdxExli4GEbFVRLw2Ir4XERdU27242r93RcSdBlhHt++6B0b5rjsjyndKRsR7u6xj+yj/V39avd6XRcTpEfGeiLj9MvZvp4j4l4g4rnqdrqner6dExLsjYtcB1rGcz8pWEfHKiDgyFv6ftD4rp0fE5yPi5RFx26Xuo6QJl5lOTk5tE7AayCGmfdqWv+m56v6bgOs7LPfltuVOGnB71wKvHmA/fl9bZjXwOMro2d3WexVlEK1e69wDOHeIv826Hdaxpvb8IcBWwHd7rONG4Nm15W8H/LxH+WuAx/XZj0Nq5df0eK7fdMxSl6ltbyfg4gGXvRh42BDv399T+mT/K2UE+G7r/S2w84CfjxdSRlMfpL6P7LGeuwGnDLCOMyiDwY3yM74f5RTzftv+b2DjDsvvM8Trfcgy6/rvdP7+aE3nAPej7XPVZV31ere/D9f02Eb79CaGe8/vU9tOfbk1wAOAs7sst0VtuX/s83eoT98FbjXg33dHygCCg6z3hCW+BxJY3ev/RI/6rUu5okG/fb8EeFafdS16jwC3AL7SZ73fBDYa8efvOfT+X5TV/r4HWGeI77r1gQ91Wd97Oyz/+Orv1q0Oa4HntW+nz76tAt5MufpGr/27DngLED3WdUit/BoG/6w8lsG/o88d5Wvr5OQ0OZOD8UmdXQa8v5p/JrBZNX8YcHmH8ud1eAyAiHgVC61jv6GE+asoPxyuayveaqm/Bjgd+DXwF0pQ254yEvZWlNNk3xERZOY7B9ynh1J+AK1D+aHwQ8p+3pbyg3VdYCPgsxFxl8z8XYd92Qn4Ngt/j+uAk6t6XgVsUu3X3YHNB6zXusAXgT0pP6q+V9XvlsBDKJf3CuCjEfEr4EzKZb52qup/LCWwbVvt48aUH3ufjog7d9qPARwJXAHcoaoDlLD53Q5lf7WMZVo2AVqtcZdQXvuzqvWtT3mN7gdsWJX7RkTsnZk/GHB/3gi8oZr/CXAa5bW7BwuDqN0W+HJE3Ct7DKQWEf8JvKT20A2U98CvKK/f1tV6V1fPb9hlPXsBR7DwPmm9l35Vza8GHlgtf3vgBxGxR2Yu+zJ1EfEUSoBfp7YP36e8jzelvBd3qJ57OnDbiHhwZq6treY8Fr4j+r3mJyyjrm8F/qn20FWU9/8FwHbAgylB9RtAxxbLIfyChX3aHbhPNX8y5Xur7iTK3+uK6v7jWfibfZmbfyd2+468HaXet6B8tx4LnE/p879XW9kdWHjNflvV9yLK+24L4K5A6yySBwNHRsT9MvOaLtsmylkn/0v5fm35I/CDat0bArtQBlzciMXv5/p74O9rj7+fzi7rVo8e9VsFfAH4m9rDfwaOqW53Ah5E+Z7YAjgkIrbIzIMGWP261bofQjl4/APK/6gNKZ+B1v+jRwL/Abxo2Pp3EhGvBN5Ve+gaFr73t6Tszy0pr/VLgb+KiCdlZg6w+vcAL6jmTwNOpXyf7Epbl5KI2Bf4LAsDU98IHE/5H7Mp5f23PXAw5SDTIPu2DvAZ4Im1h8+jfF4uqtZ7X8p7al3gdZTvzP0HWP1An5WI2A34fG2/rqZ8B/2e8rfevNr+XSn/LyXNqpU+0uDkNOkTba3iAy7TftT+Ujq0MAMbtN3/APBourSeUH74rKH8uE7Kj7PbDlj3tdVyf0dbCwLlx3G9lf7jXdb3nlqZY4EdupRbl3Iq76fo0BrD4laltdXtl4Ft2sptWW2nVfYo4EvV/AeBzdrK78jilv6O+1GVPaRWbk2XMvV6HjLga7+UZW5DabHbHVjVpczmwLtr6/5lj7Kra+WuofyA/TWwe4eyT67eR63yz+xRzxe2vbc/A+zUpexdgIOAh3d4bjvK9dhb6zkU2L5DuW0pB4Fa5X7a6f005Od5F8qP5NY6TwRu11ZmFfByFp8B8Z+jfM0HrOte1WvXWvfngC3bytwCOLz2WvesBz1a9NvKvalW7k0D1PWYWvl9+pStf/auq27fB2zaVm69+nuc0gr8D8Cte6z7bpQDE631/3OPsptTQl2r7EWUywTerIWVcjDu6XT/brzpczHE69t3GeDVbZ+5twHrd/g8fbvtb3rfAd6rre/eb7T/TSnf4e+qlb2RAf//9dnn+7P4zIRvANu2ldkAeGfbfr+8y/pW18q01ns2sGeHshvU5m/F4u+gnwJ3bCu/qvr738jiz9bve+zfm2vlLgCe0OX99GQWn9Hwt6P6rLDwPzIpgX/LLuvekPJ740PLfV2dnJwmc1rxCjg5TfrE8oP+DcBeI67TU2rrf8eAdb+R3qdR71srezmdT7n/Ua3M7ZZR/zVtf6Oj6RLgKCG4/ZTVQ3qs+wG1cpd12o+qXP0H1JoB6tl1m8tdZsi/3Qdr639UlzKr2/5eF9PloExVvv6D/ptdymxZ/T1b5T64jH34WG09B/Upuw6Lu3U8ZZl/v0Nr6/oVcIseZV/W9jnueFBtXK85pXWxtd4je3xGVrE46HWtB5MX9BM4eFR/s2r9t2ChW8b5Pf5u/16rw6XA7ZexzZv2Z1TLUA5E1A9KvavHujZgcdevowZ4ryblQGq378hoW+drRvDafK+2vuNpO2jRVvagWtm/0HZgtyqzum1/rgR2HaAeb6ktcyFtB5nbyr6+bRu/71JuNQv/q/4E7NKnDg+qrfPndD4gMPRnhYVuYGtpOyDg5OQ0X5OD8Unj9/nMPHbU62ThlNmHDrjM1zLzWz2e/wblBw+U0ws7DWhXPx3/ogG3O4iXZeYNnZ7IzLMop5S2XENpZekoM4+n9FmG0sXgDqOq5IT4RG1+0Nf+rZl5fo/nP16bv0+XMvuz0GXjLMoptUOLiK0pZ5VAeb+9plf56n3x+tpDz1jKdqttb0E5SNby6sz8S49FDqJ0o4ASpgc5vXYkogwoef/aQ//Y4zNyI6U7RTZRtxFbS4/P81JUr+mXqrvbAzcb1C0iNmDx6favzcxfjrIeI/B0yncxlNbnN3QrmKV7wj/UHnrQgAPJvTS7dNXJzGTx983uA6yvq+o9Xe+O8Q+ZeW2PRV5HCa1Q/vc8fYDNvC8zz+xTj6CcHdLy5sz8Y49F3kn5zuvnABa6lrw5M3/Tq3BmHk05QAfl/+09+6x/0M9K6//0VZl5Rc+SkmaaffSl8fufpSwUEXej/ONfTfnHvUFbkdaP+rtGxKrqx34vn+v1ZGZmRJxKOQ2UaruntRU7B/jrav6FwDv6bHMQv8nMn/QpcxqlzyjAcX1+lAH8jNJ3FUrf858to36Nioj1KH047055LTZj8Xf1ZrX5ewy42p6vPaVf+dWUPsi3iojNMrN9LIpH1uYPzh79nvt4KKU/McAXc3G/925OpLTUbULpt79U92fhc3QxZYyArjLzxoj4OHBg9dCDlrHtYdW39ePM/Hmvwpl5ZkScQBksc5p8JzMvGXahiNiGMm7FHSlnm2xCaYFu2a02fw9u/l12P0qfdiit5ocOW4cGPLg2f3hmXt2rcGaeFBGnUfpeQ3kP9Tp48dvM/L8+dTilNr+6T9l+6u/pn2TmKV1LApl5ZUQczsKYIA8CPtxnG4P8v70jC//nrgc+3ace10XEp1k8VkYnj67N91xnzVFA6yoRDwR6vR6DflbOAXYGtoyIp2TmZwasi6QZY9CXxu/HwxSOiGdRWjL6Xnqnsh7lVNV+PwDaf+h28qfafKfB9D7Lwo/Pt0fEwyiDmv1vZp47wPo7GSSE1/ft9K6lFvy5Nj/ooIArKsplu15HOYCy1YCLDVLuL5l5Tq8C1UGeSyhBHxZOGa6rX2ru6AHr10k9iN4tIt435PJbRsQmmXnlErZdbzE7qVtLZpvj68tHRFQtneNWr+sPB1zmh0xf0B/2+/FOlAOMj2Kh9bSfTp+T+9XmT+gXoldI/T0w6MCbx7MQ9O/VqyCj+Z8wjKXuTyvo99uf6xhsn+r1OCMzLx1gmZ6fwerShq3/2ddSLkk5wGoXnW2yU9dSxaCflc8Cr63mD68GH/0McPQAB8klzRCDvjR+A53iXp1O+DHg2UvYxmb0D/q9TlFuqV8FYL0Oz3+U0rL7uOr+Q6qJiDgbOI4SAr+SmRd3WH6p9aoHsmHLd9qPiRIRW1JadgZtoW/ZrH+Rgf5e0OO1j4jNWTgIAGXE86XaoTb/QJbWQr8lpYV/WFvX5gc5FRfKOBct61P+5kOPnr4E9bqePeAyg5abJAN3AYqIR1AuBdd+dlM/nT4n29bml/N+Hqflvl/7HQgcxf+EYYx7fy4Z8ODdOD5b9as2rM/ibiGD2rLP84N+Vv6dMhbH/ShnuTy+mqiuXHMcZdyTIzqcuSVphthHXxqzIVqKns/ikP8t4FmU1pktKSMGR2ti8Q+lQT7Ly26FrPoIP4FyXeH2U4n/itJ/+qPA+RHx0Yi45RjqNY39kPt5Pwsh/1rK3/CxlBaizSiDZbVe99vWlmvkdefmQWk5/T5vsZyKVJZ6kHrT2vygBwrayw1ycGUU6nW9asBllnLwY6UN9P1Yje3wGRZC/lmUU6kfSDl4tDFl1PHW5+Rfa4t3+pzUX8dJ7ce83Pdrv/dq09+l496fQf/XjuOz1cT32kD7V53ttDfwKhYfKIHS9e45lDPxLoyId1Znk0maQbboS5PjlbX5N2bmm/uUbypwLFKdtvwx4GMRsSvlB8UDKH3od66KrQc8F9inuvb5KAfumykRcWvgqdXd1pURep0avxKve3urz6YsPRzVfzC/PDPfs8T1LEW9zpsMuEx7uaZawOp1HfRa14Pu0zR6Pgth6lTKlUx6nVnR73NSfx037VpqZV3Bwj4v5f06aa21y/38jWp/xvHZqn+vXZaZowj+S1YNcvjuiDiQcsnJvShjlOwJ3LoqtjHlYMBeEfGgCe2+ImkZbNGXJkBE7MTCIHeXUq6V3Kv85vQ/zW/sMvPMzDw4M9dk5i7A7YH/oFyKDMo1y9+4YhWcDg9mYRCxb/YJ+VAuN9ioKlDVfwTetlvZAfyhNr9d11LjUT/g9FcDLrO6Nn8tzYWnpdS1Xx/fafaQ2vy/9wn50P9zUn8fLuf9PE7Lfb8O2n2qKZOyP+P4bNXfT5tHxKAHEMYqi1Mz878y82mZuSNlrIP61RTuy9K6GkiacAZ9qb8mTm+s91s+IzOv61qyeCCLR5ieCFXwfwWLw/3frFR9RmApr/2wy9Rf+0EGktqrf5GxOLE2/+CupYZbzwOWsZ6lqI/yvXtEDDKYW/0Sd6c0NBAfLK7r/bqWWmzaBuIbxsCfk+p17ffeOqE2v8eEnr5cfw/cv2upxerl+o2o37RJ2Z96Pe4QEYO0vvf8bGXmBSxc1hUG37/GZeYpmfkcShexlmn+Py2pC4O+1F/98l/jGtitfmm8QVoCXjSmeozKV2vz23YtNfmW8toPu8zAr33VSvTMAesxat+szT+/ug75UnybhcES7x8Rd19etYbyA6B1WcCtgX17FY6IVSweN+OoMdWrk/qZHbtFxB16FY6I2zHbQX+Y78jH0f9skRNYGMB0M5b/ubrpc19dInMU6u+3p0bEhr0KR8RulNO0W5ZzdYxxqO/PPatLyHZVfd89tfbQqD5/ZwAXVvPrAk/rU4++ZSpfq82/eGlVa9Ss/J+W1IVBX+qvfnmhW3cttTy/Y6El+C4RsXO3gtWlcvYbUz16iohBL/tWP81xmi/ns5TXfthl6iN+P7pPK/OBrNwPsoNZ6Nt6G+C9S1lJZp4HfKq6G8BhVVeUviJiVTUo25JUl9GqX1P6XRHRqy/3P7BwqbIbgY8sddvDysxfsPgSZAdVBx5upnr8P5nAs3xGqP456dr6WL0/+o77kJnXAB+oPfSOiLj90qs3lv8Tn2bhM7c9PbpBRcT6wH/VHjo6M385onqMRGaeARxbe+h9fQ6K/DuwTTV/GYNfm75fPW4EPl576I19vldeyWDdOw5kodva4yNizaB1ioiRdGOKiA0iYtAxJ2bl/7SkLgz6Un/167w/eRwbqC5F1zqVdBXw+fYfnVXI+Xvgk5QfE2tp3tkR8eGI2LtH6NiNxT84v9mp3JSov/b3jYhB+nMOu8xRLIz8fDvg0IjYol4gIjaPiI8AL2SFRlbPzEuA19QeemFEfCYiduxUPiLuHBEHRcTDOzz9euCCav5uwEldyrXWtWNEvAz4JfCUpe3BTd7MQnjaFfh2+4G16rN2AGW8iZb3Z+bvl7ntYb2ehQOADwc+3em9QflOeBRlDIFZdURt/p8i4u/aC0TEvYDvUQLMIJ+TdwK/qeZvAXw/Ip4aHS6AHhEbR8TTIuLj7c9VRv5/ohqH4N9qD702Iv6tCvX1um1Luexgq4vH9ZQrEkyif2IhDO8JfCEitqkXiIj1I+JtwMtqD/9rZo7y6gjvYaHP/3bA/7afNVN9D7wCeAsDfLYy8zeUgxMtH4+Id3c7QB4R60bEwyPikyzuTrAc2wPnVNvdrVuhiHgYi69MMc3/pyV14aj7Un9fAF5Qzb84Iu5N6StYvyzPB6t/8svxL8B3KEH/nsBpEXE8pSVrU8qPota1el8P7E/zA7NtVG13f+DyiPgJ5TJXV1KucXwH4M618hcBb2q4jiOTmRdGxA8o/S03BE6NiG9RQmrrVOLfZOYHl7pMZl4SEe8G3lA99wzgURFxInAe5TXfhzLq8/WUU0IPHdMu95SZH4iIu7DQdeRvgSdGxMnAmZSDT1tT3r+rqzI3O304M8+PiMcC36C8b25PCdznASdR3jfrVc/dhREOlpaZv4mI51EuL7UO5XT3X0bEcZTQ1/qs1VtlTwBePao6DFHXY6r3xquqh54C7BcRR1FOPd6WMl7CppTT0A9iij9vfRwKvIJycGYD4JMR8TrKCPxrKe+TVrA5ldJFpOdrlpmXRcQTgP+ltBxvBRwOvLf6DF9E+QzvQhnAbKNq3Z18AXhENf+OiHgUcDoLXUUA3lIdMBvGuyljsjymuv/PwIsi4mjKa74T8CAWLjsI8KrMPJEJlJk/iIjXAu+qHnoM5QDy0ZQ+7ltS9udWtcW+xABnaQxZj4sj4rnAFynfA3cHTo+I71O+yzaljIfSGhviVZTPVz//SvnuexblDJtXAC+JiB9Rvl+uAjavytyNhdH8/9S+omXYotruKyLiz5SDCOdRPifbVNutH9w8k8H2TdK0yUwnJ6c+E+WUwewx7dNW/qbnhtzOC4HremznBsoPiaBcH7f1+Oou6+tbpq38IbXyazo8f3mfv0N9+glwhy7bWVMrd8gA9XpTrfyblrsfg5apyu1GOW20234es9xlKD80D+3z97yE0vd4de2x33epc98yy3mvAAcAfxngPXAj8PAe67kNcOQQ76kLgUeM6DO9X7W+ftv8NLBxn3UN9X5eQl3fRvnsd6vjeZQDFn3rQTlo1PW9u4zP3DG18vss9/PZZbldKWGp1+v1fcpBmoHrX70Pvzfge/D7Xdax3gDrWN22zE3P9anfupSzpK7vs/5L+/09h32vsoTvkgFfy+fS/zvkekoXoXXGVT/gSdXfrVsd1lIObA+1HeAlwJ8HfE/dCHxlFJ+V6r2/dsDtJuVA7Hajel2dnJwma7JFXxrMMygD7TwNuAel5afnwEhLkZkfqlrxX0Zp1diBclmz8yineH88M08B6HB2aRNuRWnl2Bu4D+WSgNtS/hZXAecCP6a0bn01S1/IqZaZP6oGjXoJ5TXZmdLa07Uv/bDLZOYNwLMi4nOUH5X3pbRsXQKcTTkt9+NZWsJXj2bPli4zD4qIT1FCwyOAO1E+E1BOh/0FJfR8JjN/1WM9ZwEPjYg9KKc770VpodyS8iP/T8CvgB9RznY5JjOv77K6Yffha9UAds+hhP47V/twNXA+5QfwYTkBLaOZ+U8R8XnK2RwPppzlcQXl4MwXgY9kaaFcTh/ziZeZZ0bEPSmXAnsC5UyQ9SkHbE6jHJT5bGbeMMz3Y/U+3DsiHkJ5H7bOntqccrbSWZTvta+zeACz+jqui4iHUgLsEylnGNyyqt+yVO/5l0TEhyjv14dQPiebUcLkmZSzYw7OzFG2DI9NZn4sIr4CPJ/S7WRXyt/rckrL/pGU77yfj7ken6/O3ngJ5eyC21AC8LlVHT6Ymb8Y9ns3M/8rIg4B/h/wMMoZA1tT/ldeXq3/dMoBsm9k5jmd1zSczDwvIm5F+Z7YE7g3pUvY1pT34uWU9/PJlO/nI0exXUmTKTJzpesgSZIkSZJGxMH4JEmSJEmaIQZ9SZIkSZJmiEFfkiRJkqQZYtCXJEmSJGmGGPQlSZIkSZohBn1JkiRJkmaIQV+SJEmSNBci4jYRcWBEnBERV0bEnyPi5Ih4VURsPKZtbhwRv42IrKbfj2M7i7aZmePehiRJkiRJKyoiHgN8Cti8S5EzgX0z89cj3u67gVfUHjorM1ePchs326ZBX5IkSZI0yyLinsDxwEbAFcDbgKOr+08Fnl8VPRPYLTMvH+F2Twauq6bNaCDoe+q+JEmSJGnWHUQJ9dcDD8/Mt2bmDzPzqMzcH3h1VW5XFre+L1lErAMcDKwDvBX48yjWOwiDviRJkiRpZkXE7sCe1d2PZeYPOxQ7EPhFNX9ARKw3gk0fANwb+CXwjhGsb2AGfUmSJEnSLHtcbf4TnQpk5o3AYdXdLYAHLWeDEXEb4M3V3Rdm5rXLWd+wDPqSJEmSpFn2wOr2SuDHPcp9rzb/gGVu8wPAJsAnM/OYZa5raOs2vUGNVkRsANy1unsRcMMKVkeSJEmad+sAW1fzp2XmNStZmWFExLrAditYhe0YINNk5rlDrveO1e2vM/P6HuXO6LDM0CLiqcCjgUsYUX//YRn0p99dKaM4SpIkSZos9wF+tNKVGMJ2wDkrXYkBxMAFIzYEtqru9jxAkJmXRMSVlJb4nZZUsYgtgfdWd1+bmRctZT3L5an7kiRJkqRZtVlt/ooByl9Z3W66xO29C9gW+CFlxP0VYYv+9LvpCNFJJ53E9ttvv5J1kSRJkubO2trJ4BdccAF73X/31t0Vac0dhfV3fRKx7iaNbCuvv5Jrz/x86+59gAtHuPoNa/ODDIjX6mqx0bAbioi9gOdQLuH3wszMYdcxKgb96XdT/5Xtt9+eHXfccSXrIkmSJM28tb16eS82teNnxbqbEOsvtVF7WS5cQh/8XtbW5tcfoPwG1e3Vw2ykGjvtI5RuBQdl5k+HWX7UDPqSJEmS1McQ4X42xKoyNbWt8bm8Nj/IkYvWaQyDnOZf93rg9pQxDt445LIjZ9CXJEmSpA7mLtzPoMxcGxF/Am4F9Dz9uRpIrxX0hx2U8DXV7ZHAYyI6jhfYWvcm1cj8AH/MzKOG3FZfBn1JkiRJwmA/w34O7AncLiLW7XGJvTvU5n8x5DZa3QKeXU29bAUcXs1/Dxh50HfUfUmSJElza0Y5rVgAACAASURBVO31C5NqAohoaBr73ny/ut0EuHePcnvX5o8fX3XGz6AvSZIkaa4Y7ufOl2vzHVvbI2IV8Mzq7qXA0cNsIDOj3wScVRU/q/b4PkPuy0AM+pIkSZJmWj3YG+4H1BqMr6lpjDLzJOC46u5zI2KPDsVeAdyxmj8oM6+rPxkR+0REVtMh46vtaNhHX5IkSdLMMdCrzQGU0/E3Ar4TEW+ltNpvBDwV2L8qdyZw4IrUcIQM+pIkSZJmguF+hFr955va1phl5ikR8RTgU8DmwFs7FDsT2DczL+/w3FTx1H1JkiRJU8tT8jWozDwCuBvwHkqov4rSH/9HlMvj3TMzf71yNRwdW/QlSZIkTQ0DvZYjM88CXl5Nwyx3DMu8PkBmrl7O8sMw6EuSJEmaaIb7FdDAIHmLtqWRMuhLkiRJmjiGe2npDPqSJEmSVpzBfsLM2GB888agL0mSJGlFGO6l8TDoS5IkSWqM4X5aNNhH34vBjZxBX5IkSdLYGOyl5hn0JUmSJI2U4V5aWQZ9SZIkSctmuJ8xQYOD8TWzmXli0JckSZI0NIO9NLkM+pIkSZIGYrifI9HgYHyNDfo3Pwz6kiRJkroy3EvTx6AvSZIk6SYGe2n6GfQlSZKkOWe4181ENDgYn6PxjZpBX5IkSZpDhntpdhn0JUmSpDlgsNdQHIxvqhn0JUmSpBlluJfmk0FfkiRJmiGGe42EffSnmkFfkiRJmmIGe0ntDPqSJEnSlDHcS+rFoC9JkiRNAcO9GuVgfFPNoC9JkiRNIIO9pKUy6EuSJEkTwnCviRHRYIu+g/GNmkFfkiRJWkGGe0mjZtCXJEmSGmSw11SIgFVeXm9aGfQlSZKkMTPcS2qSQV+SJEkaA8O9pJVi0JckSZJGwGCvmeLl9abaXAb9iNgceDRwH2A34NbA1sBGwKXAz4FvAB/LzD8NsL77Ay8G9gS2rdZxKnBIZh4+jn2QJEnSyjPcS5pEcxn0gd2BbgF8a2DvanpVRPxdZn6724oi4k3AvwD1w1DbAg8HHh4RzwCelJlrR1FxSZIkrRyDveZGRHOD5DkY38jNa9AHOAc4GvhxNX8BJazvCDwJeAKwFfDViNg9M09tX0FEvAB4Y3X3N8BbgdOAHYADgAcB+wIfB54+zp2RJEnSeBjuJU2beQ36R2fmX/V4/rMR8TjgS8D6lDD/hHqBiLgl8I7q7tnA/TLz4trzX6uWfwzwtIj4SGYeM7pdkCRJ0rgY7jX37KM/1ebyL5qZNwxQ5svAL6u7e3Yo8jzgFtX8a+ohv7aNFwOtbb1qabWVJEnSuK29fvEkSdNsLoP+EC6vbjfs8NzjqtvLgC92WjgzzwWOrO4+JCI2G231JEmStFQGe0mzyqDfRUTcHrhHdfeMtufWpwzoB/DDzLy2x6q+V91uQBnhX5IkSSvEcC8NqDUYX1OTRsqgXxMRG0fEX0fEyykBvTWGwXvbiu4KrFPNn0Fv9efvuPxaSpIkaVCeki9pHs3rYHw3iYg1wCd6FHk78Om2x3aszZ/bZxPn1OZ3GrxmRUTs2KfIdsOuU5IkaZYZ6KURiGhwMD5b9Edt7oN+Dz8B9s/Mkzs8V+9rf0Wf9VxZm990CfU4p38RSZKk+WWwl6TFDPrwZeBH1fxGwC7A3wKPBw6PiJdm5tfalqkPzterfz7ANbX5jZZTUUmSJBWGe2nMmuw7b4v+yM190M/MS4FLaw+dDPxPRPw/4FDgKxHx3Mw8pFZmbW1+/T6b2KA2f/USqtjvdP/tKHWWJEmaaYZ7SRrM3Af9bjLzkxGxH6V1/30R8dXM/HP19OW1ov1Ox9+kNt/vNP9O9eg5BkB49EuSJM0og70kLY2j7vf2lep2E+CRtcfr4bvfYHn1Fnn720uSJPXgCPnShIhVzU4aKVv0e7uoNn+b2vyZwA2US+zdoc866s//YkT1kiRJmhmGekkaLYN+b7euzd902n1mXhsRJwF7AHtExPqZ2W1Qvr2r22tYGPRPkiRpbhnspSngYHxTzXMkentybf60tue+XN1uDjyh08IRsSPw0OrudzPz8k7lJEmSZp2n5EtSc+Yy6EfEmojYsE+ZlwGPru7+DjiurchHgb9U82+PiFu1Lb8O8AHK6f0A71pWpSVJkqZIPdgb7iWpWfN66v6bgAMj4gvA94HfUE7N3wy4K/AM4AFV2WuB/TPzhvoKMvPPEfEa4EOU/vsnRsRbKC3/OwAvBR5UFT88M48Z5w5JkiStNAO9NEuaHCRvLtufx2pegz7ALYHnV1M35wLPycwjOz2ZmR+OiB2AfwF2AT7eodg3gOcss66SJEkTyXAvSZNnXoP+I4B9Ka32twO2BW4FXA38EfgJ8DXgs5l5Va8VZeYbI+LbwN8De1bruhQ4FfhEZh4+rp2QJElqmsFemhMOxjfV5jLoZ+YvgV8C/zGi9f0A+MEo1iVJkjRpDPeSNF3mMuhLkiSpO4O9pNKi31DfeVv0R86gL0mSJMO9JM0Qg74kSdKcMtxL0mwy6EuSJM0Jg72kgUWDl9dr7DJ+88OgL0mSNMMM95I0fwz6kiRJM8RgL2kkvLzeVDPoS5IkTTnDvSSpzqAvSZI0ZQz2ksbOPvpTzaAvSZI0BQz3kqRBGfQlSZImlOFekrQUBn1JkqQJYbCXNDEcjG+qGfQlSZJWkOFekjRqBn1JkqQGGewlTYWIBgfjs0V/1Az6kiRJY2a4l+bHjTfmSldBMuhLkiSNg+Femg83zGqwt4/+VDPoS5IkjYDBXpoPMxvsNVMM+pIkSUtkuJdmn8Fe08igL0mSNCCDvTT7DPZFEERjp9R76v6oGfQlSZJ6MNxLs81gr1lk0JckSaox2Euzz3A/gGiuRT8djG/kDPqSJGnuGe6l2Waw17wx6EuSpLlkuJdml8Fe886gL0mS5oLBXppdBvsxCJobI88z90fOoC9JkmaW4V6aTQZ7qTeDviRJmhkGe2k2GeybFw0OxtfcZfzmh0FfkiRNNcO9NHsM9tLyGPQlSdJUMdhLs8lwP1ls0Z9uBn1JkjTxDPfS7DHYS+Nj0JckSRPHYC/NHoO91ByDviRJmgiGe2m2GOynm6fuTzeDviRJWhEGe2m2GOylyWHQlyRJjTHcS7PDYD/bbNGfbgZ9SZI0VoZ7aTYY7KXpYdCXJEkjZbCXZoPBfs5FNTW1LY2UQV+SJC2b4V6afgZ7aXYY9CVJ0tAM9tJsMNxLs8mgL0mSBmK4l6afwV6DcjC+6WbQlyRJHRnspelnsJfmk0FfkiTdxHAvTTeDvUYlormWdhv0R8+gL0nSHDPYS9PNYC+pE4O+JElzxnAvTS+DvZoSNNhH3+vrjZxBX5KkGWewl6aXwV7SUhj0JUmaQYZ7aToZ7CWNgkFfkqQZYLCXppPBXpPKy+tNN4O+JElTynAvTR+DvaQmGPQlSZoSBntp+hjsNbWimpralkbKoC9J0gQz3EvTx3AvaaUZ9CVJmiAGe2n6GOw1kxrso4999EfOoC9J0goz3EvTxWAvadIZ9CVJapjBXpouBntJ08agL0lSAwz30vQw2EteXm/aGfQlSRoDg700PQz2kmaNQV+SpBEx3EvTwWAv9WeL/nQz6EuStAyGe2nyGewlzRuDviRJQzDYS5PPYC9p3hn0JUnqw3AvTTaDvTQGUU1NbUsjZdCXJKmNwV6abAZ7SerNoC9JEoZ7aZIZ7KXmORjfdDPoS5LmksFemlwGe0lansaCfkTsAuwN3BvYGdgO2AS4DrgUOBs4HTgRODYzr2mqbpKk+WC4lyaTwV6aPLboT7exBv2IWA08G3gqcLv2p2vzCdyvdn9tRHwb+BTwlcy8YYzVlCTNKIO9NJkM9pI0XmMJ+hGxG/DPwL7AKhaH+uuAP1fTJcBGwC2BLYHNqzIbAY+tpvMj4j+B92fmVeOoryRpNhjspclluJek5ow06EfE7YB3A49hIdz/CTgCOAE4CTitWwt9RGwD3AfYHXgIsAdwa+DtwCsj4g3ARzLT/xSSJMBwL00qg7003YIGT933+nojN+oW/Z8B61Na7b8AfBr4VmYO9DMsM/8IfL2a3hgRtwGeDjwL2BX4AKXl/+0jrrckaUoY7KXJZLCXpMkx6qAfwIeBt2Xm2ctdWWaeBbwtIt5O6ef/OsqBBEnSHDHcS5PHYC/NNgfjm26jDvo7Z+Z5I14n1an6hwOHR8T2o16/JGmyGOylyWOwl6TpMdKgP46Q32EbF4x7G5Kk5hnupclisJfmXEBjXedt0B+5sV5eT5Kkbgz20mQx2EvS7JiooB8RGwBbABdl5o0rXR9J0mgZ7qXJYbCXpNm1qomNRMSmEfHoatq0w/NbRcQXgMuA84FLIuLAKvhLkqbU2usXT5JWzg035qJJknqJWBiQb/zTSu/t7GmqRf+JwCeAc4HV9SciYhXwTeBeLPTO2Ax4aVX2iQ3VUZI0AgZ6aTIY5iVpfjXSog88orr9UodT8p8C3Lua/z/gPdVtAI+LiEeOo0IRsVtEvCEivhMR50bENRFxRUScGRGfiIgHDrCONRGRA05rxrEfkrTSbLWXJoMt9pJGqbnW/OYu4zdPmmrRvwuQwA86PPfM6vbHwP0z8/qIWA84DrgP8CzgW6OsTEQcC+zZ4an1gb+upjURcRjw/My8dpTbl6RpZ6CXVp5hXpLUTVNBf5vq9nf1B6tAvxflIMD7M/N6gMy8LiI+BOxeTaO2Q3V7PvA5ykGFs4F1gD2AVwC3phyEWA94+gDrfES1vm7OXWplJWmlGeyllWewl9SoJlvabdEfuaaC/i2r2/aW8fsAG1GCfnur/ZnV7XZjqM8ZwOuAL2TmDW3PnRARnwSOB3YFnhYRH8rMY/us88zM/P3oqypJK8NwL60sg70kaama6qN/VXW7Tdvje1W3v87MP7Q9d/W4KpOZ+2XmZzuE/NbzF1Na9VueNK66SNKksK+9tLLsYy9JGpWmgv5vqtt92h5/PKU1v1Nr+dbV7R/HVKd+jq7N77JCdZCksTLYSyvHYC9pokXDk0aqqaD/v5SX78UR8aiI2DQiXkI5dR/giA7L3K267dXvfZw2qM13bPmXpGljq720cgz2kqSmNNVH/yDghcBmwNfanvsFnYP+vpTW/lPGW7Wu9q7N/2KA8p+IiNsDWwGXAb8GjgQ+mJnnLbUSEbFjnyLjGMNA0gwx0EsrwzAvaZo1edk7L683eo0E/cy8ICIeA/wPsH3tqd8CT8rMRf8JI2IXFi5/d2QTdWzb/irgtbWHPjvAYvvU5m9VTfcFXhERL83MDy+xOucscTlJc8pgL60Mg70kaVI01aJPZh4XEbcFHkBphb4A+H7rknpttgf+rZr/TkNVrHsZC5f1+2Jm/rhH2d8CXwR+yEIo3xl4ImUQvw2BD0VEZuZHxlRfSXPOcC81z2AvSdMnIm4D/CPlDPKdgGsoY8p9lnLJ96t6LN5v3XcEHkLpon5XymD0W1G6gv8BOBn4NPDV9sbuUYsxr3/qRMTelLMI1qUMBHjXzOw4IGBE3AK4rNuLFBH7UQ4CrEe58sAumXnhkPUZ5NT9kwHOOeccdtyxX3FJs8BgLzXPYC9pEOedey633+WvWnd3ysxzV7I+w6iyxzkAOzz746y76VaNbPf6Ky7m/E88p3V3bH+z6izzTwGbdylyJrBvZv56iev/FPCMAYp+D3hiZv5pKdsZRGMt+tMgIu4MfInyd1kLPLlbyAfIzL/0Wl9mfi0i3kw5O2Fj4LnAW4apU783uf1ZpPlgsJeaZ7CXpNkREfcEPgNsBFwBvI1ypbWNgKcCzwd2Bb4eEbtl5uVL2Mz1wInA8cBpwIXARcCWwB2AFwB3oYwHd0REPDAzb1zOfnWzIkG/6oO/B6U1emPgA9W161dM1a3gO5QX4QbgqZnZ6bJ/w/oI8GbKVQf2ZsigL2l+Ge6lZhnsJWlB0OBgfM1cX+8gSqi/Hnh4Zv6w9txREfEr4J2UsP8K4E1L2MbzunRNBzgyIj5I6SLwBEoe3g/46hK201dTl9cDICLuFRHHUk6JOBR4B/BGSt+Ferm/j4g/RsSvImK9Buq1A+V0/R0oI/0/JzO/Mop1V2cEtE7JuPUo1ilpNnnpO6lZXu5O0jisWuUZt5MmInZnYbD3j7WF/JYDWbja2gFLyaE9Qn7r+RuAd9Ue2rNb2eVqLOhX/dWPpwzGF7Wpk8MoR1t2phzlGGe9tgL+t9oWwEsy87ARb8ZfD5I6MthLzTHYSxq1dVbFzaZZ0bq8XlPTmD2uNv+JTgWqU+hbOXAL4EFjqku9S8CGY9pGM0E/IrYHDgc2AH4OPArYrFv5qj9E6xSGR42xXrcAvg3cqXrotZn5/hFvY2vKSIsA549y3ZKmj632UnMM9pJGbVZD/Rx4YHV7JdDrimrfq80/YEx1eWpt/owxbaOxPvovAzYBzgL2zMxLoe9AcscATwPuPY4KRcTGwNeBe1UPvSUz3zGGTe3PwpkL3+tVUNJsMtBLzTDMSxolg/yK2a5fC/8SRuW/Y3X76z6n19eD9x27lhpSdRb5XwPPA55dPXwx8N+j2ka7poL+Iymnrx/YCvkDaP2RbzvqykTE+pTR9VtHaQ7KzH8ech2rgS0z85QeZfYD3lDdvZoup4lImi0Ge6kZBntJo2Swb9Oro/U4trXg5KGX6FUwYkMWzrDueYAgMy+JiCspjdQ7DbqNLts9hjIYeycXA48fIhsPramgf5vq9qQhlrmsut10xHWB0o3g4dX8UcDHIuIuPcpfm5lntj22Gjg6In4IHAGcCrQuxbcz8KRqar0JX5mZ542g7pImkOFeGj+DvaRRMdTPlXqX8SsGKN8K+uPIoQD/CfzbuK8611TQb21nmDEBblHdDvJiDOsJtfkHAz/tU/4sSrDvZI9q6uYq4GWZ+ZGBaydp4hnspfEz2EsaFYP98BoaJO+mbdXch3L9+VGpD3h37QDlr6luN1rmdp9NOWAQlMH9dgNeBPwDsHNEPC8z/7DMbXTVVNC/kBKUdwZOGHCZ3avbs8dRoRH4MfB3lJC/G7A95ZSQdYFLgNOB7wIfrS6xJ2nKGe6l8TLYSxoFQ/3Uu3AJffB7WVubX3+A8htUt1cvZ6OZ+bu2h46LiA8Cn6NcWe7kiLj/iPf1Jk0F/eMofe2fDHy6X+GqD/0LKP36jxl1ZTJz2Z/+6soA/80YB1CQtLIM9tJ4GewljYLBfjxWsEV/1OqXsxvkdPxNqtuRn1memWsj4tmUM8Z3At4JPH3U24GGLq8HHFLd/k1EPKxXwSrkHwbsQgn6B4+3apJUeOk7aby83J2k5Zrl69ZrPDJzLfCn6u6OvcpGxJYsBP1zxlSfi4Hjq7uPjYj1xrGdRoJ+Zh4DfIbSP+GIiHhHROxeK7I6Iu4fEa+inPL+ZErI/1Bmnt5EHSXNJ4O9ND4Ge0nLYajXCP28ur1dRPQ6q/0OtflfjLE+F1W3G7NwRYCRaurUfYA1lBEPHw28sppa//WPqJVrfYK/CBzQVOUkzQcDvTQ+hnlJy2GQnywRZWpqW2P2fWBPSmv9vYETu5SrXw7v+C5lRuHWtflxDD7f2Kn7ZOY1mbkfpe/9b1m4MmP7dC7w4sx8Umbe0FT9JM0uW+2l8bDFXtJS2Vqvhn25Nv/sTgUiYhXwzOrupcDR46hIROzIwlXbzqrGfhu5Jlv0AcjMg4GDI+JOlNHqtwHWofSbOAX4v8z014KkJTPQS+NhmJe0VAb56VNa9JsajG+868/MkyLiOEqr/nMj4tDM/GFbsVcAd6zmD8rM6xbXMfZhIfwfmplr2p7fFdgxM4/qVo+IuAVlcPrW6P+HLWF3BtJ40G/JzJ+z0FdCkpbFcC+NnsFe0lIY6jWhDqCcjr8R8J2IeCsluG8EPBXYvyp3JnDgEta/A/DdiDiVcgbBjymXmb8e2A54APDcah7gZ8Dbl7QnA1ixoC9Jy2Gwl0bPYC9pWIb6GdZgH30a2E5mnhIRTwE+BWwOvLVDsTOBfZd5Ov3dq6mXrwPPzsyrlrGdnlYk6EfELpR+CdtRRhr8QHWZAUnqyGAvjZ7BXtKwDPaaZpl5RETcjdK6vy/lcnvXAr8GPge8bxnh+3jgEcBDKV3UdwS2peTdy4DfAScAh2fmOAf6AxoO+hFxL+C9lNMW6j4PXFwr9/fAG4G/AHdq7x8haT4Y7qXRMthLGoahXrMoM88CXl5Nwyx3DD3OPagy63eqacU1Nup+ROxHOcrxABaPst/JYZS+EjsD+zVSQUkrrj46viFfWj5HxZc0DEfBV11ENDpptBoJ+hGxPXA4sAFlAL5HAZt1K1/1ifhqdfdRY6+gpBVjsJdGx2AvaVBe3k6abU2duv8yYBPgLGDPzLwU+l6u4RjgacC9x105Sc0x0EujY5iXNCiDvIYVNDcYn+/O0Wsq6D8SSODAVsgfwBnV7W3HUyVJTTHcS6NhsJc0CEO9pKaC/m2q25OGWOay6nbTEddF0pgZ7KXRMNhL6sdQr3FZtSpY1dD7q6ntzJOmgn5rO8OMCXCL6vaKEddF0ogZ7KXRMNhL6sdgL2kQTY26f2F1u/MQy+xe3Z494rpIGgEH0ZOWz8HzJPXigHmSlqqpoH8cZYyFJw9SOCLWB15A6dd/zPiqJWlQXvpOWj6DvaReDPWaJBHNThqtpoL+IdXt30TEw3oVrEL+YcAulKB/8HirJqkbg720PAZ7Sd3YWi9pnBrpo5+Zx0TEZ4CnAEdExEHAF2pFVkfEFsADgP0pp/gn8KHMPL2JOkoy0EvLZZiX1IkhXtMoIvpdDn2k29JoNTUYH8AaYDPg0cArq6n1i+iIWrnWq/xF4ICmKifNK8O9tHQGe0mdGOwlrbSmTt0nM6/JzP0ofe9/Swn0naZzgRdn5pMy84am6ifNC/vaS0vnqfiS2nkKvqRJ1GSLPgCZeTBwcETcCdgN2AZYB/gTcArwf5nprydpRAzz0tIZ5iXVGeI1T5ocJM8z90ev8aDfkpk/B36+UtuXZpnhXloag72kOoO9pGnVSNCPiN9Ws/+Rme9rYpvSPDHYS0tjsJfUYqiXFnMwvunWVIv+jpTT83/S0PakmWe4l4ZnsJfUYrCXNMuaCvoXArcGrm5oe9LMMdhLwzPYSwJDvbQkDbbo20l/9Joadf/E6vbODW1PmnqOji8Nz1HxJTkKviQ1F/Q/SLl03ssiYr2GtilNHYO9NByDvSRDvSTdXCNBPzOPAt4G3B34WkTs1MR2pUlnq700HIO9NN9srZea07q8XlOTRqupUfffAFwDnAY8DPhtRBwP/BS4BLih1/KZ+eaxV1JqiIFeGpxhXppvBnlJWpqmBuN7E9D6tZaUEfj3rKZBGPQ1tQz20uAM9tL8MtRLkyVo8PJ6+PkftaaCPnCzV89XUzPJYC8NzmAvzSdDvSSNVyNBPzObGvRPWhGGe6k/Q700vwz20vRpsu+8ffRHr8kWfWlmGOyl/gz20nwy1EvSyjPoSwMy3Eu9Geyl+WOol6TJZNCXujDYS70Z7KX5Y7CX5kdEg4Pxee7+yBn0pYrBXurNYC/NF0O9JE2vRoJ+RNywxEXXAn8BfgWcAByWmaePrGKae4Z7qTuDvTQ/DPWS2jkY33RrqkV/qS/dRtW0HfBA4JUR8VHgHzPzmlFVTvPDYC91Z7CX5ofBXpJmW1NB/1+r20cC963mTwV+BFxU3d8a2A24O5DAycC3gc2BuwB7AesBzwNuCTy5iYpr+hnupc4M9tJ8MNRLWgr76E+3RoJ+Zv5rRPwTJeSfBOyfmT/tVDYi7g58BLgP8PXMfFn1+A7AIcBDgSdExCMz81tN1F/TxWAvdWawl2afoV6SBLCqiY1ExD7AvwOnA/t0C/kAmXkqsDdwBvCmiHho9fj5wN8Av66KPmucddb0WHv94klSccONuWiSNHvWWRWLJkmSoKGgDxxQ3b4rM9f2K1yVeSelb/9L2h7/QPX4/cZQT00Jg710cwZ7aba1h3qDvaRxag3G19Sk0Wqqj/7u1e3PhljmtOr2Pm2P/6i63WZZNdJUMdBLN2eYl2abQV6StFRNBf1bVrebD7FMq+yWbY9fXt36C3eGGeylmzPYS7PLUC9p0pSW9qYG42tkM3OlqVP3L6huHzvEMo9vW7alddDgIjRTPB1fWsxT8aXZ5Cn4kqRxayrof5vSr/7FEfGYfoUj4m+AF1Fa7dtH1r93dXvuSGuoxjmInrSYwV6aTYZ6SVOpyf75fjWOXFNB/63AFZSuAl+OiP+JiP0iYvuIWLeatq8e+wzwparslcDb29b1t5QDAEc1VHeNkMFeKtpDvcFemg221kuSJkEjffQz85yIeBzwFWAT4MnV1E0AVwFPyMyzb3owYhdK+D+WcjBAE85ALxUGeWn2GOIlSZOqqcH4yMyjIuJuwH8A+wHrdCl6I/A14OWZ+Zu2dfwGeNBYK6plMdhLhcFemj0Ge0nzJCIaHIzP79dRayzoA2Tm74DHR8T2lMB+FxZG1b8EOB04JjPPa7JeWh7DvWSwl2aNoV6SNM0aDfotmXkB8OmV2LaWz2AvGeylWWKol6SbC5q77J3fwqO3IkFf08VgLxnspVlisJckzboVCfoRsRHlMnnbARsDX87My1aiLurMcK95Z7CXZoOhXpI0jxoN+hGxE+VSe08G1qs99SPg57VyzwVeAPwFeHhm+ot7zAz2mncGe2n6GeolaXQcjG+6NRb0I+K+wNcpg+/VX8lOv66PAN5PORjwcODbY6/gnDHYa94Z7KXpZ7CXJKmzVU1sJCK2AL4C3BK4EHgxcNdu5TPzj8A3q7v7jr2Cc2Lt9QuTNG9uuDEXTZKmyzqr4maTJGl8IpqdNFpNtej/I7ANcDGwR2aeDX1P0TgSeCyw+9hrN6MM9JpnhnlpehniJUlanqaC/mMop+j/RyvkD+D06naX8VRpNhnuNa8M9tL0MthL0uSxj/50ayroAb1LwAAAIABJREFU3666PXaIZS6pbjcfcV1mliFf88JQL00vQ70kSePXVNDfsLq9bohlNqlurx5xXSRNGYO9NJ0M9ZLm0XXX37jSVZAaC/p/BHYEbgucPOAy96huzx9LjSRNLIO9NJ0M9pLmybUzHug9dX+6NTLqPnBidfuoQQpHeaWfT+nXf9y4KiVpMjgivjR9HAVf0jy59vobbzZJk6ypoP/fQADPiIh79CsMHAjcvZo/dGy1krQiDPbSdDHUS5oXnQL9vIZ6L6833RoJ+pn5FeBoSleB70bEiyJim1qRdSNih4h4ckQcBxxAac3/Ymb+oIk6Shofg700PQz1kuaFgV6zrKk++gBPBL4L3BN4XzW1fvGf0lY2gBOANU1VTtLoGOal6WGQlzTrDPBLYx/96dbUqftk5qXAHsDbgMsoYb7TdDXwTmCfzLyyqfpJWjpb7KXpYGu9pFlnK71UNNmiT2ZeC7w+It4K7A3sBmwDrAP8idKyf2Rm/qXJekkajmFemnyGeEmzzAAv9dZo0G+pWuq/UU2SJpzBXpp8BntJs8pQv0KaHCTPf2EjtyJBX9LkMtRLk89QL2kWGeil0ZnboB8RuwGPBh4I3AnYGrgOOB84HvhYZn5/iPU9CtgfuE+1rouAk4GPZOY3R1t7aXQM9tJkM9RLmkWG+snnYHzTbaRBPyKeOcr1tWTmYaNcX0QcC+zZ4an1gb+upjURcRjw/GpsgW7rWgV8BHhu21O3rqbHRcRHgRdkpt9oWnEGe2myGewlzRIDvbQyRt2ifwgLl8wblQRGGvSBHarb84HPAccBZ1MGBdwDeAUlpD8TWA94eo91vYWFkH8K5YoBvwF2AV5NuZzg8ygt/K8b5U5IgzDYS5PLUC9plhjqZ0vQXB99/xuO3jhO3Z+G1+kMSuj+Qmbe0PbcCRHxScrp+7sCT4uID2Xmse0riYhdgVdWd38E7JWZV1f3T46IrwLfo1xd4FUR8fHM/PUY9ke6icFemkyGekmzwkAvTb5RB/3b9nhuS+DDlD7sPwMOBU4C/lA9v2313LOAu1L6t78AuGTEdSQz9+vz/MUR8QrgiOqhJwE3C/rAS1n4G76kFvJb67kqIl4C/LAq9zLg75dTd6mdwV6aPIZ6SbPCUC9Np5EG/cw8q9PjEbE+8AXKaexvAN6Sme3p5EzguIh4D6W1/d+Ag4EHjLKOQzi6Nr9L+5NRRox4bHX3jMw8odNKMvOEiPgl/5+9O4+zpKrvPv759TDsEAYQUVBRUEGNCZFNQcBocEEEo0ZNjIKgxkQlBo0x5klInkiMhhgeNcYFWUSjJC6guBCDoiLqaIyiiAMIsskOCgPM+nv+qGrnTtN9+y51z90+737Vq7ZTdc5sPf2959QpeDRwZES8Zp5fu9Qxg700egz2ksadgV5zzUQwU2jsfql6pslMoXpeC/wW8B+Z+fftgm5W3gqcXV9zfKE2zrVZy/bc4f1QjV6Yfdb/wkXuNXt+F2C3/pqlabNufW60SBquJTNxv0WSxsnqtevvt0iaLKWC/u9TTap3ehfXnEb1vP+LBtGgDhzSsv3jec4/pmX7skXu1Xp+r55bpIk3N9Qb7KXhMtRLGmfzBXpDvToVUXZRswYxGd98Zoe+39S21MZunnNtMfUr8/6i5dDZ8xTbtWX7ukVueW3L9kO6bMuuixTZuZv7abQY5KXRYpCXNK4M8JJalQr6sz85PZLqFXSdeOSca0t6PbBfvf3JzPzuPGW2adm+e5H7rWzZ3rrLtly7eBGNC4O9NDoM9ZLGkYFeUidKBf0fU82o/6cR8Z+Z2fY7VN2j/vqWa4uJiEOAt9W7NwOvXqDo5i3bqxe57aqW7S16bJrGkMFeGg2GeknjyFCvYYoIotCY+lL1TJNSQf9Mqh7y/YFPR8QrM/PG+QpGxAOpXsO3P9Vz/WcWaiMR8VjgU1S/L/cBL8jMmxcofl/L9qaL3Lp1Yr97Fyw1v8WG+u9M9SpCjQCDvTR8hnpJ48ZAL6lppYL+v1FNqncQcDjw04g4nyqg3kwV6B9I1et/GBuC8UX1tQMXEQ8HzgeWUc2y/6LM/GqbS+5q2V5sOP5WLduLDfPfSGa2ff7fT7+Gy2AvDZ/BXtI4MdRrXMxEtZSqS80qEvQzc31EPBP4CPAcqmHvR9TLXLN/zJ8B/mCxYf5NiIgHA1+iel1eAi/PzHMWuaw1gC82YV5rr7zP3I8xg700XIZ6SePCQC9pmEr16JOZK4GjIuJwqufeDwW2nFPsXuArwHsz87Ml2hUROwL/BTyiPvTazOzkcYFLW7b3XKRs6/micw6oPwZ7aXgM9ZLGhaFeEykKjh72v/zGFQv6szLzPOC8esK93YHt61N3AFdm5rpSbYmIXwO+CDymPvQXmfmeDi+/CriBahTAIYuUPbheXw9c3WUzVYihXhoug72kUWeglzQuigf9WfWQ/MuHVX9EbAmcB/xWfeitmfmPnV6fmRkR51CNTtgzIg7IzG/OU88BbOjRPyczTZMjwmAvDY+hXtKoM9RLGmczw27AMETEplSz6x9YHzolM/+qh1v9C9XEfQDvioiNXp1X77+r3l1bl9eQrFufGy2SylgyE/dbJGlUrF67ft5FmnYRZRc1a2g9+kP271Sz+wNcAJwaEY9rU351Zq6YezAzV0TEO4C/APYBLoqIfwSupHos4U3A3nXxd2Tm0EYwTCPDvFSeIV7SKFu1Zr2BQtJUaDToR8T3gb/NzE82ed/63rsAbwauycy393m7323Z/m3gB4uU/xmw2wLn3gLsBLycKtR/bJ4ypwK9jBhQFwz2UnkGe0mjaNUae+SlfkX9VaouNavpofu/DvxHRPwgIo6JiG37vWFE7BcR7wOuoHoefvN+79mkzFyfmccChwPnUE3Qt7penwM8KzOPK/GawGnjUHypLIfgSxpFq9asv98iSdOu6aH7xwEnAY8DPgi8JyI+C3wS+GZmXr3YDSJiK6ph8E8FXsyG194l8BGq3vG+ZGbjP51m5ueAzzV9X21gmJfKMcRLGjUGeKmsmaiWUnWpWY0G/cz8UER8HDgeeD2wA/C8eiEibgP+F7iZ6nV6dwBbUL1ibxnwKODRbBhpMPtH/nngzZm52BB7TQhDvVSOoV7SqDHUS1J/Gp+MLzNXAidFxD8Df0j17Pr+9ekdqXrqF9L60+YtwJnAB+abCE+TxWAvlWOwlzQqDPSSNBgDm3U/M+8DPgB8ICIeChwKPBl4ErArsE1L8bXArcAlwNfq5RuZuWZQ7dNwGeylMgz1kkaFoV4aLxFBFHpNRal6pkmR1+tl5jVUvfNnzh6r32W/PXBfZt5Zoh0aHoO9NHiGekmjwEAvScNXJOjPJzNXAzcOq34NlsFeGjyDvaRhM9RLkyuAUh3t/kTTvKEFfU0Wg700WIZ6ScNkoJek8WLQV08M9tLgGOolDZOhXhLATAQzhbr0S9UzTQz6WpShXhocQ72kYTHQS9LkMujrfgz20uAY7CUNg6FekqaLQV8Ge2lADPWSSjPQS2pMlJuMz9n4mmfQn0IGe6l5hnpJJRnoJUntGPSngMFeapahXlJJhnpJwxARRKEu/VL1TBOD/gQy2EvNMthLKsFAL0lqikF/gqxfn4Z8qU+GekklGOoljboo+Iy+HfrNM+hLmlqGekmDZqCXJA3D0IJ+RMwA2wNbAtdn5rphtUXS5DPUSxo0Q70kaVQUDfoRsQQ4ul72BZYCCTweuLSl3LOBg4FfZOZbS7ZR0mQw2EsaFAO9pGkwE8FMoTH1peqZJsWCfkTsBHwa2J/F35R4NXAukBFxXmb+74CbJ2mMGeolDYqhXpI0jmZKVFL35H8GOICqB/9s4DULlc/MHwLfqnefO/AGShobS2bifosk9WvVmvXzLpI0raLwomaV6tF/GdVQ/TXAczLziwAR8e4215xL1ft/0OCbJ2kUGeIlDYIBXpI06UoF/RdT9eS/bzbkd+B79frRg2mSpFFiqJfUNAO9JGlalQr6j6/X53Zxzc31eoeG2yJpBBjsJTXFQC9JzYsIotAkeaXqmSalgv529fq2Lq5ZUq997Z405gz1kppiqJckaXGlgv7twE7AQ9gwJH8xj6zXtwykRZIGwlAvqQkGekkarpmollJ1qVlFZt0HflSv9+3imhdSPde/vPnmSGqCM+BLaoKz3UuS1KxSQf/TVG9NeE1ELFuscEQ8Hzii3v3EIBsmqXOGekn98BV2kjQ+Zp/RL7WoWaWC/geAa4BtgfMj4jHzFYqInSLircBHqXrzfwicXaiNklrYWy+pHwZ6SZKGp8gz+pm5KiKOBL4CPAG4JCJ+0lLkrIjYGngEVc9/UE3c97zMzBJtlKaZIV5SrwzwkiSNnlKT8ZGZ34+IfYEzgCcCe7ac/g2qcD/r28DvZ+ZPS7VPmhaGekm9MNBL0vRxRP34Khb0ATLzCuDAiDgIeA6wD9Vs/EuoevC/B5ybmf9Vsl3SJDPYS+qWoV6SpPFWNOjPysyvA18fRt3SJDPUS+qGgV6StJCSk+Q5GV/zhhL0JfXPUC+pG4Z6SZKmh0FfGgOGekmdMtBLkpowE9VSqi41y6AvjRhDvaROGeolSdJ8Gg36EbGuyfvVMjP9QEITy2AvaTEGekmS1I2mA7SJRWrDUC+pHQO9JGlURJSbJM+5+JrXdND/24bvJ40tQ72kdgz1kjTeNt1kZt7jSxc4LpXUaNDPTIO+ppKhXtJCDPSSNN4WCvSTLig3XNufpJvns+9Slwz1khZiqJek8TStYV6Ty6AvLcJgL2kuA70kjR/DfHdmIpgp9PB8qXqmiUFfamGol9TKQC9J48dALxUK+hHx0h4uS+A+4BfA5Zl5VbOt0rQz1EtqZaiXpPFhmJfaK9WjfzpVcO9ZRNwCnAG8LTPvaKJRmh6GekmzDPSSNB4M88NVvV6vXF1qVsmh+/3+8e0EvAF4SUQ8MzN/0ECbNIEM9ZJmGeolabQZ5qXBKBX0Hw5sB/wbsD/wP8CHge8At9RlHgDsA/wh8FvAt4A/BtYDjwNeDDwLeBBwXkTsmZkrC7VfI8xgL8lAL0mjzUA/hiIIu/THVqmgfwPwcWBf4ITMfOc8ZVYAFwGnRMQJwDuA9wMHZub3gY9ExHH1sQcDrwL+uUTjNToM9dJ0M9BL0ugyzEujo9S/xj8B9gM+skDI30hmngx8hKpn//iW4x8EzqF6DOA5g2mqRsWSmbjfIml6rFqz/n6LJGm4Nt1kZsFFGgcR8bCIODkiLouIlRFxe0Qsj4g3RsSWfd57y4j43Yh4b33POyJiTUTcFhEXR8SJEbFzU7+Wdkr16P8B1WR8Z3VxzYfr615E1bs/62PAkcBejbVOQ2eIl6aXAV6SRo/BXZM4GV9EHEGVSbdtObwl1SPk+wDHRcThmXlFD/d+PNUI9a3nOb09cEC9vD4iXpmZH++2jm6UCvp71Otb2pba2GzZ3eccv7Jeb9dXizQ0hnppehnqJWl0GOY1TSJib6rHybcA7gb+Afhyvf8i4BXAo6jmg9snM+/qsopt2RDyLwI+SzUn3W1U89H9bl3HtlSPpf8yMz/f1y+qjVJBf/a7yB7A9zq8ZvbDgbmpcPanxG5/4zUkBntp+hjoJWk0GObVq5kIZgp1tReq5xSqUL8WOCwzL245d0FEXA68nSrsnwCc2OX91wNnA3+bmZfOc/78iPg88ClgCfCuiHhkZvb1GvqFlPqXf1m9fk0nhaOa3vF19e5P5px+WL3uZnSACvG5emm6zPccvSFfksryuXmpvYjYD3hyvXvqnJA/62Tgx/X28RGxtJs6MvMbmfnCBUL+bJlzgE/Wu7sDe3dTRzdK/ev/CFXP/EERcXZE7LBQwfrc2cCBzP9c/6H1esHfQJVhqJemi4FekobLMK+SZp/RL7UM2FEt26fNVyAz1wNn1rvbAU8ZUFu+3LI99zH1xpQauv8e4MXA/sDzgGdFxBeA77KhZ/4BwBOAZ1ANqQD4dn0tABGxOdXzEwl8sUjLBTj8XpomBnhJGh6DuzQQB9XrlVQZdCEXtmwfCJw/gLZs1rK9bgD3BwoF/cxcFxGHUU1+8AyqmQ2fWy9zzSbK84EXZmbrL3574M/r7c8MqLlTz1AvTQ9DvSSVZ5iX2to5Funiz8zrurzn7BvbrsjMtW3KXdayPai3vB3Ssv3jBUv1qVSPPvWshc+KiCOBV1H9AreYU+w+4KvA+zLzU/Pc4wbgjEG3ddoY7KXJZ6CXpLIM8xp3QbBY4G6yrhbLO7qk03tXo8J3rHfbfkCQmXdExEpgK+AhndbRRVt+Azi83r0kM8c/6M+qJyA4JyKWUD2TsKw+dQdw5ZwefDXMUC9NNgO9JJVloJdG3jYt23d3UH426G+9WMFuRMRmwAepZtwHeEuT95+reNCfVQf6FcOqfxoY6qXJZqiXpDIM85pGM5SbuX1OPfsCNzZ4+81btld3UH5VvZ47+rxf7wb2qbfPyMyBPoo+tKCv5s048700kQz0kjR4hnlpZNzYwzP47dzXsr1pB+VnJ8u7t6kGRMSbgePq3eXAnzR174UY9CVpRBjoJWmwNltqmJc6FVHwGf3B1nNXy3Ynw/G3qtedDPNfVES8Cjip3r0MeFZmrmzi3u0UDfoRsQPwEuDJwCOonpdY0vYiyMwc2PsFJWkYDPWSNDgGekmzMvO+iLgN2AHYtV3ZiFjGhqB/bb91R8SLgX+td38G/E5m3trvfTtRLOhHxAuA9wPbzh7q8NIcTIskafAM9JI0GIZ5SV24lKqzeY+I2KTNK/b2bNnua0b8iHgOcCbVFAQ/B57a8CMJbRUJ+hGxP/BRql9kADcA3wNuB/wpWNJEMNRLUrMM89LwRECp6b8KPCHwdaqgvxXwBOBbC5Rrfcf9Rb1WFhFPBc6mytu3UfXkX9nr/XpRqkf/TVRD9O8FXpGZHy1UryQ1zkAvSc0xzEsq4NPAm+vtY5gn6EfEDPDSevdO4Mu9VBQRTwLOoZrU7xfA0zPzR73cqx+lvrM+iWoI/tsM+ZLGxao16+ddJEnd22zpzLyLpNE0E2WXQcrMbwNfq3ePjYgnzlPsBGCvevuUzFzTejIiDo2IrJfT56snIn4TOI9q5MBK4PDM/G4Tv4ZulerR365ef7FQfZLUFQO8JPXP4C5phB1PNRx/C+D8iDiJqtd+C+BFwCvrciuAk7u9eUTsTpV3Z7PvXwG/iIjHtbns5sy8udu6OlEq6P8ceChOrCdpyAz0ktQfw7w0HSbo9XoAZOb3IuKFwFlUE8SfNE+xFVS98HfNc24xTwZ2atl/ZwfX/C1wYg91LarUd+ov1esnFKpP0pRz2L0k9W6hYfaGfEnjLDM/AzyeKoSvAO6heh7/O1Tzyu2dmVcMr4XNKdWj/0/A7wNviIizMvPuQvVKmgIGeEnqjcFd0rTJzJ8Bf1Yv3Vz3Fdq8Ij4zTwdO76NpjSoS9DPzJxHxB1Sv2PvviHj5MGYelDTeDPSS1D3DvKRelJgkr7UuNatI0I+ID9WblwL7Aj+IiEuAy6iGS7STmXnsINsnabQY6CWpO4Z5SVKrUkP3j2bDRHxJNeTh1+ulnajLNx70I2InYL962bdedqhPn5GZR3dwj6OB0zqs8ph6OIekFoZ6SeqMYV5SSRHVUqouNatU0L+G0Ztx/6ZhN0CaJgZ6SeqMgV6S1K9Sz+jvVqKePlxD9RjBYX3c4+nADW3OX9fHvaWxYqiXpPYM85JGXUQwM0Gv15s2pXr0R9HfAcuB5Zl5U0TsBlzVx/1WZObVDbRLGhsGeklamGFekjQsUxv0M/Nvht0GaVwY6CVpfoZ5SdIomtqgL2l+hnpJ2phhXtI0mqmXUnWpWUML+hGxBFgGbEE1u/6CMvOaIo2SpoiBXpI2ZqCXJE2KokE/InYEXgscBTyGzj68ScZj5MFpEfFoYEfgl8AVwJeA92bm9UNtmaaagV6SNjDMS1JnfL3eeCsWoCPiScAngQewSA/+mDq0ZXuHetkfOCEi/jQz39fLTSNi10WK7NzLfTWZDPWSZJiXJKlI0I+IHYBzqMLv3cAHgTuBE6l67I8Dtgf2AZ4DbA5cBJxaon19+inVBxgXA9fWxx4BPA94PtWv5d8iIjPz/T3c/9rFi2jaGOglTTvDvCRJCyvVo/8aqpC/CnhiZv4oIh5LFfTJzNNmC0bEg4CPAgcDF2fmmwq1sRefAs7IzJxzfDnw8Yh4NtWHAEuBd0bEuZl5Y+lGanwZ6CVNOwO9JA3HDMFMoTH1MxM54Hu4Sv3v+UyqnvsPZeaP2hXMzJ8DzwKuBN4QEb9doH09ycxfzBPyW89/Fvi7endL4NgeqnnIIsu+PdxTI2jVmvX3WyRpGmy2dGbBRZIkda9Uj/4e9fpLLcd+FZAjYklmrvvVicx7I+KdwHuAPwIuKNLKwXg/VdgP4BDgrd1cnJnXtTsfzlwxdgzwkqaRoV2SxouT8Y23UkF/23r9s5Zj97Vsb0P1zH6r79Tr/QfVqBIy8+aIuI1qNv5dht0elWOglzRtDPOSJI2GUkH/buDX5tR3e8v2bsD/zrlm83q90+CaVcyCw/s1GQz1kqaFYV6SpsNMVEuputSsUv9bX1GvHzp7IDPvBGYnpnvKPNccVK9XDrBdAxcRD6DqzQe4YZhtUf/me47ekC9pEvnMvCRJ46vU/9jfqtdzJ477AtWz638eEY+cPRgRBwBvpOoJX16khYPzSvjVNJIXDrMh6pyBXtI0cBI8SZImU6n/yb9IFXZ/d87xfwbWUg3P/1FELI+IS4GvAdvVZU4p1MauRMRuEbH3ImWeDfx1vXsvcFqb4hoSA72kSWaYlyT1IgJmIoosTsbXvFLP6H8ROBNYEhEPz8yrADLzhxHxauC9dVueMOe6EzPzC4NoUEQcxIa3AcCG4fUAe0TE0a3lM/P0ObfYDfhyRFwMfAb4PnBzfe4RwPPrZfav7Rsy8/om2q7eGOAlTSpDuyRJalUk6GfmGuDoBc6dGhFfr88/tm7T5cCHM/M7813TkOOAly1w7sB6aXX6AmWfWC8LuQd4fWa+v6vWqWcGekmTyDAvSSrJ1+uNt1I9+m1l5k+ANw+7HV36LvASqpC/D/AgqlEBmwB3AD8C/hv4YGbevNBN1B9DvaRJY6CXJEn9GomgPwyZeTQLjDLo8Pq7gI/UiwbMQC9pkhjmJUmjztfrjbepDfoaTQZ6SZPCMC9JkobFoK+hMdRLGneGeUmSNIoM+ho4A72kcWaYlyRNo6i/StWlZhn01RgDvaRxZqCXJEmTwqCvnhjqJY0jw7wkSZ1xMr7xZtBXW6vXbhzoM4fUEEnqkGFekiRNO4O+gPsHekkaZYZ5SZIGKwr26Ic9+o0z6E8hQ72kcWCYlyRJ6o1Bf4IZ6CWNAwO9JElSswz6E2TN2vWGe0kjyTAvSdJ4iQii0Jj6UvVMk+JBPyJmgMcAjwC2AZYsdk1mnjnodkmS+mOYlyRNg9vuXt32/B0r25+XSigW9CNiC+CvgFcAO3RxaQIGfUkaAYZ5SdKkWyzIT4sZCr5er0w1U6VI0K9D/gXAfoDjMiRphBnmJUmTyhCvaVGqR//1wP719g+BdwPfBW4HfKhckgozzEuSJpFBvjkR5V575yP6zSsV9F9Yr78B/HZm+i9Qkgow0EuSJoUhXupcqaC/O9Wz9m835EtSswzzkqRJYJCXmlMq6K8GtgCuKVSfJE0Uw7wkaZwZ4sfPTAQzhcbUl6pnmpQK+pdRPaO/c6H6JGnsGOYlSePIEC+NnlJB/3TgAOAFwBcK1SlJI8cwL0kaNwb56TQTBV+vZ4d+40oF/Q8Avwe8NCK+lJn/XqheSSrOMC9JGheGeGkylQr6DwFeSxX4z4qI5wIfpRrSf89iF2emz/ZLGjkGeknSqDPIS9OpVNC/mmrWfYAAnlcvnUjKtVOSNmKYlySNKkO8BioKvt/eofuNKxmgY4FtSRoqw7wkaRTdetf8Qd4JyiUtplTQP6ZQPZI0L8O8JGmULBTipVExQzBTqH+2VD3TpEjQz8wzStQjaboZ5iVJo8IgL2mYfPZd0lgxzEuShs0Qr2kQBZ/R93GU5hn0JY0cw7wkaVgM8ZImwVCCfkQ8EDgUeBywfX34duCHwFcy86ZhtEtSWQZ6SVJpBnlJ06Bo0I+IBwH/DPxum7rXRsQngBMy8+fFGidpIAzzkqRSDPFSc2aiWkrVpWYVC/oR8RvAl6h68Nv9US4FXgg8LSKempmXlGifpN4Z5iVJJRjkJakzRYJ+RGwFnAfsUB/6EvAB4FvAjfWxnYH9gOOAw4AdgfMiYs/MvKdEOyUtzDAvSRokQ7w0WmYimCk0S16peqZJqR791wAPBtYDr8rMU+cpc029/GdEvJzqg4BdgD8B3lGondJUM8xLkgbFIC9J5ZQK+kcCCZy+QMjfSGZ+KCKeBLwceC4GfakxhnlJUtMM8dLk8fV6461U0H9Uvf5YF9f8O1XQf9RiBSXdn4FektSUW+9aNeeIP5VL0igrFfS3rte3d3HNHfV6q4bbIk0Mw7wkqV/3D/GSpHFXKujfQvWM/l7A/3R4zZ71+taBtEgaE4Z5SVKvDPGSehWUm4wvHCXUuFJB/5vA84A/i4iPZ+badoUjYhPgz6ie6/9mgfZJQ2WYlyT1wiAvSZpPqaB/JlXQ/02qV+Ydk5k3zFcwIh4MnAr8FvUEfoXaKA2UYV6S1A1DvKRhcjK+8VYk6GfmZyLi08BRwNOAn0bE+cC3gJupAv0Dgf2B3wE2rS/9VGaeV6KNUhMM85KkThnkJUmDUqpHH+DFVD37L6AK8ofXy1yzn+f8B/DSMk2TOmeYlyQtxhAvadzN1EuputSsYkE/M1cBL4yIM4E/Bg4BtpxT7B7gQuA9mfm5Um2T5jLMS5IWYoiXJI26kj36ANRD8c+LiCXAI4Dt61O3Az/NzHWl26TpZaCXJM1lkJdkZjJ4AAAgAElEQVQkjbviQX9WHegvH1b9mh6GeUnSLEO8JHUmIohSr9dzNr7GDS3oS00yzEuSwCAvSRIY9DVGDPOSNN0M8ZJUTrBhlvQSdalZjQb9iPhQvZmZeew8x3ux0b002QzzkjS9DPKSJDWj6R79o4Gst49d4Hg3or7OoD9BDPOSNH0M8ZIkldN00L+G+QP9Qsc1oQzzkjQ9DPGSNHlmIpgpNEleqXqmSaNBPzN36+a4xpthXpKmg0FekqTx4mR8WtSmmxjoJWlSGeIlSQuxn318GfQFGOYlaVIZ5CVJmj5Fgn5EXAWsB56emVd0eM1Dga9Qzbq/+wCbNzUM85I0WQzxkqRBiaiWUnWpWaV69B9GNRnfpl1csxTYDSfx64phXpImgyFekiT1yqH7E2SpIV+SxsYtv1w4yNuzIUmS+jHKQf/X6vU9Q22FJEldahfiJUkaB9XQ/TKfPPsBd/NGOei/pF7/bKitkCRpDoO8JEkaZQMJ+hFxwQKnTouIlYtcvhnwCGAnqufzz2+ybZIktWOIlyQJZuqlVF1q1qB69A+lCumtgzAC2LfL+/wU+IeG2iRJmnKGeEmSNA0GFfS/ysaz5R9S738XaNejn8B9wM+BbwAfy8zFRgBIkgQY5CVJakpEFHxG34f0mzaQoJ+Zh7buR8T6evPozLx0EHVKkiabIV6SJKkzpSbjO5Oqt/6OQvVJksaIIV6SJKk5RYJ+Zh5doh5J0mgyyEuSNF6CjSdcG3RdatYov15PkjQGDPGSJEmjpUjQj4hfB84B1gGHZub1i5TfBbiQ6sOdZ2bmisG3UpI0H4O8JEnTx8n4xlupHv2XALsBX1ws5ANk5vURsQJ4en3tXw+2eZI0nQzxkiRJk6dU0J99vd65XVxzDvAM4KkY9CWpa4Z4SZLUq5l6KVWXmlUq6D+qXv+gi2t+WK8f3XBbJGkiGOQlSZI0n1JBf+t6fXcX18yW3bbhtkjSyDPES5IkqVelgv4dwI7AzsD3O7xm53p910BaJElDYoiXJEkjr+BkfDgZX+NKBf3LqYL+M4AvdnjNM+v1lQNpkSQNiEFekiRJw1Qq6H8ReBLwyoh4f2b+uF3hiHgs8AqqCfy+UKB9ktQRQ7wkSZoGUS+l6lKzSk1w+F5gJbA5cEFEPHuhghHxHOBLwBbAvcB7BtGgiNgpIp4dEX8XEZ+PiFsjIuvl9B7u98yI+FREXBcRq+r1pyLimYtfLWlU3PLLVW0XSZIkadQV6dHPzFsj4o+ADwM7AedExE+BrwM/r4s9CHgy8HCqD3USeHVm3jSgZjVy34iYAd4PHDvn1C71clREfBB4VWaub6JOSb0xqEuSJHUmKPfovD36zSs1dJ/M/Egdit8LbAnsDjxiTrHZP+OVVCH/rELNuwa4DDish2vfyoaQ/z3g7VTzCuwO/DmwN3AccAvwl323VNK8DPGSJElSpVjQB8jMD0fEfwGvAw4HHseGcL8euAT4DPDuAfbkz/o7YDmwPDNviojdgKu6uUFEPAp4Q737HeDgzLy33l8eEecCFwL7AG+MiA9l5hVNNF6aNgZ5SZI0DpZttemwmyCVDfoAmXkjVc/2X0bEJsD29anbM3NtwXb8TQO3+VM2/B6+tiXkz9ZxT0S8Fri4Lvd64E8aqFeaKIZ4SZI0qnbYurvgft2dA2pIYTMEM4UG1ZeqZ5oUD/qt6mB/8zDb0KuoXip5ZL17WWZ+c75ymfnNiPgJ8GjgyIh4TWZmqXZKw2aIlyRJo6bb8C6Nm6EG/TH3cODB9faFi5S9kCro7wLsRpePCEijzCAvSZKGzeDevIiCk/HZod84g37vHtOyfdkiZVvP74VBX2PCEC9JkobF8C71rnjQj4inAEcBvwHsCGxB+zcqZGbuXqJtXdq1Zfu6Rcpe27L9kG4qiYhdFymyczf3k2YZ4iVJUkkGd6mcYkE/InYCPgYcMntogaI559yoPs++Tcv23YuUXdmyvXWX9Vy7eBHp/m69a0OQd1YISZI0CIb3yRX1V6m61KwiQT8ilgKfB36TKsT/L3A91Sv2EjiLavb93wIeVB/7H+CHJdrXo81btlcvUra163SLAbRFU6Y1xEuSJDXF4C5NhlI9+kcDe1MF+GMy84yIeCxV0CczXzZbMCKOAt5N9Qz82zLzE4Xa2K37WrYX+464Wcv2vQuWmt9iQ/13BpZ3eU+NMEO8JElqkuFdvXAyvvFWKug/r15/ITPPaFcwMz8dEZcA3wFOj4gfZOblA29h9+5q2V5sOP5WLduLDfPfSGa2ff4//FcxdgzykiSpHwZ3SYspFfR/gw1D9O8nIqL13fKZeWVEnAL8NXA88JoirexOawBfbMK81l55n7mfYIZ4SZLUix23MbxrtATBjM/oj61SQX/7et36WrnW59q3ZOMJ6wD+myro/84A29WPS1u291ykbOv5Hw+gLSrEIC9JkjphcJc0TKWC/uq6rtZw/8uW7V2AFXOuua/l3Ci6CrgBeDAb3iSwkIPr9fXA1QNsk/pgiJckSe0Y3iWNi1JB/xqqXu0Hzh7IzJsi4i6q59v35/5B/3GzRYu0sEuZmRFxDvBqYM+IOCAzvzm3XEQcwIYe/XNaH1FQOYZ4SZI0l8FdWpiT8Y23UkH/f6jC7t5Ur9mb9VWqmfePj4izM3MVQERsB7yJKuRfyuj6F+CVwBLgXRFxcGb+alb9iNgCeFe9u7YurwEwyEuSJDC8SxKUC/r/DfwBVag/qeX4v9XH9gZ+EBHnUs1QfwTVkP0EzhxEgyLiIGCPlkM7tmzvERFHt5bPzNPn3iMzV0TEO4C/APYBLoqIfwSuBHan+rBi77r4O0b07QEjzxAvSdL0MrhLw2GP/ngrFfQ/DZwI7BoRu2fmlQCZeV5EfAh4OfBI4M/q8rN/1OcD7x1Qm44DXrbAuQPrpdXpC5R9C7AT1a9hb+Bj85Q5Ffir7ps4+W69a/UCZ3zCQZKkSWRwl6TBKxL0M/NOYLcFzh0XERdTBe/H1m26nKon/5TMXF+ijb2q23dsRHyCahj/vlSjA24FlgPvy8zPt7nFRFs4yEuSpElheJcmT9RfpepSs0r16LeVmadS9XqXrPNo4OgG7/c54HNN3W8cGOIlSZpMO26z2bCbIEnqQ5GgHxGzr5f7uc+pjwdDvCRJk8XwLknTo1SP/leoHro+lmpYvobMIC9J0ngzuEsapJmollJ1qVmlgv7dVLPpX1KovqlmiJckaTwZ3iVJTSgV9K8B9gK2LFTfVLrj7tVsbsiXJGlkGNwljSsn4xtvpYL+eVRB/2nA1wrVKUmS1DjDuyRp1JUK+u+kes/8n0bEf2TmDwvVK0mS1JbBXZLuL6JaStWlZhUJ+pl5Y0Q8G/gEcFFE/CPw0cy8ukT9kiRpehjcJUnTrtTr9X5ab24KbAP8X+D/RsTdwJ3AujaXZ2buPuAmSpKkEWZ4lySpc6WG7u82Z392cMY29dJONt4aSZI0VAZ3SRptQblJ8hy537xSQf+MQvVIkqQhMbxLkjQaSj2jf0yJeiRJUnMM7pI0vSJgxsn4xlajQT8iXldvfjgz72jy3pIkqX+Gd0mSJl/TPfr/QvVM/ZeAXwX9iLigPv7yzPxZw3VKkjS1DO6SJHUuIh4GvA44HHgIsAq4EjgbeE9m3tPHvWeAPYH96mVf4PFUk9IDPCUzv9Jz47tQ6hn9Q6mC/laF6pMkaSw9YFuDuyRp+KL+KlVXkXoijgDOArZtObwlsE+9HBcRh2fmFT1W8YfA6X01siFNB/37gM2A7Rq+ryRJY8vwLknScEXE3sDHgS2Au4F/AL5c778IeAXwKOC8iNgnM+/qpZqW7TXAJcBS4Nf7aHpPmg76VwOPBp4NfKPhe0uSNBIM7pKkSRdRbpK8QvWcQhXq1wKHZebFLecuiIjLgbdThf0TgBN7qONSqscClgP/m5n3RcSJTEDQ/xzVMwlvioinAiuoPsmY9fcRcWeX98zMPLapBkqSNB/DuyRJkyki9gOeXO+eOifkzzoZOAbYCzg+It6amWvmKbegzPw28O2+GtuQpoP+ScBzgD2oJh7Yp+VcAEd2eb+gerbfoC9J6orBXZKk3gUUenK+SD1HtWyfNl+BzFwfEWdSDenfDngKcP7gmzYYjQb9zLw9IvYBXgM8FdiF6pn9h1EF9p+zcQ+/JEkdM7xLkqQeHFSvVwLfbVPuwpbtAzHob5CZv6Tq2T9p9lhErK83D8vMS5uuU5I0ngzukiRpjp1jkYf2M/O6Lu+5V72+IjPXtil32TzXjKVSr9eTJE0Bg7skSZNhhmCm0Cx5MxsP3l/ewSUdNywiNgd2rHfbfkCQmXdExEqq18I/pNM6RlGjQT8iPkk1RP/4OZ+yPKU+flWT9UmSBs/wLkmSxtg2Ldt3d1B+NuhvPZjmlNF0j/5RVIH+/8w5/mVgPfB4qlcOSJKGxOAuSZIWM8TJ+PYFbmzw9pu3bK/uoPyqer1Fg20oblBD9+f7O1Hq74kkTR3DuyRJmhA39vAMfjv3tWxv2kH52R+q7m2wDcU1HfTvohri8EDgRw3fW5KmhsFdkiQN1eS8X++ulu1OhuNvVa87GeY/spoO+pcB+wDHR8S3M3Pub042XJ8kjQWDuyRJUnmZeV9E3AbsAOzarmxELGND0L920G0bpKaD/kepnql4NnB7RNwErGk5f35ErJn3yoVlZu7eVAMlqSmGd0mSpLFwKfBkYI+I2KTNK/b2bNn+8eCbNThNB/13AQcCz6/vvUvLuZiz3ylHAUgqwuAuSZJUifqrVF0D9nWqoL8V8ATgWwuUO6Rl+6JBN2qQGg36mbke+L2IeCLwNKpgvxnwMqrAfi5wZ5N1SlI7hndJkqSp92ngzfX2McwT9CNiBnhpvXsn1ZvjxtZAZt3PzIuBi2f3I+Jl9eZbMtPX60nqmcFdkiSpgICYjMn4yMxvR8TXqHr1j42IM+rM2uoEYK96+5TM3OiR84g4lA3h/4zMPHqATe7boF6vJ0kdMbhLkiSpgOOphuNvQTV33ElUwX0L4EXAK+tyK4CTe60kIo6ec+g3W7afERG7texfkZlf77WudooE/cycKVGPpNFgeJckSRpvk/N2vUpmfi8iXgicBWwLnDRPsRXA4Zl51zznOnVam3NvmrN/BtX8AY2zR1/SogzukiRJGneZ+ZmIeDxV7/7hVK/bWw1cAfwH8O7MvGeITWyMQV+aUoZ3SZIkTZvM/BnwZ/XSzXVfoYPBB5lZaiBEW40G/Yi4oN7MzHzqPMd7sdG9JM1vx20M7pIkSWrIpI3dnzJN9+gfWq9znuNJd3+Es+Xn3kuaCgZ3SZIkSb1oOuh/lfmD+ULHpalieJckSdI4iPqrVF1qVqNBPzMP7ea4NO4M7pIkSZJGjZPxSS0M7pIkSRJEVEuputQsg74mnuFdkiRJ0jQx6GvsGNwlSZIkaWFNv17voU3eb1ZmXjOI+2p07LjNpsNugiRJkqSab9cbb0336F/V8P2gmq3fkQdjxuAuSZIkScPRdID2w5gJZXCXJEmSpohd+mOt6aB/zCLn/xjYF1gDnA98G7ipPvfA+txhwFLgO8C/Ntw+tTC8S5IkSdLkaTToZ+YZC52LiFOBfagC/rGZef0C5XYBPgA8HXhyZh7XZBsn2bKtNzW8S5IkSdKUK/Lse0Q8n6q3fzlweGauW6hsZl4fEUcAFwPHRMT5mXl2iXZKkiRJEsAD/mDBPsy21t9ze8MtGY6ov0rVpWaVmuTuVVST6v1zu5A/KzPXRcTJwL8DrwQM+pIkSZI60mtIlyZFqaD/+Hq9ootrZsv+esNtkSRJkjSCDOijI6JaStWlZpUK+tvU6526uGa27DZtS0mSJEkaumW/d2pP122y1DdpS00r9a/qZ8CjgJcCX+zwmpfW62sG0iJJkiRJPQd0TTbfrjfeSgX9c4A/B14UEd/PzLe3KxwRbwBeTPVc/6cKtE+SJEkaO4Z0SfMpFfTfBvwhsDPwDxHxYuAMqln4b6YK9A8E9q3L/WZ93Y3APxZqoyRJklTEsuf+a+8XL92suYZImkhFgn5m3hkRT6Matr8r1eR8J7e5JIDrgGdk5p0FmihJkiR1pK+QLo0Lx+6PtWIzX2TmjyPiscBfAy8Hli1Q9A7gNODvMvOXpdonSZKkybbsiHfCJvaGS5p8Rae4zMy7gDdGxF8CT6B6dd729ek7gEuA72bm6pLtkiRJ0mhbdsQ7h90EaapE/VWqLjVrKO+yyMw1wDfrRZIkSRPMkC5JZfnSSkmSJM1r2TMXmBN5k03LNkRSeQHhM/pjy6AvSZI0gRYM6ZKkiWfQlyRJGiEGdElSvwz6kiRJDVl22Fu7v2iJP45JGj2+XW+8+T+LJEmaej0FdEmSRpRBX5IkjbVlv33ixgc2WTqUdkjSxLGrfWwZ9CVJ0lDcL6BLkqRGGPQlSVLXDOmSNNmi/ipVl5pl0JckaYosO+Qt/d1gicPiJUkadQZ9SZLGRN8hXZIkTQWDviRJA7bs4L/s7oJwCKMkabgiyv135H97zTPoS5LURtchXZIkacgM+pKkibTsoDctXmhmyeAbIknSGArKvV3PDv3mGfT7FBHZYdELM/PQQbZFkiZFRyFdkiRJ8zLoS5Ias+zANy58MmbKNUSSJPXHLv2xZtBvznuBf21zfmWphkhSL9qGdEmSJI0Ng35zbs7MHw67EZKmjwFdkiRJrQz6kjREhnRJkjSKov4qVZeaZdCXpB4Y0CVJkjSqDPqSpo4hXZIkqb2IailVl5pl0G/OCyLi94DdgHXAjcA3gNMz88vDbJg0STp+7VquH2xDJEmSpBFl0G/OY+bs71EvL42ITwNHZ+Yvur1pROy6SJGdu72nNAy+F12SJEkqw6Dfv3uAc4H/Bi4D7gYeABwC/BGwA3AUcE5E/E5mruny/tc22FapJ8sO/sveLly/rtmGSJIkqYig3OvtHbnfPIN+/3bJzDvnOf5fEfEu4PPA3lTB/9XA/yvZOE23ZYf+n2rDwC1JkiRNDYN+nxYI+bPnboqI51P19C8FXkv3Qf8hi5zfGVje5T014n4V0CVJkqRhsEt/rBn0BywzfxoR/wU8C9gjIh6cmTd0cf117c6HU1SOnGW/fWL7AvauS5IkSRogg34Zl1IFfYBdgI6DvspZNKBLkiRJU6Lq0C/TqWjXZfMM+mXksBsw6ZY9/aTeL16zurmGSJIkSdKQGfTLaH31nr35LZY96x3zn1jX7csJJEmSJElg0B+4iHg48Dv17pWZef0w29OkBUO6JEmSpPEWUGw6MMfuN86g34eIOAL4fGauXeD8A4FPAJvWh/61VNvaWXZkH2/4W7OquYZIkiRJkhpn0O/Pu4ClEfEJ4GLgauBeYEfgUOBV9TbA14H3DLIxj3v5h4gtthtkFZIkSZKmgG/XG28G/f49GHhtvSzkE8BxmWl3uCRJkiRpoAz6/XkZcAjwROARVL332wJ3A9cC3wDOyMyLh9ZCSZIkSeqWXfpjzaDfh8y8ELhw2O2QJEmSJGnWzLAbIEmSJEmSmmOPviRJkiRpI1F/lapLzbJHX5IkSZKkCWKPviRJkiRpIxHVUqouNcsefUmSJEmSJog9+pIkSZKkjfh2vfFmj74kSZIkSRPEoC9JkiRJ0gRx6L4kSZIkaWOO3R9r9uhLkiRJkjRB7NGXJEmSJG0k6q9SdalZ9uhLkiRJkjRBDPqSJEmSJE0Qh+5LkiRJkjYSQBQaUe/A/ebZoy9JkiRJ0gSxR1+SJEmStBHfrjfe7NGXJEmSJGmC2KMvSZIkSX368FueDsCtN93AKz475MY0IKLgM/p26TfOoC9JkiRpLM2Ga0kbM+hLkiRJ6tjn/+G5jd7vzlWrG72fJIO+JEmSNNK+9v9estH+3avXDqklmi5OxzfODPqSJEnSHHPDtSSNE4O+JEmSRsLyD75i4HXct3r9wOuQJkLByfjs0G+eQV+SJGmKXfKR13V9zX1r1g2gJZKkphj0JUmSCvvJf77hV9ur19rDLGn0+IT+eDPoS5KkqdAariVJmmQGfUmSNDBXffYtxeu0h1ySNO0M+pIkTZjrzv/bgd17zboc2L0lSaMjCk7GV2zSvyli0JckqQE3XfD3jd1rzTp7pCVJUu8M+pKksXXrV9/W1/Xr1ts7LUnSfKL+KlWXmmXQlyR15bavv72n69JMLUmSVIRBX5JG3B0XvaPna9ebriVJUi98v95YM+hL0jz6CdeSJEnSMBn0JY2M277W3/PWrWacvlWSJElTyqAvTblbv/LWgd3brC1JkjSeHLk/3gz60hDc9KXBveN6Pktm/PYpSZIkTQuDvqbGVZ9847zHl25SNgQvXTJTtD5JkiSpWxHlRmc6CrR5Bn0N1GX//rqerttsE8OwJEmSJPXCoD+Bvn/qcQO792ZLlwzs3pIkSZJGQ9RfpepSswz6E+T8f3oxOz94l2E3Q5IkSZI0RI6PliRJkiRpgtijL0mSJEnamO/XG2v26EuSJEmSNEHs0ZckSZIkbcQO/fFmj74kSZIkSRPEoC9JkiRJ0gRx6L4kSZIkaSMR1VKqLjXLHn1JkiRJkiaIPfqSJEmSpDmCcDq+sWWPviRJkiRJE8QefUmSJEnSRnxGf7zZoy9JkiRJ0gQx6EuSJEmSNEEM+pIkSZIkTRCDviRJkiRJE8TJ+CRJkiRJGwkKTsZXppqpYo++JEmSJEkTxB59SZIkSdJGov4qVZeaZY++JEmSJEkTxKAvSZIkSdIEcei+JEmSJGkjEQUn43PkfuPs0ZckSZIkaYLYoy9JkiRJ2khQ7rV3dug3zx59SZIkSZImiD36kiRJkqSN2aU/1uzRlyRJkiRpghj0JUmSJEmaIA7dlyRJkiRtJOqvUnWpWfboS5IkSZI0QezRlyRJkiRtJKJaStWlZtmjL0mSJEnSBDHoNygiHhYRJ0fEZRGxMiJuj4jlEfHGiNhy2O2TJEmSpGlWKrNFxDMj4lMRcV1ErKrXn4qIZzZVRzsO3W9IRBwBnAVs23J4S2CfejkuIg7PzCuG0T5JkiRJ6lRQ7vX2xeopkNkiYgZ4P3DsnFO71MtREfFB4FWZub7XehZjj34DImJv4ONUf2HuBt4CPAl4KvCButijgPMiYpuhNFKSJEmSplTBzPZWNoT87wEvBvar19+rjx8H/H0fdSzKHv1mnAJsAawFDsvMi1vOXRARlwNvp/qLcwJwYvEWSpIkSVKnJq9Lf+CZLSIeBbyh3v0OcHBm3lvvL4+Ic4ELqUYPvDEiPjSoEd/26PcpIvYDnlzvnjrnL8ysk4Ef19vHR8TSIo2TJEmSpClXMLP9KRs601/bEvIByMx7gNfWu5sAr++hjo4Y9Pt3VMv2afMVqJ+9OLPe3Q54yqAbJUmSJEm9i2JfBbr0B57ZIiKAI+vdyzLzmwvU803gJ/XukfV1jTPo9++ger0S+G6bche2bB84uOZIkiRJklqUyGwPBx48z33a1bMLsFuX9XTEZ/T7t1e9viIz17Ypd9k81ywqInZdpMgusxs333Rjp7ft2aZLy3w2tOmScp9BLd2k1MNHlU1myn++tmSm7K9x1mA+n+y07iFWPkIyc9hN+JURasqvrFs/go0C1q4f2CS8fVuzbjR/z1qtWTu6v3/zWb1uvNoLsGrN+LV51ji3fdY9a9r9yDl+frF6zbCb0Kjbb7mpdXfJsNrRrxtv/Pmw6tp5sZ/jMvO6LqsYaGarPWaB+3RSz1Vd1rUog34fImJzYMd6t+1ftsy8IyJWAlsBD+mimms7LfiCZx3cxW0lSZIkDdgDgJ8NuxG9OPhJ+w2r6uUdlOm4R6dQZgNo7aBd7IOI1ozXbT0dceh+f1pfu3B3B+VX1uutB9AWSZIkSaNlp2E3QMUyWzf1rGzZHkg2tEe/P5u3bK/uoPyqer1FF3Us9gnPQ4GL6u0DgOu7uLckaXTszIZejH2BwT+PJUkahF2A2YnYFhvCPWpuZEA9zB3aGbgFWNfgPUtktm7rWdWy3W09HTHo9+e+lu1NOyi/Wb2+t22pFos9fzLn+ZXre3heRZI0AuZ8P7/R7+eSNJ7mfD/vJFiOjPr59WH+/zOIugee2XqoZ7OW7W7r6YhD9/tzV8t2J0MutqrXnQwZkSRJkiT1p1Rm66aerVq2B5INDfp9yMz7gNvq3baz40fEMjb8gXY8wZ4kSZIkqTcFM1vraITF3pzW+njEQLKhQb9/l9brPSKi3aMQe7Zs/3iA7ZEkSZIkbVAis13asr3ngqX6r6cjBv3+fb1ebwU8oU25Q1q2L1qwlCRJkiSpSSUy21XADfPcZz6z70W/Hri6y3o6YtDv36dbto+Zr0BEzAAvrXfvBL486EZJkiRJkoACmS0zEzin3t0zIg5YoJ4D2NCjf059XeMM+n3KzG8DX6t3j42IJ85T7ARgr3r7lMxcU6RxkiRJkjTlmshsEXFoRGS9nL5AVf/ChlcDvisiNnp1Xr3/rnp3bV1+IAz6zTie6rUImwDnR8SbI+KAiHhKRLwPeHtdbgVw8rAaKUmSJElTauCZLTNXAO+od/cBLoqIF0bEPhHxQqrHAfapz78jMy/v9RezmBjQSIGpExFHAGcB2y5QZAVweGZeUa5VkiRJkiToL7NFxKFsGM5/RmYevUAdM8AHgJe3acqpwCszc31nLe+ePfoNyczPAI8H3kn1F+Qeqmc7vgO8CdjbkC9JkiRJw1Eis2Xm+sw8Fjic6pn9G4DV9foc4FmZedwgQz7Yoy9JkiRJ0kSxR1+SJEmSpAli0JckSZIkaYIY9CVJkiRJmiAGfUmSJEmSJohBX5IkSZKkCWLQlyRJkiRpghj0JUmSJEmaIAZ9SZIkSZImiEF/RETEwyLi5Ii4LCJWRsTtEbE8It4YEVsOqM4tI+KnEZH1cvUg6pGkaTLI7+cRcXTL9+zFlqMb+iVJ0lQq+fN5RDwtIk6PiOIDQuMAABYxSURBVCvqun4RESsi4j8j4tURsXWT9WnyRWYOuw1TLyKOAM4Ctl2gyArg8My8ouF6/wk4oeXQzzJztybrkKRpMujv53V4P63D4sdk5um91CNJ067Uz+cRsYzq+/qRixTdO/P/t3fv4ZIU5QHG34/7RVEJCMYLixCJF1QEVAILKwYVr0SDogElIhECEYkm3pEYNQgaL3iLYkAJ8hhRCEZjlMhiQIiKYBAQRAUENLACKwjLzS9/VDWnd3Zmzsy5zOzOeX/P0093T9V0Ve85FOfr6qrKi2dTlhaWdcZdgYUuInYAvgBsCNwO/ANwdj3fDzgYeAzw1YjYKTNvm8NyXw+sAO4BHjgX15WkhWoM7fmzgRv6pF83y+tL0oI0qvY8Ih4EfBPYsX50OnAa8FPgPuCRwB7AS2Z8M1qwDPTH78OURuNe4FmZeX4r7VsR8RPgWEpj8gbg6NkWGBFrA58G1gb+DjgIA31Jmq1Rt+dXZubVs7yGJGlVo2rPj6cE+XcBL83MMzvSvw+cHhFHUv5ulwbmGP0xioinAovr6Wc6GpHGB4DL6/EREbHuHBR9BKVRuQJ43xxcT5IWtDG255KkOTSq9jwidgMOqKdv7xLk3y+Le4ctQwubgf547dM67jrmMjN/B3yunj4YeMZsCoyIrYB31dNDMvPu2VxPkgSMoT2XJM2LUbXnh9f9cuCjM/i+1JeB/njtVve/BS7sk++c1vGusyzz48DGwMmZuXSW15IkFeNozyVJc2/e2/OIWI+pyfe+mZkr6udrR8QjI2JRRGwwzDWlTgb64/XYur9qmtdxftzlO0OLiP2A5wK3sPJs+5Kk2Rlpe16dGBE3RMTdEbEsIi6IiHdHxMNneV1JWshG0Z4/CWgC+UsiYpOI+BCwDLgW+DmwPCK+GRFLhry2BBjoj019SrdZPe07M3Jm3kJ5qghl9s2ZlPcQ4EP19M2ZedNMriNJWtmo2/OWJcDDgHWB3wOeBrwNuCoiXjvLa0vSgjPC9vxxreO1KJPuHUEZBtBYD/hjyuR/bxry+pKB/hi1Z7m/fYD8TUPygBmWdxywBXA+ZcZ9SdLcGHV7/jPg/ZTllp5at/2ALwJJ6SX6ZET8xQyvL0kL1aja801bx28C/gD4OqU93wB4KHAoZfx+AMdExIs6LyL14/J649MedzPIhHh31f2GwxYUEbsDr6YsEXJIZuaw15Ak9TSy9pyyxvJnu7Tj3wO+EBHPB75M6eX/YEScmZm/mkE5krQQjao937ijzG8Cz8/M++pnN1Ee2P6IMhfAWsA/1Dbdv+M1EHv0x2dF63i9AfKvX/d3DlNIRKwPfIryNPDDmfm/w3xfkjStkbTnAJm5vN8feZn570ytrLIRcNCwZUjSAjaq9nxFx/mbWkH+/TLzXMrDWyjzAGw/ZDlawAz0x+e21vEgr/s0T/4GeY2o7W3AdsAvgHcO+V1J0vRG1Z4P6lOUV/gB9pinMiRpEo2qPW+Xc1NmXtQn73+2jnceshwtYL66PyaZuSIifk2ZQOkR/fLWifSahuQXQxbVTN5xFvCCiOiWp7n2xnVmfoAbM/NbQ5YlSQvOCNvzQetzY63PZoAz8EvSgEbYnrfz9530ryPv5kOWowXMQH+8LgMWA9tGxDp9lvD4w9bx5UOW0bx29Od162cz4NR6fA5goC9JgxlFez4Mx3BK0syMoj2/tHW89jR52+n9lvuTVuKr++N1bt1vDOzYJ1/71cvz5q86kqQZWm3a84jYnKnloW6YjzIkaYLNe3uemdcA19bTRdHjldtqm9bx9cOUo4XNQH+8zmgdd+1tj4i1gFfW01uBs4cpIDNjug24pma/pvX5kiHvRZIWsnlvz4fwF5QJWKG8nSVJGtyo2vMv1f0mwDP75Htx6/jcnrmkDgb6Y5SZ3wX+u54eFBG7dMn2Bsosm1Bmzb+nnRgRSyIi63bS/NVWktTLKNrziFgUETv0q0ddXu+oenoncOIQtyFJC94I/z7/EFOz7/9jRGzSmSEi9geW1NOvZua8zO2iyeQY/fE7gvK6z4bANyLivZSnghsC+1F6ZgCuBD4wlhpKkgYx3+35IuDsiDgf+ArwQ+DGmvZo4E/r1vTmvzEzfc1TkoY373+fZ+a1EXEUcCxl2bzvRsT7gP+l9PK/GDi0Zv8NcOTMbkULlYH+mGXmRRHxMuBfKP9Rv7dLtiuB52XmbV3SJEmrgRG257vUrZc7gCMz81OzKEOSFqxRteeZeVxEbEpZJWs74J+7ZLsR2CczfzLTcrQwGeivBjLzKxHxRMrTw+dRlvO4G7gK+CLw0cy8Y4xVlCQNYJ7b8wuB/SlB/k7AwyiT7q0D3EKZxfm/gBMy88ZeF5EkTW9Uf59n5lsi4kxK7/1iStu+gvIg4Uzg+MxcPttytPBEpivwSJIkSZI0KZyMT5IkSZKkCWKgL0mSJEnSBDHQlyRJkiRpghjoS5IkSZI0QQz0JUmSJEmaIAb6kiRJkiRNEAN9SZIkSZImiIG+JEmSJEkTxEBfkiRJkqQJYqAvSZIkSdIEMdCXJEmSJGmCGOhLkiRJkjRBDPQlSZIkSZogBvqSJEmSJE0QA31JkiRJkiaIgb4kSZIkSRPEQF+SNPEiYklEZN2WjLs+q5OIOLr5txlxua+u5V4SETHKsudDRHys3s9nx10XSZIM9CVJ0khFxAOA99bTd2XmSB8yzJP3AXcDB0TEjuOujCRpYTPQlyRpwqwBbzC8DtgCuAw4bcx1mROZeS3wWSCAvx9zdSRJC5yBviRJGpmI2BD463r6wQnpzW98oO73tldfkjROBvqSJGmU9gd+D7iLCenNb2TmFcAP6ulfjbMukqSFzUBfkiSN0kF1/9XMvHWsNZkfp9T9vhHxwLHWRJK0YBnoS9IaLCL+vY7DvqBHenus9s0RsUq7HxFbtvIc0pG2VkTsGRHvj4jzImJZRNwTEbdGxMX180f1KHv31nUPHuBe3tLK/7geeZ4SEZ+MiCsi4vaI+G09/kREPGa6MgYREftExBcj4tqIWFHv9fsR8c6IeEif751U6351PX9wRLwrIi6t9bw1Ir4dEX82YD1eEBFfj4ibIuKOiLgyIo6LiC1r+tW1vJNa31lUZ88/u3Wps1v/rs12YJ9yN4iIv4mIH0TEbXX7bkQcHhHrDFL3PtfeCnhaPf1Sn3wHtuq6qE++Rf3uqcvPZMv6O3tl/Te9PiL+NSIe3+W6H6n57oyI/4uIUyJimwFus7mvjYAXDZBfkqQ5N6v/YUuSxu4c4HnAjhHxgMy8vSN9j9bxQ4AnAhf3ybO0I+0o4J1dyn0Q8KS6HRoR+2fm6R15/hu4FngU8Arg0/1vhVfU/cWZeVk7oT6geD/wespkZ22PqdtrIuKwzPzUNOV0VYP404A9O5LWB3as219GxIsys+uDlda1tgO+DizqSFoMLI6IXTLz8D7f/xjwlx0f/wHwRmD/iHjuNLczIxGxBaXeT+5I2rluz4qIfTLzdzMsYknruO+/4VyLiCdR7m3L1scbAvsCz42I52TmuRGxJ/Blyu94YwPK7+feEbE4My/tVU5mXhMRv6rl7A38yxzfiiRJ07JHX5LWbEvrfh1gty7pS6Y5b3/2f5n54460dYBfAh8HDgB2pQS8+wDHArdTei4/HxGPbX+xTrJ2aj3dPSIe3usmIuKJwBPq6SldshwPHEkJ8r8NvLrW+6nAwcClta7/FBEv7FVOn/LXB86iBPn3AScDLweeTgnO3wb8Gngo8LXaM93LRsBXKOPQ313ruVOt53U1z2ER8ewedflbpoL8XwCHUXrBdwfeQwlAT6vldLoe2J7y79N4df2svZ3Ro+5fBh4HfATYi/KzfgVweU1/Qb2PmVpc97/OzJ/N4jrD2gg4HVgPeCvl9/jpwNGUJfE2Bk6OiG0p/za3AUfUPLsBHwSS8rDsMwOU992636NvLkmS5ktmurm5ubmtoRuwNvAbShByTEfa+sCdNe3Muj+jyzUuq2lf6JK2CFi3T/mPoASvCZzcJX37mpbAG/tc55ia5z7g4R1pe7WucVCP728A/FfNczWwTkf6ktY1lnT5/ntq2i3Ajj3K2Aq4oeY7pUv6Sa0ybgUe3yXPtq2fyb91Sd+ylf4TYLMuef6IMpFdU9ZJXfL0vd+OvEe38t7d499nU+BXNc8PZ/H72vyunTVNvgNbdVrUJ9+iVr4Dp/mZ3ARs0yXPYa08NwJXApt3yXdsK98O09T/qFbeLWb67+Xm5ubm5jbTzR59SVqDZeZ9wLn1dElH8tMoAfBySo8klJ71+9v+iHgo0PTEn9Pl+ldn5j19yr8OOK6evjAioiP9EuCSetp1bHr9zsubOmTm9R1Z3lz3X8rMrr2pmbkCaF6F3wp4Rq86dyn/AZRgD+AdmXlhjzKuYWp99H0jYuM+l31Hdnm9OzOvYqo3vdsbGK+i/MwAXp+Zy7pc4zvAx/qUPRvHZ+bSLmXeDJxYT7ePiAd15hnQI+r+xhl+fzbekZk/7fL5PwMr6vHmwOsy86Yu+T7ROl7cJb2tfX+PHryKkiTNDQN9SVrzNQH6jjVobTSvDZ8LfIfSU9yM0+/MA6uOz19FRGwSEVtHxOMj4gkR8QTgjpq8CbB1l681r+I/ufP1/mo3yjj+dt77y2PqAUbfpdgy83KgCYx36XsjK9uDqfHY0y339u26X5fyWnvXqgCf73ON5kHCphHx4I60P677ZcB/9LnG5/pVcha6DZtoNPUOuv+c+6rDI5pZ6G8Z9vuzlMC/dk3IvJPy9gSUev1nj3w/p7zSD9MH7ze3jrfsmUuSpHlioC9Ja76ldd85Tn9Jk56ZdzE1+dmSLnluyo4J8BoRsVVEHF9nLl8O/Az4EaWn/hKgPfndZl0ucSol0ILuvfrNJHx3sepM7Dsw9f+qU7vMHr/S1ip/mOBqp9bxL6e5/o9aeXuVsSwzf92nvHYQ2Ln8WjNPwcXZf8K7Syiv2c+1zjka2vrVexCbto5HHegvq28l9NIs83dVZuYA+aa7//b99XvzQ5KkeWGgL0lrvgspk+JBDdwjYj2merWXduyXtL7b9Oiv8tp+vc7elHHVh1NeiZ/Ohp0fZOa1lBn4YSqob66/LmXWc+i+rvpDByizm24T1fUy12Xc0ePzRjuAX7sjrVm+r9ur4/erQzb6Ba4zkpn96t6v3oNY0Tpe5fdkng36Mxk033T3376/nkNfJEmaLy6vJ0lruMy8NyLOA57NVBC/MyXYWA5cVD9rgvlmnP6mlBnW22n3i4jNKK+gb0R5kPB+ymvNPwWWZ+bdNd+elInwYNWl7xqnUGaN37ouLXd+/fzZlNnpmzyd2gHVaylDEAYxTI9xu4ynMHhgdt30WdRyK3Av5W+PTafJu6Zr31/nwytJkuadgb4kTYZzKEFzM05/Sf383Nr7C+XV/RVMjdPfhqnAfGmXa/4p0Iwh/5PMPKtH2YMEbV+kLJG3HuX1/SbQb3r4lwNf7fK99ivwd2Tmj7rkma12GTfVCQbH5RbKkIDN+2WKiLWZ6v1fI2RmRsQyyv0NU/deD4+g/D6tjtr3d+3YaiFJWrB8dV+SJsPSum/G6e/R8Tldxuk3eZZR1qHv9Pi6v7lPkA8rj3HvKjNvYWpyuZdGxDp11voX1c9Oq/XrdDFT4/t3na6cGbqodTxfZQyq+Tk8ub06QhfbU5ZP7KXfOPNxalZgeMwQ3+k338LDZlGX+dTc313AVeOsiCRpYTLQl6TJ8H3gt/V4L8pa67BqT31zvoSpXv9v95iArHnra4NeQWdEbAQcMGAdm1fzN6913Iepce5dZ3uvy5w1DydeERF9e7pn6Cymxma/rnOJwBFrhkBsBuzdJ98rp7lOezx8vwcCo9bM1bBdRAw6od8T+6TtOcv6zJed6/6ifstTSpI0Xwz0JWkC1GCiGb9+EGWm7/b4/EYzFn9PpmZ47zoRH1NLjm0EvLQzsb4+fgLw+wNW8yvAb+rxnzH12v71feoA8O663wQ4rcuSdO06rR8Rh0XEBr3ydKoTAH60nv4R8MF+vekRsUVEvGbQ6w/ps5ReYIAP1XkSOsvfBThsmuv8snW8zRzVbS40gf5aDPAmSPXm+kBpJRGxNfC61kerxQONuoxg83DiG+OsiyRp4TLQl6TJ0QTLzZrw7fH5jQsogeQD6T8+H8q6403QeWJEHBMRz4yInSLiVcD/AC8Hzhukcpm5AvhyPd2H0qsPcGq/peQy82vAh+vp7sDlEfHOWpcnR8SuEfGqiDiBEuB+lOHnoDmq3g/AEcAP6gODXWsZz4iIwyPiDMqY60OGvP5AMvMG4O/q6bbAhRFxaETsHBG7RcTfU3r9b2BqZv5V3saoKx00cw28MSJeGBHbRcS2dZvJ8nhz4TtM1fuZA35nK+D8iDggIp4SEbtExN9QfpcfxNT9vyQinhUR285tlYe2O7BuPT59nBWRJC1cTsYnSZNj6TTnZOaKiLiAqfH5NzM1broz73URcSil134D4E11a/sC8GnK6++DOAU4kJXXFu/62n6HI2td30EZs310n7y/BTofcPSVmXdFxF7AScCLgScx1cvfzW/6pM3WMZTg9rXAo4CPd6QvoyxJ2Dw0WUF3763f3Rr4t460P6fc60hl5t0R8TngDZSHRG8f4GvHAX8LfK5L2tuB5wNPpzw42gt4BuMdF9+8qXJpZl48xnpIkhYwe/QlaXJ8j5XXAV/aI1/7817j8wHIzBOBxcAZlJ7Yeyi95l8HXpaZ+zFcUP0tVn6t/LJBgqEs3kWZ5OxYypwEN9eybwMuozwweBXwsMy8c4g6NWXclpkvodzvCcAV9dr31rK+B3wMeC5TbyPMuXqvh1AmKvxGLXsFJXj9CLBDZn6fMpQByhCNbtf5BPCSeo0b632sDj5d94+OiKcPkP8TlIcv51F+HrdTVm3YNzPfA/wV8OP6+dcYY5Bfh4y8uJ52PqCRJGlkos/fd5IkaTUUEY8AflFPX5OZnxlnfYYVEV+jTDZ4QmYe3CX9QODEerp1Zl49utrNXETsD5xMWbJxUWbePuYqSZIWKHv0JUla87y8dXxBz1yrr7cAvwNeGRGPHHdl5kKdwPGt9fQ4g3xJ0jgZ6EuStBqJiI0jouf68BGxA2WuAoALM/PS0dRs7mTmD4HPA+tRgv5JsC/wWMpkjR8Zc10kSQuck/FJkrR62ZyyssAZlLkQrqCsfvD7wHMoyyduSJlt/q/HVck58Fbgp8CKiIh+c0WsIdamrJjwrZnMESFJ0lxyjL4kSauRiFgE/HyabHcDB2dmt5no13hr6hh9SZJWF/boS5K0erkeeBml935nSg//ppQVFa6mLGV4fGZeM64KSpKk1Zs9+pIkSZIkTRAn45MkSZIkaYIY6EuSJEmSNEEM9CVJkiRJmiAG+pIkSZIkTRADfUmSJEmSJoiBviRJkiRJE8RAX5IkSZKkCWKgL0mSJEnSBDHQlyRJkiRpghjoS5IkSZI0QQz0JUmSJEmaIAb6kiRJkiRNEAN9SZIkSZImiIG+JEmSJEkTxEBfkiRJkqQJYqAvSZIkSdIEMdCXJEmSJGmCGOhLkiRJkjRBDPQlSZIkSZog/w+kCUz5Y/+epgAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] @@ -377,6 +542,13 @@ "cbar.set_ticks([t for t in np.arange(0,tran_max+0.1,0.1)])\n", "cbar.set_ticklabels([\"{:.1f}\".format(t) for t in np.arange(0,tran_max+0.1,0.1)])" ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] } ], "metadata": { @@ -395,7 +567,20 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.7.1" + "version": "3.6.8" + }, + "toc": { + "base_numbering": 1, + "nav_menu": {}, + "number_sections": true, + "sideBar": true, + "skip_h1_title": false, + "title_cell": "Table of Contents", + "title_sidebar": "Contents", + "toc_cell": false, + "toc_position": {}, + "toc_section_display": true, + "toc_window_display": false } }, "nbformat": 4, diff --git a/python/geom.py b/python/geom.py index 4adb5290e..97f46792a 100755 --- a/python/geom.py +++ b/python/geom.py @@ -177,7 +177,7 @@ def __init__(self, epsilon_diag=Vector3(1, 1, 1), E_chi3=None, H_chi2=None, H_chi3=None, - valid_freq_range=None): + valid_freq_range=FreqRange(min=-mp.inf, max=mp.inf)): if epsilon: epsilon_diag = Vector3(epsilon, epsilon, epsilon) @@ -239,6 +239,10 @@ def transform(self, m): for s in self.H_susceptibilities: s.transform(m) + def rotate(self, axis, theta): + T = get_rotation_matrix(axis,theta) + self.transform(T) + def epsilon(self,freq): return self._get_epsmu(self.epsilon_diag, self.epsilon_offdiag, self.E_susceptibilities, self.D_conductivity_diag, self.D_conductivity_offdiag, freq) diff --git a/python/materials.py b/python/materials.py index 4b9e92838..028b6dcaa 100644 --- a/python/materials.py +++ b/python/materials.py @@ -2,6 +2,7 @@ # Materials Library import meep as mp +import numpy as np # default unit length is 1 um um_scale = 1.0 diff --git a/python/simulation.py b/python/simulation.py index 8e6aac38f..0ab46fd08 100644 --- a/python/simulation.py +++ b/python/simulation.py @@ -1264,9 +1264,9 @@ def