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January 16, 2023

1 EEP/IAS 118 - Coding Bootcamp, Part 1
1.1 Introduction to R and Jupyter Notebooks
1.1.1 Section for Week 1 (No in-person, synchronous instruction)

1.1.2 Accompanying Recording available on bCourses under ‘Media Gallery’

Note: The Recording is from 2022; as you follow through the bootcamp and the
video, any small discrepancies will be pointed out via blue text.

1.2 EEP/IAS 118 Coding
This term we’ll be using the programming language R for all our data visualization and econometric
analysis. As we’ll see this semester, R is an extremely powerful open-source system that lets us do
just about anything we can think of with our data.

There are a couple of different ways to run R, and in the first two weeks we’ll teach you two main
approaches:

1. Using R within Jupyter Notebooks and RStudio hosted remotely on Berkeley’s Datahub
2. Installing and running R with RStudio offline on your personal computers

For the sake of this class, option 1. is the simplest in terms of the analysis we’ll be doing this
semester, but for independent research and future work, option 2. is worth knowing as well.

1.3 Jupyter Notebook Basics
We’re going to start off in week 1 with option 1 by learning how to use Jupyter Notebooks to run R.
Next week we’ll show you how to access RStudio through Datahub and walk you through installing
R and RStudio on your personal computers.

Jupyter notebooks are an interactive computing environment that lets us combine both text ele-
ments and active R code. Importantly for us, notebooks let us

• Write and run R code through our web browsers, and
• Add narrative text that describes our code and the output from said code

This means that we can use R without having to install any software on our personal computers,
and can ignore errors that might pop up from local conflicts or issues with packages on personal
machines. Further, it lets us answer written exercises and coding problems all in one place. This is
especially convenient when it comes to submitting homework assignments, as you can save all your
code, output, and writeup and save it all directly in the same pdf.
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When you clicked the Bootcamp Part 1 link on bCourses, you were taken to a folder in your web
browser. This folder is hosted on a remote web server on Berkeley’s Datahub and should look
something like this:

Datahub Folder

This is the main folder for course materials, and we’ll add a bunch of files and folders over the
course of the semester for lectures, daily assignments, and problem sets.

Today we are doing Coding Bootcamps, so you will want to click on that folder.

You should see the following files:

Coding Bootcamps Folder

• The file path at the top (ENVECON-118-SP23/1_CodingBootcamps) shows us that we navi-
gated to the Coding Bootcamps folder within the main course folder. You can navigate back
to a specific folder at any time by clicking on its name in the file path (always make sure to
save your work before leaving a notebook!).

• Coding Bootcamp Session Part 1.ipynb is our notebook for today. You can open it by clicking
on the file name. There’s also an accompanying recording working through the notebook
available at this link (also accessible on bCourses under Media)

• The other Coding Bootcamp Session Part X.ipynb files are our other Bootcamp notebooks for
you to work through later on in the course (we’ll point out in section when we’ll cover tools
for a given problem set)

• autos.csv is a data file in comma separated value (csv) format

• autos.dta is the same data file, but formatted for Stata in .dta format

• sleep75.dta and wateruse.dta are two other .dta files we’ll use in later bootcamps

• Readme.md is a readme file for viewing elsewhere - ignore these whenever they appear

We’ll be using both csv and dta data this term, so we’ll practice reading in both formats.

(There is also a folder of images…don’t worry about those!)

1.3.1 Running Jupyter Notebooks

Double clicking on the Coding Bootcamp.ipynb notebook will open up the notebook in another
browser window. The notebook that opens should look … well, like this!

At the top of the page you’ll find the menubar and toolbar:

From this menu we can run our code, display our text, save our notebook, and download a pdf or
other format of our notebook.

Clicking on File in the menubar lets us save the notebook and build a checkpoint (you can also
use the picture of a floppy disk just below File to save your notebook). Revert to Checkpoint
lets you go back to a previously saved version of the notebook (useful in case you lose track of code
changes and want to go back to a previous working version).

