This repository contains code for training, finetuning, evaluating, and deploying LLMs for inference with Composer and the MosaicML platform. Designed to be easy-to-use, efficient and flexible, this codebase is designed to enable rapid experimentation with the latest techniques.
You'll find in this repo:
llmfoundry/
- source code for models, datasets, callbacks, utilities, etc.scripts/
- scripts to run LLM workloadsdata_prep/
- convert text data from original sources to StreamingDataset formattrain/
- train or finetune HuggingFace and MPT models from 125M - 70B parameterstrain/benchmarking
- profile training throughput and MFU
inference/
- convert models to HuggingFace or ONNX format, and generate responsesinference/benchmarking
- profile inference latency and throughput
eval/
- evaluate LLMs on academic (or custom) in-context-learning tasks
mcli/
- launch any of these workloads using MCLI and the MosaicML platformTUTORIAL.md
- a deeper dive into the repo, example workflows, and FAQs
Mosaic Pretrained Transformers (MPT) are GPT-style models with some special features -- Flash Attention for efficiency, ALiBi for context length extrapolation, and stability improvements to mitigate loss spikes. As part of MosaicML's Foundation series, we have open-sourced several MPT models:
Model | Context Length | Download | Demo | Commercial use? |
---|---|---|---|---|
MPT-30B | 8192 | https://huggingface.co/mosaicml/mpt-30b | Yes | |
MPT-30B-Instruct | 8192 | https://huggingface.co/mosaicml/mpt-30b-instruct | Yes | |
MPT-30B-Chat | 8192 | https://huggingface.co/mosaicml/mpt-30b-chat | Demo | No |
MPT-7B | 2048 | https://huggingface.co/mosaicml/mpt-7b | Yes | |
MPT-7B-Instruct | 2048 | https://huggingface.co/mosaicml/mpt-7b-instruct | Yes | |
MPT-7B-Chat | 2048 | https://huggingface.co/mosaicml/mpt-7b-chat | Demo | No |
MPT-7B-StoryWriter | 65536 | https://huggingface.co/mosaicml/mpt-7b-storywriter | Yes |
To try out these models locally, follow the instructions in scripts/inference/README.md
to prompt HF models using our hf_generate.py or hf_chat.py scripts.
We've been overwhelmed by all the amazing work the community has put into MPT! Here we provide a few links to some of them:
- ReplitLM:
replit-code-v1-3b
is a 2.7B Causal Language Model focused on Code Completion. The model has been trained on a subset of the Stack Dedup v1.2 dataset covering 20 languages such as Java, Python, and C++ - LLaVa-MPT: Visual instruction tuning to get MPT multimodal capabilities
- ggml: Optimized MPT version for efficient inference on consumer hardware
- GPT4All: locally running chat system, now with MPT support!
- Q8MPT-Chat: 8-bit optimized MPT for CPU by our friends at Intel
Tutorial videos from the community:
- Using MPT-7B with Langchain by @jamesbriggs
- MPT-7B StoryWriter Intro by AItrepreneur
- Fine-tuning MPT-7B on a single GPU by @AIology2022
- How to Fine-tune MPT-7B-Instruct on Google Colab by @VRSEN
Something missing? Contribute with a PR!
- Blog: MPT-30B: Raising the bar for open-source foundation models
- Blog: Introducing MPT-7B
- Blog: Benchmarking LLMs on H100
- Blog: Blazingly Fast LLM Evaluation
- Blog: GPT3 Quality for $500k
- Blog: Billion parameter GPT training made easy
This codebase has been tested with PyTorch 1.13.1 and PyTorch 2.0.1 on systems with NVIDIA A100s and H100s. This codebase may also work on systems with other devices, such as consumer NVIDIA cards and AMD cards, but we are not actively testing these systems. If you have success/failure using LLM Foundry on other systems, please let us know in a Github issue and we will update the support matrix!
Device | Torch Version | Cuda Version | Status |
---|---|---|---|
A100-40GB/80GB | 1.13.1 | 11.7 | ✅ Supported |
A100-40GB/80GB | 2.0.1 | 11.7, 11.8 | ✅ Supported |
A100-40GB/80GB | 2.1.0 | 11.8, 12.1 | ✅ Supported |
H100-80GB | 1.13.1 | 11.7 | ❌ Not Supported |
H100-80GB | 2.0.1 | 11.8 | ✅ Supported |
H100-80GB | 2.1.0 | 12.1 | ✅ Supported |
A10-24GB | 1.13.1 | 11.7 | 🚧 In Progress |
A10-24GB | 2.0.1 | 11.7, 11.8 | 🚧 In Progress |
MI250 | 2.0.1 | ROCm 5.4 | 🚧 In Progress |
We highly recommend using our prebuilt Docker images. You can find them here: https://hub.docker.com/orgs/mosaicml/repositories.
The mosaicml/pytorch
images are pinned to specific PyTorch and CUDA versions, and are stable and rarely updated.
The mosaicml/llm-foundry
images are built with new tags upon every commit to the main
branch.
You can select a specific commit hash such as mosaicml/llm-foundry:1.13.1_cu117-f678575
or take the latest one using mosaicml/llm-foundry:1.13.1_cu117-latest
.
Please Note: The mosaicml/llm-foundry
images do not come with the llm-foundry
package preinstalled, just the dependencies. You will still need to pip install llm-foundry
either from PyPi or from source.