get_field_point(self, c, pt): v3 = py_v3_to_vec(self.dimensions, pt, self.is_cylindrical) return self.fields.get_field_from_comp(c, v3) - def get_epsilon_point(self, pt): + def get_epsilon_point(self, pt, omega = 0): v3 = py_v3_to_vec(self.dimensions, pt, self.is_cylindrical) - return self.fields.get_eps(v3) + return self.fields.get_eps(v3,omega) def get_filename_prefix(self): if isinstance(self.filename_prefix, str): @@ -1795,7 +1795,7 @@ def _add_fluxish_stuff(self, add_dft_stuff, fcen, df, nfreq, stufflist, *args): return stuff - def output_component(self, c, h5file=None): + def output_component(self, c, h5file=None, omega=0): if self.fields is None: raise RuntimeError("Fields must be initialized before calling output_component") @@ -1803,7 +1803,7 @@ def output_component(self, c, h5file=None): h5 = self.output_append_h5 if h5file is None else h5file append = h5file is None and self.output_append_h5 is not None - self.fields.output_hdf5(c, vol, h5, append, self.output_single_precision, self.get_filename_prefix()) + self.fields.output_hdf5(c, vol, h5, append, self.output_single_precision,self.get_filename_prefix(), omega) if h5file is None: nm = self.fields.h5file_name(mp.component_name(c), self.get_filename_prefix(), True) @@ -1833,7 +1833,7 @@ def h5topng(self, rm_h5, option, *step_funcs): cmd = re.sub(r'\$EPS', self.last_eps_filename, opts) return convert_h5(rm_h5, cmd, *step_funcs) - def get_array(self, component=None, vol=None, center=None, size=None, cmplx=None, arr=None): + def get_array(self, component=None, vol=None, center=None, size=None, cmplx=None, arr=None, omega = 0): if component is None: raise ValueError("component is required") if isinstance(component, mp.Volume) or isinstance(component, mp.volume): @@ -1868,9 +1868,9 @@ def get_array(self, component=None, vol=None, center=None, size=None, cmplx=None arr = np.zeros(dims, dtype=np.complex128 if cmplx else np.float64) if np.iscomplexobj(arr): - self.fields.get_complex_array_slice(v, component, arr) + self.fields.get_complex_array_slice(v, component, arr, omega) else: - self.fields.get_array_slice(v, component, arr) + self.fields.get_array_slice(v, component, arr, omega) return arr @@ -2071,8 +2071,8 @@ def run(self, *step_funcs, **kwargs): else: raise ValueError("Invalid run configuration") - def get_epsilon(self): - return self.get_array(component=mp.Dielectric) + def get_epsilon(self,omega=0): + return self.get_array(component=mp.Dielectric,omega=omega) def get_mu(self): return self.get_array(component=mp.Permeability) @@ -2600,12 +2600,14 @@ def _output_png(sim, todo): return _output_png -def output_epsilon(sim): - sim.output_component(mp.Dielectric) +def output_epsilon(sim,*step_func_args,**kwargs): + omega = kwargs.pop('omega', 0.0) + sim.output_component(mp.Dielectric,omega=omega) -def output_mu(sim): - sim.output_component(mp.Permeability) +def output_mu(sim,*step_func_args,**kwargs): + omega = kwargs.pop('omega', 0.0) + sim.output_component(mp.Permeability,omega=omega) def output_hpwr(sim): diff --git a/python/tests/dispersive_eigenmode.py b/python/tests/dispersive_eigenmode.py new file mode 100644 index 000000000..966f2a9a8 --- /dev/null +++ b/python/tests/dispersive_eigenmode.py @@ -0,0 +1,149 @@ + +# dispersive_eigenmode.py - Tests the meep eigenmode features (eigenmode source, +# eigenmode decomposition, and get_eigenmode) with dispersive materials. +# TODO: +# * check materials with off diagonal components +# * check magnetic profiles +# * once imaginary component is supported, check that + +from __future__ import division + +import unittest +import meep as mp +import numpy as np +from meep import mpb +import h5py +class TestDispersiveEigenmode(unittest.TestCase): + # ----------------------------------------- # + # ----------- Helper Functions ------------ # + # ----------------------------------------- # + # Directly cals the C++ chi1 routine + def call_chi1(self,material,omega): + + sim = mp.Simulation(cell_size=mp.Vector3(1,1,1), + default_material=material, + resolution=20) + + sim.init_sim() + v3 = mp.py_v3_to_vec(sim.dimensions, mp.Vector3(0,0,0), sim.is_cylindrical) + chi1inv = np.zeros((3,3),dtype=np.float64) + for i, com in enumerate([mp.Ex,mp.Ey,mp.Ez]): + for k, dir in enumerate([mp.X,mp.Y,mp.Z]): + chi1inv[i,k] = sim.structure.get_chi1inv(com,dir,v3,omega) + n = np.real(np.sqrt(np.linalg.inv(chi1inv.astype(np.complex128)))) + + n_actual = np.real(np.sqrt(material.epsilon(omega).astype(np.complex128))) + + np.testing.assert_allclose(n,n_actual) + + def verify_output_and_slice(self,material,omega): + # Since the slice routines average the diagonals, we need to do that too: + chi1 = material.epsilon(omega).astype(np.complex128) + if np.any(np.imag(chi1) != 0): + chi1 = np.square(np.real(np.sqrt(chi1))) + chi1inv = np.linalg.inv(chi1) + chi1inv = np.diag(chi1inv) + N = chi1inv.size + n = np.sqrt(N/np.sum(chi1inv)) + + sim = mp.Simulation(cell_size=mp.Vector3(2,2,2), + default_material=material, + resolution=20, + eps_averaging=False + ) + sim.init_sim() + + # Check to make sure the get_slice routine is working with omega + n_slice = np.sqrt(np.max(sim.get_epsilon(omega))) + self.assertAlmostEqual(n,n_slice, places=4) + + # Check to make sure h5 output is working with omega + filename = 'dispersive_eigenmode-eps-000000.00.h5' + mp.output_epsilon(sim,omega=omega) + n_h5 = 0 + mp.all_wait() + with h5py.File(filename, 'r') as f: + n_h5 = np.sqrt(np.mean(f['eps'][()])) + self.assertAlmostEqual(n,n_h5, places=4) + + # ----------------------------------------- # + # ----------- Test Routines --------------- # + # ----------------------------------------- # + def test_chi1_routine(self): + # Checks the newly implemented get_chi1inv routines within the + # fields and structure classes by comparing their output to the + # python epsilon output. + + from meep.materials import Si, Ag, LiNbO3, Au + + # Check Silicon + w0 = Si.valid_freq_range.min + w1 = Si.valid_freq_range.max + self.call_chi1(Si,w0) + self.call_chi1(Si,w1) + + # Check Silver + w0 = Ag.valid_freq_range.min + w1 = Ag.valid_freq_range.max + self.call_chi1(Ag,w0) + self.call_chi1(Ag,w1) + + # Check Gold + w0 = Au.valid_freq_range.min + w1 = Au.valid_freq_range.max + self.call_chi1(Au,w0) + self.call_chi1(Au,w1) + + # Check Lithium Niobate (X,X) + w0 = LiNbO3.valid_freq_range.min + w1 = LiNbO3.valid_freq_range.max + self.call_chi1(LiNbO3,w0) + self.call_chi1(LiNbO3,w1) + + # Now let's rotate LN + import copy + rotLiNbO3 = copy.deepcopy(LiNbO3) + rotLiNbO3.rotate(mp.Vector3(1,1,1),np.radians(34)) + self.call_chi1(rotLiNbO3,w0) + self.call_chi1(rotLiNbO3,w1) + + def test_get_with_dispersion(self): + # Checks the get_array_slice and output_fields method + # with dispersive materials. + + from meep.materials import Si, Ag, LiNbO3, Au + + # Check Silicon + w0 = Si.valid_freq_range.min + w1 = Si.valid_freq_range.max + self.verify_output_and_slice(Si,w0) + self.verify_output_and_slice(Si,w1) + + # Check Silver + w0 = Ag.valid_freq_range.min + w1 = Ag.valid_freq_range.max + self.verify_output_and_slice(Ag,w0) + self.verify_output_and_slice(Ag,w1) + + # Check Gold + w0 = Au.valid_freq_range.min + w1 = Au.valid_freq_range.max + self.verify_output_and_slice(Au,w0) + self.verify_output_and_slice(Au,w1) + + # Check Lithium Niobate + w0 = LiNbO3.valid_freq_range.min + w1 = LiNbO3.valid_freq_range.max + self.verify_output_and_slice(LiNbO3,w0) + self.verify_output_and_slice(LiNbO3,w1) + + # Now let's rotate LN + import copy + rotLiNbO3 = copy.deepcopy(LiNbO3) + rotLiNbO3.rotate(mp.Vector3(1,1,1),np.radians(34)) + self.verify_output_and_slice(rotLiNbO3,w0) + self.verify_output_and_slice(rotLiNbO3,w1) + + +if __name__ == '__main__': + unittest.main() diff --git a/python/tests/visualization.py b/python/tests/visualization.py index 42368e918..865278db2 100644 --- a/python/tests/visualization.py +++ b/python/tests/visualization.py @@ -31,40 +31,50 @@ def setup_sim(zDim=0): # A simple waveguide geometry = [mp.Block(mp.Vector3(mp.inf,1,1), - center=mp.Vector3(), - material=mp.Medium(epsilon=12))] - + center=mp.Vector3(), + material=mp.Medium(epsilon=12))] + # Add point sources sources = [mp.Source(mp.ContinuousSource(frequency=0.15), component=mp.Ez, - center=mp.Vector3(-5,0)), + center=mp.Vector3(-5,0), + size=mp.Vector3(0,0,2)), + mp.Source(mp.ContinuousSource(frequency=0.15), + component=mp.Ez, + center=mp.Vector3(0,2), + size=mp.Vector3(0,0,2)), + mp.Source(mp.ContinuousSource(frequency=0.15), + component=mp.Ez, + center=mp.Vector3(-1,1), + size=mp.Vector3(0,0,2)), mp.Source(mp.ContinuousSource(frequency=0.15), component=mp.Ez, - center=mp.Vector3(0,2)) + center=mp.Vector3(-2,-2,1), + size=mp.Vector3(0,0,0)), ] # Add line sources sources += [mp.Source(mp.ContinuousSource(frequency=0.15), component=mp.Ez, - size=mp.Vector3(0,2,0), + size=mp.Vector3(0,2,2), center=mp.Vector3(-6,0)), mp.Source(mp.ContinuousSource(frequency=0.15), component=mp.Ez, - size=mp.Vector3(2,0,0), + size=mp.Vector3(0,2,2), center=mp.Vector3(0,1))] # Add plane sources sources += [mp.Source(mp.ContinuousSource(frequency=0.15), component=mp.Ez, - size=mp.Vector3(2,2,0), + size=mp.Vector3(2,2,2), center=mp.Vector3(-3,0)), mp.Source(mp.ContinuousSource(frequency=0.15), component=mp.Ez, - size=mp.Vector3(2,2,0), + size=mp.Vector3(2,2,2), center=mp.Vector3(0,-2))] - + # Different pml layers - pml_layers = [mp.PML(2.0,mp.X),mp.PML(1.0,mp.Y,mp.Low),mp.PML(1.5,mp.Y,mp.High)] + pml_layers = [mp.PML(2.0,mp.X),mp.PML(1.0,mp.Y,mp.Low),mp.PML(1.5,mp.Y,mp.High),mp.PML(1.5,mp.Z)] resolution = 10 @@ -74,13 +84,33 @@ def setup_sim(zDim=0): sources=sources, resolution=resolution) # Line monitor - sim.add_flux(1,0,1,mp.FluxRegion(center=mp.Vector3(5,0,0),size=mp.Vector3(0,4), direction=mp.X)) + sim.add_flux(1,0,1,mp.FluxRegion(center=mp.Vector3(5,0,0),size=mp.Vector3(0,4,4), direction=mp.X)) # Plane monitor - sim.add_flux(1,0,1,mp.FluxRegion(center=mp.Vector3(2,0,0),size=mp.Vector3(4,4), direction=mp.X)) - + sim.add_flux(1,0,1,mp.FluxRegion(center=mp.Vector3(2,0,0),size=mp.Vector3(4,4,4), direction=mp.X)) + return sim +def view_sim(): + sim = setup_sim(8) + xy0 = mp.Volume(center=mp.Vector3(0,0,0), size=mp.Vector3(sim.cell_size.x,sim.cell_size.y,0)) + xy1 = mp.Volume(center=mp.Vector3(0,0,1), size=mp.Vector3(sim.cell_size.x,sim.cell_size.y,0)) + yz0 = mp.Volume(center=mp.Vector3(0,0,0), size=mp.Vector3(0,sim.cell_size.y,sim.cell_size.z)) + yz1 = mp.Volume(center=mp.Vector3(1,0,0), size=mp.Vector3(0,sim.cell_size.y,sim.cell_size.z)) + xz0 = mp.Volume(center=mp.Vector3(0,0,0), size=mp.Vector3(sim.cell_size.x,0,sim.cell_size.z)) + xz1 = mp.Volume(center=mp.Vector3(0,1,0), size=mp.Vector3(sim.cell_size.x,0,sim.cell_size.z)) + vols = [xy0,xy1,yz0,yz1,xz0,xz1] + titles = ['xy0','xy1','yz0','yz1','xz0','xz1'] + xlabel = ['x','x','y','y','x','x'] + ylabel = ['y','y','z','z','z','z'] + for k in range(len(vols)): + ax = plt.subplot(2,3,k+1) + sim.plot2D(ax=ax,output_plane=vols[k]) + ax.set_xlabel(xlabel[k]) + ax.set_ylabel(ylabel[k]) + ax.set_title(titles[k]) + plt.tight_layout() + plt.show() class TestVisualization(unittest.TestCase): def test_plot2D(self): diff --git a/python/visualization.py b/python/visualization.py index 737de0493..df3098ce7 100644 --- a/python/visualization.py +++ b/python/visualization.py @@ -119,7 +119,12 @@ def intersect_volume_volume(volume1,volume2): # Evaluate intersection U = np.min([U1,U2],axis=0) L = np.max([L1,L2],axis=0) - + + # For single points we have to check manually + if np.all(U-L == 0): + if (not volume1.pt_in_volume(Vector3(*U))) or (not volume2.pt_in_volume(Vector3(*U))): + return [] + # Check for two volumes that don't intersect if np.any(U-L < 0): return [] @@ -157,16 +162,10 @@ def get_2D_dimensions(sim,output_plane): plane_center, plane_size = (sim.geometry_center, sim.cell_size) plane_volume = Volume(center=plane_center,size=plane_size) - # Check if plane extends past domain, truncate, and issue warning if required. - if plane_volume.size.x == 0: - check_size = Vector3(0,sim.cell_size.y,sim.cell_size.z) - elif plane_volume.size.y == 0: - check_size = Vector3(sim.cell_size.x,0,sim.cell_size.z) - elif plane_volume.size.z == 0: - check_size = Vector3(sim.cell_size.x,sim.cell_size.y,0) - else: + if plane_size.x!=0 and plane_size.y!=0 and plane_size.z!