Print Preview lets you view the notebook as it would look when printed. You can then hit
control + p and select Save to PDF or Adobe PDF to save a pdf copy of the notebook.
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You can also use the Download As > PDF via HTML command to export a pdf copy of the
notebook.

Note: make sure to save your notebooks often to preserve your work in case of con-
nectivity loss!

When you submit your pdf version of assignments on gradescope, you are responsible for making
sure your pdf displays everything you want the graders to see (i.e. both codes and outputs; text
and codes are wrapping to the next line rather than exiting the page to the right.)

1.3.2 Editing Cells

This and all notebooks are comprised of a linear collection of boxes, called cells. For the sake of
this class, we’ll be working with two types of cells: Markdown cells for text, and Code cells for
writing and executing R code.

Markdown cells support plain text as well as markdown code, html, and LaTeX math mode. For
this class, plain text answers are totally fine. If you want to dive into Markdown formatting, this
cheat sheet has information on formatting text, building tables, and adding html. If you want to
add pretty math equations, see this LaTeX Math Mode Guide.

Select a cell by right clicking on it. A grey box with a blue bar to the left will appear around the
cell, like so:

You are now in command mode. In command mode you can see the cell type (whether it is
markdown for text or code for R commands) in the toolbar but can’t edit the content of the cell.

To edit the content of cells, double click on the cell to enter edit mode. When in edit mode, the
inner box surrounding the cell will become highlighted and you are now able to edit the contents
of the cell. (Note: Unlike in the video, the bar on the left margin may not turn green in edit mode
anymore.)

A text (markdown) cell in edit mode should look like this:

and a code (R) cell will look like this:

Use edit mode to type in all your text and code. When you are done with your paragraph or want
to try out your code, it’s time to run the cell.

A Cell in edit mode

Below this line is a (mostly) blank text cell. Try selecting this cell by right clicking on it, then
double click to enter edit mode. Replace the text with something.

A (mostly) blank text cell

Note: sometimes on Problem Sets or in Section you will encounter cells that are protected and can’t
be edited (like this one). Don’t worry, we’ve done this to make sure that question prompts don’t get
accidentally deleted. Below these you’ll find text/code cells that you can edit.

1.3.3 Running Cells

When you are ready to run a cell (i.e. done typing your text in a cell and want to display it in
formatted mode, or want to run R code), hit shift + enter, control + enter, or hit Run in the
toolbar.
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Running a text cell will exit edit mode, format the cell’s text, and select the next cell down.

You can also run a cell from edit or command mode - try this by right clicking on the above cell
that you were typing in, and hitting shift + enter.

We’ll see later that running code cells will oftentimes add output to our notebook. This will be
how we follow what we’re doing in R and how we’ll get our output.

You can reopen a cell you’ve run just as before by double clicking on it, letting you modify your
code/text and rerun it.

1.4 R
R is our programming language for statistical programming. It is open source and free, handles
lots of different types of data, and has tons of cool packages that allow it to tackle all sorts of
tasks (regression analysis, plotting, working with spatial data, web scraping, creating applications,
machine learning to name a few). It uses the exact same language and syntax regardless of whether
we’re in a Jupyter Notebook, in RStudio through Datahub, or working with Rstudio offline on our
own computers.

1.4.1 R in Code Cells

Thanks to Datahub, R is running in the background of our Jupyter notebooks. As a result, we can
type R code into code cells, run the cell, and get results all in one place. Code cells are easy to
tell apart from text cells as they have In [ ]: to the left, and when selected you’ll see the toolbar
switch to Code. For now we’ll tend to add a line or two of code to a cell at a time as that lets us
break things up and makes it easier to debug errors, but you can theoretically add as many lines
of code to a single cell as you’d like.

Let’s try it: select the code cell below, type 2 + 2, and run the cell.

[ ]:

R took our code as input, and spit out the result - in this case the value of our summation, 4.

