Skip to content

Latest commit

 

History

History
71 lines (60 loc) · 4.16 KB

readme.md

File metadata and controls

71 lines (60 loc) · 4.16 KB

Minimal Classifier-free-DDIM

Minimal implementation of Denoising Diffusion Probabilistic Models (DDPM) with Classifier-free Guidance and DDIM fast sampling.

Additional Dependencies

pip install pytorch-fid
pip install ema-pytorch

Scripts

Training

Unconditional

CUDA_VISIBLE_DEVICES=2,3,4,5 python -m torch.distributed.launch --nproc_per_node=4 cifar.py --config config/cifar_unconditional.yaml --use_amp

Conditional

CUDA_VISIBLE_DEVICES=2,3,4,5 python -m torch.distributed.launch --nproc_per_node=4 cifar_guide.py --config config/cifar_conditional.yaml --use_amp

Sampling

Unconditional

CUDA_VISIBLE_DEVICES=2,3,4,5 python -m torch.distributed.launch --nproc_per_node=4 sample.py --config config/cifar_unconditional.yaml --use_amp --ema

Conditional

CUDA_VISIBLE_DEVICES=2,3,4,5 python -m torch.distributed.launch --nproc_per_node=4 sample_guide.py --config config/cifar_conditional.yaml --use_amp --ema --w 0.3

Compute FID

Preprocessing

Use extract_cifar10_pngs.ipynb to convert CIFAR-10 training dataset to 50000 pngs.

Compute FID score

python -m pytorch_fid data/cifar10-pngs/ xxxxxx/generated_ep1999_w0.3_ddim_steps100_eta0.0/pngs/ --device cuda:2

Results & Observations

Discrete-time Markov chain: DDPM/DDIM

Training / sampling in DDPM / DDIM style (with DDPM 35.7M basic network):

model EMA DDPM DDIM(100 steps)
(reported in papers) yes 3.17 4.16
(official checkpoint) yes 3.13 4.10
unconditional yes 3.00 3.59
conditional (CFG, w=0.3) yes 3.19 3.39

Some observations:

  • BigGAN-style up/downsampling (proposed by Score-based SDE and ADM) doesn't seem to work on discrete-time models.
  • Ablated attention (resolution @ 32,16,8; heads=4 & dim=64, proposed by ADM) has little FID improvement on CIFAR-10, but costs heavily on memory & speed.

Continuous-time SDE: EDM

Unconditional training / sampling in EDM style (with DDPM 35.7M basic network):

eta/steps steps=18 steps=50 steps=100
eta=0.0 3.39 3.64 3.68
eta=0.5 3.10 2.95 2.93
eta=1.0 3.12 2.84 2.97

With BigGAN-style up/downsampling blocks (use_res_for_updown=True), FID further improves to:

eta/steps steps=18 steps=50 steps=100
eta=0.0 3.01 3.08 3.10
eta=0.5 3.10 2.73 2.57
eta=1.0 3.40 2.72 2.50

Note that:

  • eta $\eta = \frac{S_{churn} / N}{\sqrt{2}-1}$ controls stochasticity. eta=0.0 is equivalent to a deterministic sampler.
  • EDM uses a 2nd order sampler and the actual neural function evaluations (NFEs) equal to $2\times$steps.

Citations

This implementation is based on / inspired by: