-
Notifications
You must be signed in to change notification settings - Fork 87
/
Copy pathlaunch.py
125 lines (106 loc) · 4.7 KB
/
launch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
import sys
import argparse
import os
import time
import logging
from datetime import datetime
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--config', required=True, help='path to config file')
parser.add_argument('--gpu', default='0', help='GPU(s) to be used')
parser.add_argument('--resume', default=None, help='path to the weights to be resumed')
parser.add_argument(
'--resume_weights_only',
action='store_true',
help='specify this argument to restore only the weights (w/o training states), e.g. --resume path/to/resume --resume_weights_only'
)
group = parser.add_mutually_exclusive_group(required=True)
group.add_argument('--train', action='store_true')
group.add_argument('--validate', action='store_true')
group.add_argument('--test', action='store_true')
group.add_argument('--predict', action='store_true')
# group.add_argument('--export', action='store_true') # TODO: a separate export action
parser.add_argument('--exp_dir', default='./exp')
parser.add_argument('--runs_dir', default='./runs')
parser.add_argument('--verbose', action='store_true', help='if true, set logging level to DEBUG')
args, extras = parser.parse_known_args()
# set CUDA_VISIBLE_DEVICES then import pytorch-lightning
os.environ['CUDA_DEVICE_ORDER'] = 'PCI_BUS_ID'
os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu
n_gpus = len(args.gpu.split(','))
import datasets
import systems
import pytorch_lightning as pl
from pytorch_lightning import Trainer
from pytorch_lightning.callbacks import ModelCheckpoint, LearningRateMonitor
from pytorch_lightning.loggers import TensorBoardLogger, CSVLogger
from utils.callbacks import CodeSnapshotCallback, ConfigSnapshotCallback, CustomProgressBar
from utils.misc import load_config
# parse YAML config to OmegaConf
config = load_config(args.config, cli_args=extras)
config.cmd_args = vars(args)
config.trial_name = config.get('trial_name') or (config.tag + datetime.now().strftime('@%Y%m%d-%H%M%S'))
config.exp_dir = config.get('exp_dir') or os.path.join(args.exp_dir, config.name)
config.save_dir = config.get('save_dir') or os.path.join(config.exp_dir, config.trial_name, 'save')
config.ckpt_dir = config.get('ckpt_dir') or os.path.join(config.exp_dir, config.trial_name, 'ckpt')
config.code_dir = config.get('code_dir') or os.path.join(config.exp_dir, config.trial_name, 'code')
config.config_dir = config.get('config_dir') or os.path.join(config.exp_dir, config.trial_name, 'config')
logger = logging.getLogger('pytorch_lightning')
if args.verbose:
logger.setLevel(logging.DEBUG)
if 'seed' not in config:
config.seed = int(time.time() * 1000) % 1000
pl.seed_everything(config.seed)
dm = datasets.make(config.dataset.name, config.dataset)
system = systems.make(config.system.name, config, load_from_checkpoint=None if not args.resume_weights_only else args.resume)
callbacks = []
if args.train:
callbacks += [
ModelCheckpoint(
dirpath=config.ckpt_dir,
**config.checkpoint
),
LearningRateMonitor(logging_interval='step'),
CodeSnapshotCallback(
config.code_dir, use_version=False
),
ConfigSnapshotCallback(
config, config.config_dir, use_version=False
),
CustomProgressBar(refresh_rate=1),
]
loggers = []
if args.train:
loggers += [
TensorBoardLogger(args.runs_dir, name=config.name, version=config.trial_name),
CSVLogger(config.exp_dir, name=config.trial_name, version='csv_logs')
]
if sys.platform == 'win32':
# does not support multi-gpu on windows
strategy = 'dp'
assert n_gpus == 1
else:
strategy = 'ddp_find_unused_parameters_false'
trainer = Trainer(
devices=n_gpus,
accelerator='gpu',
callbacks=callbacks,
logger=loggers,
strategy=strategy,
**config.trainer
)
if args.train:
if args.resume and not args.resume_weights_only:
# FIXME: different behavior in pytorch-lighting>1.9 ?
trainer.fit(system, datamodule=dm, ckpt_path=args.resume)
else:
trainer.fit(system, datamodule=dm)
trainer.test(system, datamodule=dm)
elif args.validate:
trainer.validate(system, datamodule=dm, ckpt_path=args.resume)
elif args.test:
trainer.test(system, datamodule=dm, ckpt_path=args.resume)
elif args.predict:
trainer.predict(system, datamodule=dm, ckpt_path=args.resume)
if __name__ == '__main__':
main()