=0: raise ValueError("Plane volume must be 2D (a plane).") - check_volume = Volume(center=sim.geometry_center,size=check_size) + + check_volume = Volume(center=sim.geometry_center,size=sim.cell_size) vertices = intersect_volume_volume(check_volume,plane_volume) @@ -234,13 +233,13 @@ def sort_points(xy): # Point volume if len(intersection) == 1: point_args = {key:value for key, value in plotting_parameters.items() if key in ['color','marker','alpha','linewidth']} - if sim_center.y == center.y and sim_size.y==0: + if sim_size.y==0: ax.scatter(center.x,center.z, **point_args) return ax - elif sim_center.x == center.x and sim_size.x==0: + elif sim_size.x==0: ax.scatter(center.y,center.z, **point_args) return ax - elif sim_center.z == center.z and sim_size.z==0: + elif sim_size.z==0: ax.scatter(center.x,center.y, **point_args) return ax else: @@ -250,15 +249,15 @@ def sort_points(xy): elif len(intersection) == 2: line_args = {key:value for key, value in plotting_parameters.items() if key in ['color','linestyle','linewidth','alpha']} # Plot YZ - if sim_center.x == center.x and sim_size.x==0: + if sim_size.x==0: ax.plot([a.y for a in intersection],[a.z for a in intersection], **line_args) return ax #Plot XZ - elif sim_center.y == center.y and sim_size.y==0: + elif sim_size.y==0: ax.plot([a.x for a in intersection],[a.z for a in intersection], **line_args) return ax # Plot XY - elif sim_center.z == center.z and sim_size.z==0: + elif sim_size.z==0: ax.plot([a.x for a in intersection],[a.y for a in intersection], **line_args) return ax else: @@ -268,15 +267,15 @@ def sort_points(xy): elif len(intersection) > 2: planar_args = {key:value for key, value in plotting_parameters.items() if key in ['edgecolor','linewidth','facecolor','hatch','alpha']} # Plot YZ - if sim_center.x == center.x and sim_size.x==0: + if sim_size.x==0: ax.add_patch(patches.Polygon(sort_points([[a.y,a.z] for a in intersection]), **planar_args)) return ax #Plot XZ - elif sim_center.y == center.y and sim_size.y==0: + elif sim_size.y==0: ax.add_patch(patches.Polygon(sort_points([[a.x,a.z] for a in intersection]), **planar_args)) return ax # Plot XY - elif sim_center.z == center.z and sim_size.z==0: + elif sim_size.z==0: ax.add_patch(patches.Polygon(sort_points([[a.x,a.y] for a in intersection]), **planar_args)) return ax else: @@ -285,7 +284,7 @@ def sort_points(xy): return ax return ax -def plot_eps(sim,ax,output_plane=None,eps_parameters=None): +def plot_eps(sim,ax,output_plane=None,eps_parameters=None,omega=0): if sim.structure is None: sim.init_sim() @@ -324,7 +323,7 @@ def plot_eps(sim,ax,output_plane=None,eps_parameters=None): else: raise ValueError("A 2D plane has not been specified...") - eps_data = np.rot90(np.real(sim.get_array(center=center, size=cell_size, component=mp.Dielectric))) + eps_data = np.rot90(np.real(sim.get_array(center=center, size=cell_size, component=mp.Dielectric, omega=omega))) if mp.am_master(): ax.imshow(eps_data, extent=extent, **eps_parameters) ax.set_xlabel(xlabel) @@ -492,13 +491,24 @@ def plot_fields(sim,ax=None,fields=None,output_plane=None,field_parameters=None) def plot2D(sim,ax=None, output_plane=None, fields=None, labels=False, eps_parameters=None,boundary_parameters=None, source_parameters=None,monitor_parameters=None, - field_parameters=None): + field_parameters=None, omega=None): + + # Initialize the simulation if sim.structure is None: sim.init_sim() - + # Ensure a figure axis exists if ax is None and mp.am_master(): from matplotlib import pyplot as plt ax = plt.gca() + # Determine a frequency to plot all epsilon + if omega is None: + try: + omega = sim.sources[0].frequency + except: + try: + omega = sim.sources[0].src.frequency + except: + omega = 0 # User incorrectly specified a 3D output plane if output_plane and (output_plane.size.x != 0) and (output_plane.size.y != 0) and (output_plane.size.z != 0): @@ -508,7 +518,7 @@ def plot2D(sim,ax=None, output_plane=None, fields=None, labels=False, raise ValueError("For 3D simulations, you must specify an output_plane.") # Plot geometry - ax = plot_eps(sim,ax,output_plane=output_plane,eps_parameters=eps_parameters) + ax = plot_eps(sim,ax,output_plane=output_plane,eps_parameters=eps_parameters,omega=omega) # Plot boundaries ax = plot_boundaries(sim,ax,output_plane=output_plane,boundary_parameters=boundary_parameters) diff --git a/src/array_slice.cpp b/src/array_slice.cpp index 2ecbc627b..553c6a87c 100644 --- a/src/array_slice.cpp +++ b/src/array_slice.cpp @@ -66,6 +66,8 @@ typedef struct { cdouble *fields; ptrdiff_t *offsets; + double omega; + int ninveps; component inveps_cs[3]; direction inveps_ds[3]; @@ -274,6 +276,7 @@ static void get_array_slice_chunkloop(fields_chunk *fc, int ichnk, component cgr ptrdiff_t *off = data->offsets; component *cS = data->cS; + double omega = data->omega; complex *fields = data->fields, *ph = data->ph; const component *iecs = data->inveps_cs; const direction *ieds = data->inveps_ds; @@ -315,23 +318,21 @@ static void get_array_slice_chunkloop(fields_chunk *fc, int ichnk, component cgr } else if (cS[i] == Dielectric) { double tr = 0.0; for (int k = 0; k < data->ninveps; ++k) { - const realnum *ie = fc->s->chi1inv[iecs[k]][ieds[k]]; - if (ie) - tr += (ie[idx] + ie[idx + ieos[2 * k]] + ie[idx + ieos[1 + 2 * k]] + - ie[idx + ieos[2 * k] + ieos[1 + 2 * k]]); - else - tr += 4; // default inveps == 1 + tr += (fc->s->get_chi1inv_at_pt(iecs[k],ieds[k],idx,omega) + + fc->s->get_chi1inv_at_pt(iecs[k],ieds[k],idx + ieos[2 * k],omega) + + fc->s->get_chi1inv_at_pt(iecs[k],ieds[k],idx + ieos[1 + 2 * k],omega) + + fc->s->get_chi1inv_at_pt(iecs[k],ieds[k],idx + ieos[2 * k] + ieos[1 + 2 * k],omega)); + if (tr == 0.0) tr += 4.0; // default inveps == 1 } fields[i] = (4 * data->ninveps) / tr; } else if (cS[i] == Permeability) { double tr = 0.0; for (int k = 0; k < data->ninvmu; ++k) { - const realnum *im = fc->s->chi1inv[imcs[k]][imds[k]]; - if (im) - tr += (im[idx] + im[idx + imos[2 * k]] + im[idx + imos[1 + 2 * k]] + - im[idx + imos[2 * k] + imos[1 + 2 * k]]); - else - tr += 4; // default invmu == 1 + tr += (fc->s->get_chi1inv_at_pt(imcs[k],imds[k],idx,omega) + + fc->s->get_chi1inv_at_pt(imcs[k],imds[k],idx + imos[2 * k],omega) + + fc->s->get_chi1inv_at_pt(imcs[k],imds[k],idx + imos[1 + 2 * k],omega) + + fc->s->get_chi1inv_at_pt(imcs[k],imds[k],idx + imos[2 * k] + imos[1 + 2 * k],omega)); + if (tr == 0.0) tr += 4.0; // default invmu == 1 } fields[i] = (4 * data->ninvmu) / tr; } else { @@ -462,7 +463,7 @@ int fields::get_array_slice_dimensions(const volume &where, size_t dims[3], dire /**********************************************************************/ void *fields::do_get_array_slice(const volume &where, std::vector components, field_function fun, field_rfunction rfun, void *fun_data, - void *vslice) { + void *vslice, double omega) { am_now_working_on(FieldOutput); /***************************************************************/ @@ -498,6 +499,7 @@ void *fields::do_get_array_slice(const volume &where, std::vector com data.rfun = rfun; data.fun_data = fun_data; data.components = components; + data.omega = omega; int num_components = components.size(); data.cS = new component[num_components]; data.ph = new cdouble[num_components]; @@ -555,33 +557,35 @@ void *fields::do_get_array_slice(const volume &where, std::vector com /* entry points to get_array_slice */ /***************************************************************/ double *fields::get_array_slice(const volume &where, std::vector components, - field_rfunction rfun, void *fun_data, double *slice) { - return (double *)do_get_array_slice(where, components, 0, rfun, fun_data, (void *)slice); + field_rfunction rfun, void *fun_data, double *slice, + double omega) { + return (double *)do_get_array_slice(where, components, 0, rfun, fun_data, (void *)slice, omega); } cdouble *fields::get_complex_array_slice(const volume &where, std::vector components, - field_function fun, void *fun_data, cdouble *slice) { - return (cdouble *)do_get_array_slice(where, components, fun, 0, fun_data, (void *)slice); + field_function fun, void *fun_data, cdouble *slice, + double omega) { + return (cdouble *)do_get_array_slice(where, components, fun, 0, fun_data, (void *)slice, omega); } -double *fields::get_array_slice(const volume &where, component c, double *slice) { +double *fields::get_array_slice(const volume &where, component c, double *slice, double omega) { std::vector components(1); components[0] = c; - return (double *)do_get_array_slice(where, components, 0, default_field_rfunc, 0, (void *)slice); + return (double *)do_get_array_slice(where, components, 0, default_field_rfunc, 0, (void *)slice, omega); } -double *fields::get_array_slice(const volume &where, derived_component c, double *slice) { +double *fields::get_array_slice(const volume &where, derived_component c, double *slice, double omega) { int nfields; component carray[12]; field_rfunction rfun = derived_component_func(c, gv, nfields, carray); std::vector cs(carray, carray + nfields); - return (double *)do_get_array_slice(where, cs, 0, rfun, &nfields, (void *)slice); + return (double *)do_get_array_slice(where, cs, 0, rfun, &nfields, (void *)slice, omega); } -cdouble *fields::get_complex_array_slice(const volume &where, component c, cdouble *slice) { +cdouble *fields::get_complex_array_slice(const volume &where, component c, cdouble *slice, double omega) { std::vector components(1); components[0] = c; - return (cdouble *)do_get_array_slice(where, components, default_field_func, 0, 0, (void *)slice); + return (cdouble *)do_get_array_slice(where, components, default_field_func, 0, 0, (void *)slice, omega); } cdouble *fields::get_source_slice(const volume &where, component source_slice_component, diff --git a/src/h5fields.cpp b/src/h5fields.cpp index e7da104e9..fec91470c 100644 --- a/src/h5fields.cpp +++ b/src/h5fields.cpp @@ -50,6 +50,7 @@ typedef struct { complex *ph; complex *fields; ptrdiff_t *offsets; + double omega; int ninveps; component inveps_cs[3]; direction inveps_ds[3]; @@ -143,6 +144,7 @@ static void h5_output_chunkloop(fields_chunk *fc, int ichnk, component cgrid, iv ptrdiff_t *off = data->offsets; component *cS = data->cS; complex *fields = data->fields, *ph = data->ph; + double omega = data->omega; const component *iecs = data->inveps_cs; const direction *ieds = data->inveps_ds; ptrdiff_t ieos[6]; @@ -173,23 +175,21 @@ static void h5_output_chunkloop(fields_chunk *fc, int ichnk, component cgrid, iv if (cS[i] == Dielectric) { double tr = 0.0; for (int k = 0; k < data->ninveps; ++k) { - const realnum *ie = fc->s->chi1inv[iecs[k]][ieds[k]]; - if (ie) - tr += (ie[idx] + ie[idx + ieos[2 * k]] + ie[idx + ieos[1 + 2 * k]] + - ie[idx + ieos[2 * k] + ieos[1 + 2 * k]]); - else - tr += 4; // default inveps == 1 + tr += (fc->s->get_chi1inv_at_pt(iecs[k],ieds[k],idx,omega) + + fc->s->get_chi1inv_at_pt(iecs[k],ieds[k],idx + ieos[2 * k],omega) + + fc->s->get_chi1inv_at_pt(iecs[k],ieds[k],idx + ieos[1 + 2 * k],omega) + + fc->s->get_chi1inv_at_pt(iecs[k],ieds[k],idx + ieos[2 * k] + ieos[1 + 2 * k],omega)); + if (tr == 0.0) tr += 4.0; // default inveps == 1 } fields[i] = (4 * data->ninveps) / tr; } else if (cS[i] == Permeability) { double tr = 0.0; for (int k = 0; k < data->ninvmu; ++k) { - const realnum *im = fc->s->chi1inv[imcs[k]][imds[k]]; - if (im) - tr += (im[idx] + im[idx + imos[2 * k]] + im[idx + imos[1 + 2 * k]] + - im[idx + imos[2 * k] + imos[1 + 2 * k]]); - else - tr += 4; // default invmu == 1 + tr += (fc->s->get_chi1inv_at_pt(imcs[k],imds[k],idx,omega) + + fc->s->get_chi1inv_at_pt(imcs[k],imds[k],idx + imos[2 * k],omega) + + fc->s->get_chi1inv_at_pt(imcs[k],imds[k],idx + imos[1 + 2 * k],omega) + + fc->s->get_chi1inv_at_pt(imcs[k],imds[k],idx + imos[2 * k] + imos[1 + 2 * k],omega)); + if (tr == 0.0) tr += 4.0; // default invmu == 1 } fields[i] = (4 * data->ninvmu) / tr; } else { @@ -219,7 +219,7 @@ static void h5_output_chunkloop(fields_chunk *fc, int ichnk, component cgrid, iv void fields::output_hdf5(h5file *file, const char *dataname, int num_fields, const component *components, field_function fun, void *fun_data_, int reim, - const volume &where, bool append_data, bool single_precision) { + const volume &where, bool append_data, bool single_precision, double omega) { am_now_working_on(FieldOutput); h5_output_data data; @@ -265,6 +265,7 @@ void fields::output_hdf5(h5file *file, const char *dataname, int num_fields, data.fun_data_ = fun_data_; /* compute inverse-epsilon directions for computing Dielectric fields */ + data.omega = omega; data.ninveps = 0; bool needs_dielectric = false; for (int i = 0; i < num_fields; ++i) @@ -314,22 +315,22 @@ void fields::output_hdf5(h5file *file, const char *dataname, int num_fields, void fields::output_hdf5(const char *dataname, int num_fields, const component *components, field_function fun, void *fun_data_, const volume &where, h5file *file, bool append_data, bool single_precision, const char *prefix, - bool real_part_only) { + bool real_part_only, double omega) { bool delete_file; if ((delete_file = !file)) file = open_h5file(dataname, h5file::WRITE, prefix, true); if (real_part_only) { output_hdf5(file, dataname, num_fields, components, fun, fun_data_, 0, where, append_data, - single_precision); + single_precision, omega); } else { int len = strlen(dataname) + 5; char *dataname2 = new char[len]; snprintf(dataname2, len, "%s%s", dataname, ".r"); output_hdf5(file, dataname2, num_fields, components, fun, fun_data_, 