Docker Image | Torch Version | Cuda Version | LLM Foundry dependencies installed? |
---|---|---|---|
mosaicml/pytorch:1.13.1_cu117-python3.10-ubuntu20.04 |
1.13.1 | 11.7 | No |
mosaicml/pytorch:2.0.1_cu118-python3.10-ubuntu20.04 |
2.0.1 | 11.8 | No |
mosaicml/pytorch:2.1.0_cu121-python3.10-ubuntu20.04 |
2.1.0 | 12.1 | No |
mosaicml/llm-foundry:1.13.1_cu117-latest |
1.13.1 | 11.7 | Yes |
mosaicml/llm-foundry:2.0.1_cu118-latest |
2.0.1 | 11.8 | Yes |
mosaicml/llm-foundry:2.1.0_cu121-latest |
2.1.0 | 12.1 | Yes (flash attention v1) |
mosaicml/llm-foundry:2.1.0_cu121_flash2-latest |
2.1.0 | 12.1 | Yes (flash attention v2) |
This assumes you already have PyTorch and CMake installed.
To get started, clone the repo and set up your environment. Instructions to do so differ slightly depending on whether you're using Docker.
We strongly recommend working with LLM Foundry inside a Docker container (see our recommended Docker image above). If you are doing so, follow these steps to clone the repo and install the requirements.
git clone https://github.com/mosaicml/llm-foundry.git
cd llm-foundry
pip install -e ".[gpu]" # or pip install -e . if no NVIDIA GPU
If you choose not to use Docker, you should create and use a virtual environment.
git clone https://github.com/mosaicml/llm-foundry.git
cd llm-foundry
# Creating and activate a virtual environment
python3 -m venv llmfoundry-venv
source llmfoundry-venv/bin/activate
pip install cmake packaging torch # setup.py requires these be installed
pip install -e ".[gpu]" # or pip install -e . if no NVIDIA GPU
NVIDIA H100 GPUs have FP8 support; this additionally requires the following installations:
pip install flash-attn==1.0.7 --no-build-isolation
pip install git+https://github.com/NVIDIA/TransformerEngine.git@v0.10
See here for more details on enabling TransformerEngine layers and amp_fp8.
In our testing of AMD GPUs, the env setup includes:
git clone https://github.com/mosaicml/llm-foundry.git
cd llm-foundry
# Creating and activate a virtual environment
python3 -m venv llmfoundry-venv-amd
source llmfoundry-venv-amd/bin/activate
# installs
pip install cmake packaging torch
pip install -e . # This installs some things that are not needed but they don't hurt
pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/rocm5.4.2
Lastly, install the ROCm enabled flash attention (instructions here).
Notes:
attn_impl: triton
does not work.- We don't yet have a docker img where everything works perfectly. You might need to up/downgrade some packages (in our case, we needed to downgrade to
numpy==1.23.5
) before everything works without issue.
Note Make sure to go through the installation steps above before trying the quickstart!
Here is an end-to-end workflow for preparing a subset of the C4 dataset, training an MPT-125M model for 10 batches, converting the model to HuggingFace format, evaluating the model on the Winograd challenge, and generating responses to prompts.
(Remember this is a quickstart just to demonstrate the tools -- To get good quality, the LLM must be trained for longer than 10 batches 😄)
cd scripts
# Convert C4 dataset to StreamingDataset format
python data_prep/convert_dataset_hf.py \
--dataset c4 --data_subset en \
--out_root my-copy-c4 --splits train_small val_small \
--concat_tokens 2048 --tokenizer EleutherAI/gpt-neox-20b --eos_text '<|endoftext|>'
# Train an MPT-125m model for 10 batches
composer train/train.py \
train/yamls/pretrain/mpt-125m.yaml \
data_local=my-copy-c4 \
train_loader.dataset.split=train_small \
eval_loader.dataset.split=val_small \
max_duration=10ba \
eval_interval=0 \
save_folder=mpt-125m
# Convert the model to HuggingFace format
python inference/convert_composer_to_hf.py \
--composer_path mpt-125m/ep0-ba10-rank0.pt \
--hf_output_path mpt-125m-hf \
--output_precision bf16 \
# --hf_repo_for_upload user-org/repo-name
# Evaluate the model on a subset of tasks
composer eval/eval.py \
eval/yamls/hf_eval.yaml \
icl_tasks=eval/yamls/copa.yaml \
model_name_or_path=mpt-125m-hf
# Generate responses to prompts
python inference/hf_generate.py \
--name_or_path mpt-125m-hf \
--max_new_tokens 256 \
--prompts \
"The answer to life, the universe, and happiness is" \
"Here's a quick recipe for baking chocolate chip cookies: Start by"
Note: the composer
command used above to train the model refers to Composer library's distributed launcher.
If you have a write-enabled HuggingFace auth token, you can optionally upload your model to the Hub! Just export your token like this:
export HUGGING_FACE_HUB_TOKEN=your-auth-token
and uncomment the line containing --hf_repo_for_upload ...
in the above call to inference/convert_composer_to_hf.py
.
Check out TUTORIAL.md to keep learning about working with LLM Foundry. The tutorial highlights example workflows, points you to other resources throughout the repo, and answers frequently asked questions!
If you run into any problems with the code, please file Github issues directly to this repo.
If you want to train LLMs on the MosaicML platform, reach out to us at demo@mosaicml.com!