Important Note: before you save a homework pdf to submit, make sure you’ve run all your code
cells! You won’t get any output if you don’t run a code cell, and for full credit we need to see the
output (unless we specify otherwise).

An easy way to run all the cells at once is by going to the menubar and using Cell > Run All.

1.4.2 R Basics

Note of caution: R is a stickler for typos. Precise syntax is essential. Commas, parentheses,
brackets, and other punctuation must be in the correct place. R is also case-sensitive, so upper and
lower case matter! Any deviation from required syntax will lead your code to either fail or produce
unintended (and incorrect) results. You will spare yourself a lot of aggravation if you take the time
to go slowly and carefully as you’re getting started until you have gotten more familiar with the
commands and their required syntax.
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1.4.3 Packages, Libraries, and Paths

One of R’s best features is that it’s based on packages. Base R already loads some general packages
when you boot it up, but loading other packages makes R incredibly powerful. Nearly any time
you do any econometrics in R, you’ll be using functions contained within a package.

Every time we want to use a function contained in a package, we must first call that package using
the library() function. For example, if we want to use the read_dta() function to load a dta
file, we can load the haven package by typing and running the command library(haven) in the
below cell:

[ ]:

The package was loaded correctly in the background. Since there was no output to display nor an
error to show, we received no output. We can confirm that the package was loaded correctly by
running the sessionInfo() function below (note the capital I!).

[ ]:

This shows us information about our R version, local settings, active packages, ones we’ve manually
loaded, and others that are loaded through our system.

If we had written the package name wrong, and instead tried to load a nonexistent package
“hevon”, we would receive an error in the notebook. Try to incorrectly load the package by running
library(hevon) in the below code cell.

[ ]:

1.4.4 Paths

When we start loading in data files we will need to account for the location of files in our file paths.
R handles paths by basing itself in the working directory, and all file paths are defined relative to
that working directory.

We can view the working directory by using the getwd() function.

[ ]:

The above path is the exact folder you were linked to from bCourses. When calling files, we will
start our paths in this folder. If the file is located in the same folder as our Jupyter notebook
(i.e. the working directory), we do not need to include all the “/home/rstudio…” path, and instead
can just reference the file by name. If the file we want to reference (let’s call it enviro.csv) is in a
subfolder (say called Data), we will need to include that subfolder in our path: “Data/enviro.csv”

We’ll deal more with working directories once we move into RStudio - for now all the files we
need will be in the same folder as our template, so we can call the files directly by name without
worrying about complicated folder structures.

1.4.5 Loading Files in R

We’re going to read in our data, but before we can read in our dataset we should refresh ourselves
on what the file is called. To do this, we can use the list.files() command below to see all the
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files in our current working directory.

[ ]:

The file we’re interested in first is the autos.dta file. Since this is a stata-formatted file (with the
.dta extension), we’ll need to use the read_dta() function in the haven package (which we already
loaded above). To use the function we need to include the filename with quotes in the parentheses:
read_dta("autos.dta"). The quotes tell R that whatever is contained in the quotes is a character
string, and not the name of an object saved in memory.

Here we run into an important feature about R: when we load a dataset or want to store an object
to memory (such that we can do things with it later), we have to assign it to a name. To do this,
we use the syntax

name <- function(arguments)

The arrow tells us we are assigning the output of the function (given the function’s argu-
ments/inputs) to name. The arrow is read as “gets,” so if we wanted to store a vector of integers
between 1 through 10 as integers using the command

integers <- 1:10

We read it as “integers ‘gets’ 1 through 10.”

Okay, let’s load in the autos data and save it to the object carsdata by running carsdata <-
read_dta("autos.dta"):

[ ]:

The dataset has now been stored to memory under the name carsdata. R is pretty flexible in terms
of what we could have named the dataset - you can use names that include periods (cars.data) or
underscores (cars_data) or capital letters and numbers, or even all the above (CaRs_D.aTa2020).
Best practice is to keep things simple and name them in a way that conveys what the object is
(hence calling our automobile data carsdata). Remember that the GSIs are going to be reading
your code when grading problem sets, and they appreciate names that are intuitive (and devoid of
profanity).

To view the data, we could just type the name of the dataset into a code cell and hit run… but
be aware that this will print the entire dataset. This isn’t bad if you have a small dataset, but
soon we’ll be working with large datasets with thousands of rows. It’s a real pain to have to scroll
through thousands of rows of data (and takes up whole pages in our final pdf!), but fortunately
there’s an easy way to view only a few lines of the dataset. We can use the head() command to
see only a few observations. Try using head(carsdata) below to view the top few rows of the data
we just loaded.

Note: by default, head returns the first 6 rows of data, but you can get more/less rows by adding
a comma and including the optional argument n = with the number of rows you want to view -
i.e. head(carsdata, n = 12). You can also use tail() in the same way to view the last few rows
of the data.

[ ]:
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The very first bit of information tells us the format of the data (data frame). The first row tells
us the variable names, and the second row tells us the variable type (character string or type of
numeric variable). Each row in the table is a different observation - here giving us info on a car
make and model, its price, mpg, and other characteristics.

If we want to see just the names of the variables, we can use the aptly-named names() function on
our data:

[ ]:

If we want to interact with just one column of our data frame, we can refer to it using the $
command. This is useful if we’re interested in, say, obtaining the mean of only miles per gallon
(mpg) for the cars in our sample with the mean() function.

We can also combine this with head() to view just the first six rows of the column mpg.

Try running the below code cell to see these in action.

[ ]: head(carsdata$mpg)
mean_mpg <- mean(carsdata$mpg)

Note that we don’t see any output from our mean calculation because we saved it to memory as
the object mean_mpg. In order to view its value, we can print the object just by its name. Type
mean_mpg and run the code cell below.

[ ]:

Other File Formats In this class we’ll primarily use .dta and .csv files. When we load a .csv
file, we’ll use the read.csv() command, once again using quotation marks around the file name in
the function and assigning it to a name.

For example, we could load the csv version of the automobile data that’s in our folder with the name
carsdata using carsdata2 <- read.csv("autos.csv"). Note the use of a period in the function
name versus the underscore when loading dta files!

[ ]:

1.4.6 Manipulating Data Frames

We have a lot of flexibility to select certain observations, certain variables, or certain values within
our data frame. We can also perform a lot of operations to variables - change their values or create
new variables. One of the packages we’ll be using for this is the tidyverse package. It’s actually a
collection of packages designed for data science, and includes a bunch of useful functions that we’ll
use throughout this term.

To start, let’s load tidyverse and use it to perform transformations on our dataset.

[ ]: library(tidyverse)

carsdata_low_price <- filter(carsdata, price <= 10000)
head(carsdata_low_price)
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carsdata_low_price <- arrange(carsdata_low_price, desc(price))
head(carsdata_low_price)

carsdata_low_price <- select(carsdata_low_price, make, price, mpg, weight)
head(carsdata_low_price)

Phew, that was a lot of stuff! Let’s back up and work through it.

The first thing we did after loading the tidyverse package was to filter() our data frame.
This function has two main arguments. The first is the name of the object to filter (we’re using
our carsdata), and the second is the condition on which to filter. Here we are selecting only the
observations with price less than or equal to $10,000, and dropping all rows that do not meet this
condition in the price variable. We save this filtered data to the new carsdata_low_price object.
Note that you could overwrite the existing carsdata with the filtered version by just assigning it
to that name once again.

Next, we arrange the new carsdata_low_price data frame in descending order of price using the
arrange() function and overwrite our carsdata_low_price with this new arrangement.

You can arrange in ascending order by omitting the desc() around the variable of interest
(i.e. arrange(carsdata_low_price, price)) or arrange on several variables by listing them in
order (i.e. arrange(carsdata_low_price, price, weight)).