0, where, append_data, - single_precision); + single_precision, omega); snprintf(dataname2, len, "%s%s", dataname, ".i"); output_hdf5(file, dataname2, num_fields, components, fun, fun_data_, 1, where, append_data, - single_precision); + single_precision, omega); delete[] dataname2; } if (delete_file) delete file; @@ -349,7 +350,7 @@ static complex rintegrand_fun(const complex *fields, const vec & void fields::output_hdf5(const char *dataname, int num_fields, const component *components, field_rfunction fun, void *fun_data_, const volume &where, h5file *file, - bool append_data, bool single_precision, const char *prefix) { + bool append_data, bool single_precision, const char *prefix, double omega) { bool delete_file; if ((delete_file = !file)) file = open_h5file(dataname, h5file::WRITE, prefix, true); @@ -357,7 +358,7 @@ void fields::output_hdf5(const char *dataname, int num_fields, const component * data.fun = fun; data.fun_data_ = fun_data_; output_hdf5(file, dataname, num_fields, components, rintegrand_fun, (void *)&data, 0, where, - append_data, single_precision); + append_data, single_precision, omega); if (delete_file) delete file; } @@ -371,9 +372,9 @@ static complex component_fun(const complex *fields, const vec &l } void fields::output_hdf5(component c, const volume &where, h5file *file, bool append_data, - bool single_precision, const char *prefix) { + bool single_precision, const char *prefix, double omega) { if (is_derived(int(c))) { - output_hdf5(derived_component(c), where, file, append_data, single_precision, prefix); + output_hdf5(derived_component(c), where, file, append_data, single_precision, prefix, omega); return; } @@ -386,10 +387,10 @@ void fields::output_hdf5(component c, const volume &where, h5file *file, bool ap if ((delete_file = !file)) file = open_h5file(component_name(c), h5file::WRITE, prefix, true); snprintf(dataname, 256, "%s%s", component_name(c), has_imag ? ".r" : ""); - output_hdf5(file, dataname, 1, &c, component_fun, 0, 0, where, append_data, single_precision); + output_hdf5(file, dataname, 1, &c, component_fun, 0, 0, where, append_data, single_precision, omega); if (has_imag) { snprintf(dataname, 256, "%s.i", component_name(c)); - output_hdf5(file, dataname, 1, &c, component_fun, 0, 1, where, append_data, single_precision); + output_hdf5(file, dataname, 1, &c, component_fun, 0, 1, where, append_data, single_precision, omega); } if (delete_file) delete file; @@ -398,9 +399,9 @@ void fields::output_hdf5(component c, const volume &where, h5file *file, bool ap /***************************************************************************/ void fields::output_hdf5(derived_component c, const volume &where, h5file *file, bool append_data, - bool single_precision, const char *prefix) { + bool single_precision, const char *prefix, double omega) { if (!is_derived(int(c))) { - output_hdf5(component(c), where, file, append_data, single_precision, prefix); + output_hdf5(component(c), where, file, append_data, single_precision, prefix, omega); return; } @@ -411,7 +412,7 @@ void fields::output_hdf5(derived_component c, const volume &where, h5file *file, field_rfunction fun = derived_component_func(c, gv, nfields, cs); output_hdf5(component_name(c), nfields, cs, fun, &nfields, where, file, append_data, - single_precision, prefix); + single_precision, prefix, omega); } /***************************************************************************/ @@ -445,4 +446,4 @@ h5file *fields::open_h5file(const char *name, h5file::access_mode mode, const ch return new h5file(filename, mode, true); } -} // namespace meep +} // namespace meep \ No newline at end of file diff --git a/src/meep.hpp b/src/meep.hpp index d5c08851c..647ad4a8d 100644 --- a/src/meep.hpp +++ b/src/meep.hpp @@ -58,6 +58,11 @@ const double nan = -7.0415659787563146e103; // ideally, a value never encountere class h5file; +// Defined in monitor.cpp +void matrix_invert(std::complex (&Vinv)[9], std::complex (&V)[9]); + +double pml_quadratic_profile(double, void *); + /* generic base class, only used by subclassing: represents susceptibility polarizability vector P = chi(omega) W (where W = E or H). */ class susceptibility { @@ -89,6 +94,9 @@ class susceptibility { int get_id() const { return id; } bool operator==(const susceptibility &s) const { return id == s.id; }; + // Returns the 1st order nonlinear susceptibility (generic) + virtual std::complex chi1(double freq, double sigma=1); + // update all of the internal polarization state given the W field // at the current time step, possibly the previous field W_prev, etc. virtual void update_P(realnum *W[NUM_FIELD_COMPONENTS][2], @@ -229,6 +237,9 @@ class lorentzian_susceptibility : public susceptibility { virtual susceptibility *clone() const { return new lorentzian_susceptibility(*this); } virtual ~lorentzian_susceptibility() {} + // Returns the 1st order nonlinear susceptibility + virtual std::complex chi1(double freq, double sigma=1); + virtual void update_P(realnum *W[NUM_FIELD_COMPONENTS][2], realnum *W_prev[NUM_FIELD_COMPONENTS][2], double dt, const grid_volume &gv, void *P_internal_data) const; @@ -594,9 +605,10 @@ class structure_chunk { void remove_susceptibilities(); // monitor.cpp - double get_chi1inv(component, direction, const ivec &iloc) const; - double get_inveps(component c, direction d, const ivec &iloc) const { - return get_chi1inv(c, d, iloc); + double get_chi1inv_at_pt(component, direction, int idx, double omega = 0) const; + double get_chi1inv(component, direction, const ivec &iloc, double omega = 0) const; + double get_inveps(component c, direction d, const ivec &iloc, double omega = 0) const { + return get_chi1inv(c, d, iloc, omega); } double max_eps() const; @@ -606,8 +618,6 @@ class structure_chunk { int the_is_mine; }; -double pml_quadratic_profile(double, void *); - // linked list of descriptors for boundary regions (currently just for PML) class boundary_region { public: @@ -760,16 +770,16 @@ class structure { void load_chunk_layout(const std::vector &gvs, boundary_region &br); // monitor.cpp - double get_chi1inv(component, direction, const ivec &origloc, bool parallel = true) const; - double get_chi1inv(component, direction, const vec &loc, bool parallel = true) const; - double get_inveps(component c, direction d, const ivec &origloc) const { - return get_chi1inv(c, d, origloc); + double get_chi1inv(component, direction, const ivec &origloc, double omega = 0, bool parallel = true) const; + double get_chi1inv(component, direction, const vec &loc, double omega = 0, bool parallel = true) const; + double get_inveps(component c, direction d, const ivec &origloc, double omega = 0) const { + return get_chi1inv(c, d, origloc, omega); } - double get_inveps(component c, direction d, const vec &loc) const { - return get_chi1inv(c, d, loc); + double get_inveps(component c, direction d, const vec &loc, double omega = 0) const { + return get_chi1inv(c, d, loc, omega); } - double get_eps(const vec &loc) const; - double get_mu(const vec &loc) const; + double get_eps(const vec &loc, double omega = 0) const; + double get_mu(const vec &loc, double omega = 0) const; double max_eps() const; friend class boundary_region; @@ -1330,7 +1340,7 @@ class fields_chunk { // monitor.cpp std::complex get_field(component, const ivec &) const; - double get_chi1inv(component, direction, const ivec &iloc) const; + double get_chi1inv(component, direction, const ivec &iloc, double omega = 0) const; void backup_component(component c); void average_with_backup(component c); @@ -1519,23 +1529,23 @@ class fields { // low-level function: void output_hdf5(h5file *file, const char *dataname, int num_fields, const component *components, field_function fun, void *fun_data_, int reim, const volume &where, - bool append_data = false, bool single_precision = false); + bool append_data = false, bool single_precision = false, double omega = 0); // higher-level functions void output_hdf5(const char *dataname, // OUTPUT COMPLEX-VALUED FUNCTION int num_fields, const component *components, field_function fun, void *fun_data_, const volume &where, h5file *file = 0, bool append_data = false, bool single_precision = false, const char *prefix = 0, - bool real_part_only = false); + bool real_part_only = false, double omega = 0); void output_hdf5(const char *dataname, // OUTPUT REAL-VALUED FUNCTION int num_fields, const component *components, field_rfunction fun, void *fun_data_, const volume &where, h5file *file = 0, bool append_data = false, - bool single_precision = false, const char *prefix = 0); + bool single_precision = false, const char *prefix = 0, double = 0); void output_hdf5(component c, // OUTPUT FIELD COMPONENT (or Dielectric) const volume &where, h5file *file = 0, bool append_data = false, - bool single_precision = false, const char *prefix = 0); + bool single_precision = false, const char *prefix = 0, double omega = 0); void output_hdf5(derived_component c, // OUTPUT DERIVED FIELD COMPONENT const volume &where, h5file *file = 0, bool append_data = false, - bool single_precision = false, const char *prefix = 0); + bool single_precision = false, const char *prefix = 0, double omega = 0); h5file *open_h5file(const char *name, h5file::access_mode mode = h5file::WRITE, const char *prefix = NULL, bool timestamp = false); const char *h5file_name(const char *name, const char *prefix = NULL, bool timestamp = false); @@ -1576,20 +1586,23 @@ class fields { // otherwise, a new buffer is allocated and returned; it // must eventually be caller-deallocated via delete[]. double *get_array_slice(const volume &where, std::vector components, - field_rfunction rfun, void *fun_data, double *slice = 0); + field_rfunction rfun, void *fun_data, double *slice = 0, + double omega = 0); std::complex *get_complex_array_slice(const volume &where, std::vector components, field_function fun, void *fun_data, - std::complex *slice = 0); + std::complex *slice = 0, + double omega = 0); // alternative entry points for when you have no field // function, i.e. you want just a single component or // derived component.) - double *get_array_slice(const volume &where, component c, double *slice = 0); - double *get_array_slice(const volume &where, derived_component c, double *slice = 0); + double *get_array_slice(const volume &where, component c, double *slice = 0, double omega = 0); + double *get_array_slice(const volume &where, derived_component c, double *slice = 0, double omega = 0); std::complex *get_complex_array_slice(const volume &where, component c, - std::complex *slice = 0); + std::complex *slice = 0, + double omega = 0); // like get_array_slice, but for *sources* instead of fields std::complex *get_source_slice(const volume &where, component source_slice_component, @@ -1597,7 +1610,8 @@ class fields { // master routine for all above entry points void *do_get_array_slice(const volume &where, std::vector components, - field_function fun, field_rfunction rfun, void *fun_data, void *vslice); + field_function fun, field_rfunction rfun, void *fun_data, void *vslice, + double omega = 0); /* fetch and return coordinates and integration weights of grid points covered by an array slice, */ @@ -1775,12 +1789,12 @@ class fields { dft_near2far add_dft_near2far(const volume_list *where, double freq_min, double freq_max, int Nfreq, int Nperiods = 1); // monitor.cpp - double get_chi1inv(component, direction, const vec &loc, bool parallel = true) const; - double get_inveps(component c, direction d, const vec &loc) const { - return get_chi1inv(c, d, loc); + double get_chi1inv(component, direction, const vec &loc, double omega = 0, bool parallel = true) const; + double get_inveps(component c, direction d, const vec &loc, double omega = 0) const { + return get_chi1inv(c, d, loc, omega); } - double get_eps(const vec &loc) const; - double get_mu(const vec &loc) const; + double get_eps(const vec &loc, double omega = 0) const; + double get_mu(const vec &loc, double omega = 0) const; void get_point(monitor_point *p, const vec &) const; monitor_point *get_new_point(const vec &, monitor_point *p = NULL) const; @@ -1862,7 +1876,7 @@ class fields { public: // monitor.cpp std::complex get_field(component c, const ivec &iloc, bool parallel = true) const; - double get_chi1inv(component, direction, const ivec &iloc, bool parallel = true) const; + double get_chi1inv(component, direction, const ivec &iloc, double omega = 0, bool parallel = true) const; // boundaries.cpp bool locate_component_point(component *, ivec *, std::complex *) const; // time.cpp diff --git a/src/monitor.cpp b/src/monitor.cpp index a433b7be5..0996c77b9 100644 --- a/src/monitor.cpp +++ b/src/monitor.cpp @@ -160,7 +160,7 @@ complex fields_chunk::get_field(component c, const ivec &iloc) const { return 0.0; } -double fields::get_chi1inv(component c, direction d, const ivec &origloc, bool parallel) const { +double fields::get_chi1inv(component c, direction d, const ivec &origloc, double omega, bool parallel) const { ivec iloc = origloc; complex aaack = 1.0; locate_point_in_user_volume(&iloc, &aaack); @@ -168,100 +168,203 @@ double fields::get_chi1inv(component c, direction d, const ivec &origloc, bool p for (int i = 0; i < num_chunks; i++) if (chunks[i]->gv.owns(S.transform(iloc, sn))) { signed_direction ds = S.transform(d, sn); - double val = chunks[i]->get_chi1inv(S.transform(c, sn), ds.d, S.transform(iloc, sn)) * + double val = chunks[i]->get_chi1inv(S.transform(c, sn), ds.d, S.transform(iloc, sn), omega) * (ds.flipped ^ S.transform(component_direction(c), sn).flipped ? -1 : 1); return parallel ? sum_to_all(val) : val; } return d == component_direction(c) ? 1.0 : 0; // default to vacuum outside computational cell } -double fields_chunk::get_chi1inv(component c, direction d, const ivec &iloc) const { - if (is_mine()) - return s->chi1inv[c][d] ? s->chi1inv[c][d][gv.index(c, iloc)] - : (d == component_direction(c) ? 1.0 : 0); - return 0.0; +double fields_chunk::get_chi1inv(component c, direction d, const ivec &iloc, double omega) const { + return s->get_chi1inv(c, d, iloc, omega); } -double fields::get_chi1inv(component c, direction d, const vec &loc, bool parallel) const { +double fields::get_chi1inv(component c, direction d, const vec &loc, double omega, bool parallel) const { ivec ilocs[8]; double w[8], res = 0.0; gv.interpolate(c, loc, ilocs, w); for (int argh = 0; argh < 8 && w[argh] != 0; argh++) - res += w[argh] * get_chi1inv(c, d, ilocs[argh], false); + res += w[argh] * get_chi1inv(c, d, ilocs[argh], omega, false); return parallel ? sum_to_all(res) : res; } -double fields::get_eps(const vec &loc) const { +double fields::get_eps(const vec &loc, double omega) const { double tr = 0; int nc = 0; FOR_ELECTRIC_COMPONENTS(c) { if (gv.has_field(c)) { - tr += get_chi1inv(c, component_direction(c), loc, false); + tr += get_chi1inv(c, component_direction(c), loc, omega, false); ++nc; } } return nc / sum_to_all(tr); } -double fields::get_mu(const vec &loc) const { +double fields::get_mu(const vec &loc, double omega) const { double tr = 0; int nc = 0; FOR_MAGNETIC_COMPONENTS(c) { if (gv.has_field(c)) { - tr += get_chi1inv(c, component_direction(c), loc, false); + tr += get_chi1inv(c, component_direction(c), loc, omega, false); ++nc; } } return nc / sum_to_all(tr); } -double structure::get_chi1inv(component c, direction d, const ivec &origloc, bool parallel) const { +double structure::get_chi1inv(component c, direction d, const ivec &origloc, double omega, bool parallel) const { ivec iloc = origloc; for (int sn = 0; sn < S.multiplicity(); sn++) for (int i = 0; i < num_chunks; i++) if (chunks[i]->gv.owns(S.transform(iloc, sn))) { signed_direction ds = S.transform(d, sn); - double val = chunks[i]->get_chi1inv(S.transform(c, sn), ds.d, S.transform(iloc, sn)) * + double val = chunks[i]->get_chi1inv(S.transform(c, sn), ds.d, S.transform(iloc, sn), omega) * (ds.flipped ^ S.transform(component_direction(c), sn).flipped ? -1 : 1); return parallel ? sum_to_all(val) : val; } return 0.0; } -double structure_chunk::get_chi1inv(component c, direction d, const ivec &iloc) const { - if (is_mine()) - return chi1inv[c][d] ? chi1inv[c][d][gv.index(c, iloc)] - : (d == component_direction(c) ? 1.0 : 0); - return 0.0; +/* Set Vinv = inverse of V, where both V and Vinv are complex matrices.*/ +void matrix_invert(std::complex (&Vinv)[9], std::complex (&V)[9]) { + + std::complex det = (V[0 +3*0] * (V[1 + 3*1]*V[2 +3*2] - V[1 + 3*2]*V[2 +3*1]) - + V[0 + 3*1] * (V[0 + 3*1]*V[2 + 3*2] - V[1 + 3*2]*V[0 + 3*2]) + + V[0 + 3*2] * (V[0 + 3*1]*V[1 + 3*2] - V[1 + 3*1]*V[0 + 3*2])); + + if (det == 0.0) abort("meep: Matrix is singular, aborting.\n"); + + Vinv[0 + 3*0] = 1.0/det * (V[1 + 3*1]*V[2 + 3*2] - V[1 + 3*2]*V[2 + 3*1]); + Vinv[0 + 3*1] = 1.0/det * (V[0 + 3*2]*V[2 + 3*1] - V[0 + 3*1]*V[2 + 3*2]); + Vinv[0 + 3*2] = 1.0/det * (V[0 + 3*1]*V[1 + 3*2] - V[0 + 3*2]*V[1 + 3*1]); + Vinv[1 + 3*0] = 1.0/det * (V[1 + 3*2]*V[2 + 3*0] - V[1 + 3*0]*V[2 + 3*2]); + Vinv[1 + 3*1] = 1.0/det * (V[0 + 3*0]*V[2 + 3*2] - V[0 + 3*2]*V[2 + 3*0]); + Vinv[1 + 3*2] = 1.0/det * (V[0 + 3*2]*V[1 + 3*0] - V[0 + 3*0]*V[1 + 3*2]); + Vinv[2 + 3*0] = 1.0/det * (V[1 + 3*0]*V[2 + 3*1] - V[1 + 3*1]*V[2 + 3*0]); + Vinv[2 + 3*1] = 1.0/det * (V[0 + 3*1]*V[2 + 3*0] - V[0 + 3*0]*V[2 + 3*1]); + Vinv[2 + 3*2] = 1.0/det * (V[0 + 3*0]*V[1 + 3*1] - V[0 + 3*1]*V[1 + 3*0]); } -double structure::get_chi1inv(component c, direction d, const vec &loc, bool parallel) const { +double structure_chunk::get_chi1inv_at_pt(component c, direction d, int idx, double omega) const { + double res = 0.0; + if (is_mine()){ + if (omega == 0) + return chi1inv[c][d] ? chi1inv[c][d][idx] : (d == component_direction(c) ? 1.0 : 0); + // ----------------------------------------------------------------- // + // ---- Step 1: Get instantaneous chi1 tensor ---------------------- + // ----------------------------------------------------------------- // + + int my_stuff = E_stuff; + component comp_list[3]; + if (is_electric(c)) { + comp_list[0] = Ex; comp_list[1] = Ey; comp_list[2] = Ez; + my_stuff = E_stuff; + }else if (is_magnetic(c)) { + comp_list[0] = Hx; comp_list[1] = Hy; comp_list[2] = Hz; + my_stuff = H_stuff; + } else if (is_D(c)) { + comp_list[0] = Dx; comp_list[1] = Dy; comp_list[2] = Dz; + my_stuff = D_stuff; + } else if (is_B(c)) { + comp_list[0] = Bx; comp_list[1] = By; comp_list[2] = Bz; + my_stuff = B_stuff; + } + + std::complex chi1_inv_tensor[9] = {std::complex(1, 0),std::complex(0, 0),std::complex(0, 0), + std::complex(0, 0),std::complex(1, 0),std::complex(0, 0), + std::complex(0, 0),std::complex(0, 0),std::complex(1, 0) + }; + std::complex chi1_tensor[9] = {std::complex(1, 0),std::complex(0, 0),std::complex(0, 0), + std::complex(0, 0),std::complex(1, 0),std::complex(0, 0), + std::complex(0, 0),std::complex(0, 0),std::complex(1, 0) + }; + + // Set up the chi1inv tensor with the DC components + for (int com_it=0; com_it<3;com_it++){ + for (int dir_int=0;dir_int<3;dir_int++){ + if (chi1inv[comp_list[com_it]][dir_int] ) + chi1_inv_tensor[com_it + 3*dir_int] = chi1inv[comp_list[com_it]][dir_int][idx]; + } + } + + matrix_invert(chi1_tensor, chi1_inv_tensor); // We have the inverse, so let's invert it. + + // ----------------------------------------------------------------- // + // ---- Step 2: Evaluate susceptibilities of each tensor element --- + // ----------------------------------------------------------------- // + + // loop over tensor elements + for (int com_it=0; com_it<3;com_it++){ + for (int dir_int=0;dir_int<3;dir_int++){ + std::complex eps = chi1_tensor[com_it + 3*dir_int]; + component cc = comp_list[com_it]; + direction dd = (direction)dir_int; + // Loop through and add up susceptibility contributions + // locate correct susceptibility list + susceptibility *my_sus = chiP[my_stuff]; + while (my_sus) { + if (my_sus->sigma[cc][dd]) { + double sigma = my_sus->sigma[cc][dd][idx]; + eps += my_sus->chi1(omega,sigma); + } + my_sus = my_sus->next; + } + + // Account for conductivity term + if (conductivity[cc][dd]) { + double conductivityCur = conductivity[cc][dd][idx]; + eps = std::complex(1.0, (conductivityCur/omega)) * eps; + } + + // assign to eps tensor + if (eps.imag() == 0 ) + chi1_tensor[com_it + 3*dir_int] = eps.real(); + else + chi1_tensor[com_it + 3*dir_int] = std::sqrt(eps).real() * std::sqrt(eps).real(); // hack for metals + } + } + + // ----------------------------------------------------------------- // + // ---- Step 3: Invert chi1 matrix to get chi1inv matrix ----------- + // ----------------------------------------------------------------- // + + matrix_invert(chi1_inv_tensor, chi1_tensor); // We have the inverse, so let's invert it. + res = chi1_inv_tensor[component_index(c) + 3*d].real(); + } + return res; +} + +double structure_chunk::get_chi1inv(component c, direction d, const ivec &iloc, double omega) const { + return get_chi1inv_at_pt(c,d,gv.index(c, iloc),omega); +} + +double structure::get_chi1inv(component c, direction d, const vec &loc, double omega, bool parallel) const { ivec ilocs[8]; double w[8], res = 0.0; gv.interpolate(c, loc, ilocs, w); - for (int argh = 0; argh < 8 && w[argh]; argh++) - res += w[argh] * get_chi1inv(c, d, ilocs[argh], false); + for (int argh = 0; argh < 8 && w[argh] != 0; argh++) + res += w[argh] * get_chi1inv(c, d, ilocs[argh], omega, false); return parallel ? sum_to_all(res) : res; } -double structure::get_eps(const vec &loc) const { +double structure::get_eps(const vec &loc, double omega) const { double tr = 0; int nc = 0; FOR_ELECTRIC_COMPONENTS(c) { if (gv.has_field(c)) { - tr += get_chi1inv(c, component_direction(c), loc, false); + tr += get_chi1inv(c, component_direction(c), loc, omega, false); ++nc; } } return nc / sum_to_all(tr); } -double structure::get_mu(const vec &loc) const { +double structure::get_mu(const vec &loc, double omega) const { double tr = 0; int nc = 0; FOR_MAGNETIC_COMPONENTS(c) { if (gv.has_field(c)) { - tr += get_chi1inv(c, component_direction(c), loc, false); + tr += get_chi1inv(c, component_direction(c), loc, omega, false); ++nc; } } diff --git a/src/mpb.cpp b/src/mpb.cpp index cefdbeff1..3e7ba92bc 100644 --- a/src/mpb.cpp +++ b/src/mpb.cpp @@ -38,6 +38,7 @@ namespace meep { typedef struct { const double *s, *o; + double omega; ndim dim; const fields *f; } meep_mpb_eps_data; @@ -47,17 +48,27 @@ static void meep_mpb_eps(symmetric_matrix *eps, symmetric_matrix *eps_inv, const meep_mpb_eps_data *eps_data = (meep_mpb_eps_data *)eps_data_; const double *s = eps_data->s; const double *o = eps_data->o; + double omega = eps_data->omega; vec p(eps_data->dim == D3 ? vec(o[0] + r[0] * s[0], o[1] + r[1] * s[1], o[2] + r[2] * s[2]) : (eps_data->dim == D2 ? vec(o[0] + r[0] * s[0], o[1] + r[1] * s[1]) : /* D1 */ vec(o[2] + r[2] * s[2]))); const fields *f = eps_data->f; - eps_inv->m00 = f->get_chi1inv(Ex, X, p); - eps_inv->m11 = f->get_chi1inv(Ey, Y, p); - eps_inv->m22 = f->get_chi1inv(Ez, Z, p); - // master_printf("eps_zz(%g,%g) = %g\n", p.x(), p.y(), 1/eps_inv->m00); - ASSIGN_ESCALAR(eps_inv->m01, f->get_chi1inv(Ex, Y, p), 0); - ASSIGN_ESCALAR(eps_inv->m02, f->get_chi1inv(Ex, Z, p), 0); - ASSIGN_ESCALAR(eps_inv->m12, f->get_chi1inv(Ey, Z, p), 0); + + eps_inv->m00 = f->get_chi1inv(Ex, X, p, omega); + eps_inv->m11 = f->get_chi1inv(Ey, Y, p, omega); + eps_inv->m22 = f->get_chi1inv(Ez, Z, p, omega); + + ASSIGN_ESCALAR(eps_inv->m01, f->get_chi1inv(Ex, Y, p, omega), 0); + ASSIGN_ESCALAR(eps_inv->m02, f->get_chi1inv(Ex, Z, p, omega), 0); + ASSIGN_ESCALAR(eps_inv->m12, f->get_chi1inv(Ey, Z, p, omega), 0); + /* + master_printf("m11(%g,%g) = %g\n", p.x(), p.y(), eps_inv->m00); + master_printf("m22(%g,%g) = %g\n", p.x(), p.y(), eps_inv->m11); + master_printf("m33(%g,%g) = %g\n", p.x(), p.y(), eps_inv->m22); + master_printf("m12(%g,%g) = %g\n", p.x(), p.y(), eps_inv->m01); + master_printf("m13(%g,%g) = %g\n", p.x(), p.y(), eps_inv->m02); + master_printf("m23(%g,%g) = %g\n", p.x(), p.y(), eps_inv->m12); + */ maxwell_sym_matrix_invert(eps, eps_inv); } @@ -355,6 +366,7 @@ void *fields::get_eigenmode(double omega_src, direction d, const volume where, c eps_data.o = o; eps_data.dim = gv.dim; eps_data.f = this; + eps_data.omega = omega_src; set_maxwell_dielectric(mdata, mesh_size, R, G, meep_mpb_eps, NULL, &eps_data); if (user_mdata) *user_mdata = (void *)mdata; } else { @@ -381,7 +393,7 @@ void *fields::get_eigenmode(double omega_src, direction d, const volume where, c // which we automatically pick if kmatch == 0. if (match_frequency && kmatch == 0) { vec cen = eig_vol.center(); - kmatch = omega_src * sqrt(get_eps(cen) * get_mu(cen)); + kmatch = omega_src * sqrt(get_eps(cen, omega_src) * get_mu(cen, omega_src)); if (d == NO_DIRECTION) { for (int i = 0; i < 3; ++i) k[i] = dot_product(R[i], kdir) * kmatch; // kdir*kmatch in reciprocal basis diff --git a/src/susceptibility.cpp b/src/susceptibility.cpp index f63332095..0488e1fcc 100644 --- a/src/susceptibility.cpp +++ b/src/susceptibility.cpp @@ -53,6 +53,11 @@ susceptibility *susceptibility::clone() const { return sus; } +// generic base class definition. +std::complex susceptibility::chi1(double freq, double sigma) { + return std::complex(0,0); +} + void susceptibility::delete_internal_data(void *data) const { free(data); } /* Return whether or not we need to allocate P[c][cmp]. (We don't need to @@ -281,6 +286,16 @@ realnum *lorentzian_susceptibility::cinternal_notowned_ptr(int inotowned, compon return d->P[c][cmp] + n; } +std::complex lorentzian_susceptibility::chi1(double freq, double sigma) { + if (no_omega_0_denominator){ + // Drude model + return sigma * omega_0*omega_0 / std::complex(-freq*freq, -gamma*freq); + }else{ + // Standard Lorentzian model + return sigma * omega_0*omega_0 / std::complex(omega_0*omega_0 - freq*freq, -gamma*freq); + } +} + void lorentzian_susceptibility::dump_params(h5file *h5f, size_t *start) { size_t num_params = 5; size_t params_dims[1] = {num_params};