Finally, we use select() to keep only a few variables of interest - here we choose to keep just vehicle
make, price, miles per gallon, and weight - and once again overwrite our carsdata_low_price
object.

Now we’ll create new versions of our variables using the mutate() command. mutate() is a
workhorse function that lets us alter existing variables and add new variables to our dataframe.
Later on we’ll learn a technique that will simplify the syntax for mutate and make it even easier
to do multiple transformations all in a row.

If I wanted to rescale price to be in units of $1,000, we can do this by typing

[ ]: carsdata_low_price <- mutate(carsdata_low_price, price_thousand = price/1000)
head(carsdata_low_price)

Here we are adding the variable price_thousand to the dataframe carsdata_low_price that
measures price in thousands of dollars. R uses most basic math symbols in the ways you would
expect: +, -, *,\, and ^ (be careful with order of operations and use parantheses when necessary).

We can also create new variables that are interactions of existing variables. For example, if we
wanted to know the ratio of price (in dollars) to weight (in pounds), we could obtain this with
mutate(carsdata_low_price, price_per_lb = price/weight).

1.4.7 Summarizing Variables

There are a number of different ways for us to obtain summary information about our variables
in R. While we saw earlier one way to directly get the mean of a variable, we could instead have
used the summarise command, which lets us obtain a number of different statistics - either one at
a time, or multiple together
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[ ]: avg_mpg <- summarise(carsdata_low_price, mean(mpg))
avg_mpg

multi_stats <- summarise(carsdata_low_price, max(mpg), min(price), n())
multi_stats

avg_mpg gives us the average miles per gallon rating for the carsdata_low_price data, while
multi_stats contains the maximum mpg, the minimum price, and the number of rows in the
dataframe - all in its own dataframe.

summarise() is useful because we can use it to select specific summary statistics we’re interested
in or to create truly custom summary stats.

If instead we just wanted a bunch of basic stats, we can use the summary() command. You can use
this on the dataframe to get info on all the variables, or on a specific variable (recall the use of $
we talked about earlier).

[ ]: summary(carsdata_low_price)

[ ]: summary(carsdata_low_price$price)

What if we want to get custom summary statistics across a set of variables? In that case we can
use the across() function within summarise() to save a few lines of code.

In place of our usual summary statistics equations, we now add in across() which has two argu-
ments. The first, .cols, is the set of columns we want to summarise across (in this case, price,
weight, and gear_ratio). The second, .fns, is the list of functions we want to use for summary
statistics. We specify these functions within a list object, where we first provide a name of a
summary stat (i.e. “avg”) and set that equal to the name of the function we want to use. In this
case, we want to create a summary stat called “avg” that uses mean(), so we can write avg = mean.

Similarly, SD = sd will add columns to our summary stats table for each of our three named
variables where we use the sd() function to calculate their means.

[ ]: summarise(carsdata,
across(.cols = c(price, weight, gear_ratio),

.fns = list(avg = mean, SD = sd))
)

And we can see that R 1) organizes the summary stats first by the variable and then by the summary
function, and 2) appends the summary stat name from our list to the end of the variable’s name.

This gives us a convenient way to produce a larger set of summary statistics for a lot of variables at
once, without having to manually enter a separate line over and over again for each new variable!

One challenge is that, if we summarise across a lot of variables, our notebook might hide some of
the columns from view. To get around this, you can either split up the table into multiple tables
with fewer variables each, or put the summarise call inside of t() to transpose it and flip it into a
single column.
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1.4.8 Plotting in R

Today we’re going to learn how to use the basic plot function in R. In the coming weeks we’re
going to learn ggplot2, a fantastic graphics package that is so great at producing graphics that it
basically justifies the use of R all on its own. It’s syntax is a little bit more involved though, so
we’re going to start off with some simpler functions.

First, we can generate a histogram of vehicle prices using the hist() command.

[ ]: hist(carsdata_low_price$mpg,
main = "Fuel Economy Distribution",
xlab = "Miles per Gallon")

The first argument to hist() is the variable to plot, main is the main title, and xlab is the text
label for the x-axis.

We can also add a blue line of width three at the average mpg by running the abline() function
right after our histogram:

[ ]: hist(carsdata_low_price$mpg,
main = "Fuel Economy Distribution",
xlab = "Miles per Gallon")

abline(v = avg_mpg, col = "blue", lwd = 3)

We can also make a scatterplot of vehicle price and fuel efficiency using the plot() function.

[ ]: plot(carsdata_low_price$mpg, carsdata_low_price$price,
main = "Price vs. Fuel Efficiency",
xlab = "Miles per Gallon",
ylab = "Price ($)")

Since a scatterplot requires two variables, the first argument to plot() is the x variable and the
second argument the y variable. ylab is the text label for the y-axis.

There seems to be a negative correlation here: the higher MPG, the lower the price. Is this
potentially a luxury SUV effect? Low willingness to pay for fuel efficiency?

1.4.9 Regression

Running regressions with R is quite easy. Later in the course we’ll get into some more complex
regression commands, but for now we’ll stick with simple linear regression using the lm() command.

First, let’s take a step back and see how mpg and price are correlated in the data. We can obtain
correlations of two variables using the cor() function.

[ ]: mpg_weight_cor <- cor(carsdata_low_price$mpg, carsdata_low_price$price)
mpg_weight_cor

What if we used a simple OLS regression instead? With regression functions like lm(), the first
argument is the regression formula. Here we specify mpg ~ weight, so we’re telling R to describe
mpg as a function of weight. In practice, this is estimating the equation
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𝑚𝑝𝑔𝑖 = 𝛽0 + 𝛽1𝑤𝑒𝑖𝑔ℎ𝑡𝑖 + 𝜖𝑖

where mpg is the dependent variable and weight the independent variable/covariate. 𝛽0 and 𝛽1 are
our intercept and slope coefficients, respectively - we’ll spend a bunch of time learning about and
interpreting these coefficients throughout the class. 𝜖𝑖 is an error term.

The second argument is the name of the dataset.

[ ]: mpg_weight_regression <- lm(mpg ~ weight, data = carsdata_low_price)
mpg_weight_regression

mpg_weight_regression is now an lm class object, which contains our estimated regression coef-
ficients as well as a bunch of other useful stuff, most notably residuals and fitted values. If we use
the summary() function on an lm object, we get back a lot of information:

[ ]: summary(mpg_weight_regression)

We can also obtain the fitted values and residuals by calling them with name$fitted.values and
name$residuals, respectively. Use the below code to look at the first few fitted values and the
average value of the regression residuals.

[ ]: head(mpg_weight_regression$fitted.values)
mean(mpg_weight_regression$residuals)

1.5 Help with R
Google is your best friend. While I will introduce you to some R commands during section, there
may be times where you are having trouble with a function’s syntax or need a new function to
perform a certain task. Asking Google, using the R Documentation site as well as R Project
Package Reference Manuals/Vignettes for help with functions and syntax will get you quite far.
You can also load the documentation for a function by typing ?function() into a code cell. For
example, try typing ?select() into the below code cell:

[ ]:

If something is unclear, searching for the R task and perusing answers on StackExchange can
be a helpful resource. We will try our best to make sure homework assignments mention the
functions/packages needed for a new task, and that we’ve at least seen them in section or lecture.

1.6 Closing Notebooks and Shutting Down your Server
When you are all done with your notebook, make sure to shut it down. Shutting down notebooks
will prevent save conflicts and reduce the likelihood of any server issues.

After saving, shut down your active notebook by going to File > Close and Halt. This will close
the notebook tab.

To shut down your entire server, from the directory click on Control Panel in the upper right
corner
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Then, select Stop My Server followed by Logout.

[ ]:
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