-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcoref_gender.py
170 lines (124 loc) · 5.44 KB
/
coref_gender.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
# %%
## Importing packages
import numpy as np
import json
import os
import sys
import time
from pathlib import Path
from collections import Counter
# %%
## Importing SpaCy and neuralcoref, creating pipeline
import spacy
import neuralcoref
nlp = spacy.load("en_core_web_sm")
neuralcoref.add_to_pipe(nlp)
# %%
## Get dictionary of gendered words
!git clone https://github.com/ecmonsen/gendered_words.git data
# %%
## Create gender coreference set
with open('data/gendered_words/gendered_words.json') as f:
gender_coreference = {i['word'] for i in json.load(f) if i['gender'] in {'f','m'}}
# %%
## Init coreference dictionaries folder
coref_dir = 'data/coreference_dicts/'
# %%
## Collect movies that are already done, so loop won't go through them again
movie_indexes = set()
for root, _, files in os.walk(coref_dir):
for f in files:
file_path = os.path.join(root,f)
p = Path(file_path)
file_stem = int(p.stem)
movie_indexes.add(file_stem)
# %%
## Create character-gender dictionaries for each movie
start_time = time.time()
with open('data/movie_dialogues.txt', 'r') as f, open('data/char_sets.txt', 'r') as g:
for i, (lines, chars) in enumerate(zip(f, g)):
movie_start_time = time.time()
movie_json = json.loads(lines)
movie_index = movie_json['movie_id']
# Only for movies that aren't done yet
if movie_index not in movie_indexes:
char_json = json.loads(chars)
char_set = set(char_json['char_set'])
for pg in movie_json['paragraphs']:
# Init coreference dict for the movie
coreference_dict = {}
# Go through each paragraph
for dialogue in pg['dialogues']:
if dialogue['character'] == 'NA':
if len(dialogue['line']) < 50000:
doc = nlp(dialogue['line'])
for i in doc._.coref_clusters:
key = str(i[0]).upper()
if key in char_set:
mentions = set()
for ment in i.mentions:
mention = str(ment).lower()
if mention in gender_coreference:
mentions.add(mention)
if mentions != set():
coreference_dict[key] = mentions
if coreference_dict != {}:
for i, v in coreference_dict.items():
coreference_dict[i] = list(v)
with open(os.path.join(coref_dir, str(movie_index)+'.txt'), 'a') as h:
h.write(json.dumps(coreference_dict))
h.write('\n')
print(f"{movie_index} done in {time.time()-movie_start_time} s")
print(f"Finished in {time.time()-start_time} seconds")
# %%
## Create set for male words
with open('data/gendered_words/gendered_words.json', 'r') as f:
male = set([i['word'] for i in json.load(f) if i['gender'] == 'm'])
# %%
## Assign gender to characters, create gender coreference dictionary
with open('data/char_sets.txt','r') as f, open('data/coreference_dict.txt','w') as g:
for row in f:
char_json = json.loads(row)
movie_index = char_json['movie_id']
file_path = os.path.join(coref_dir, str(movie_index)+'.txt')
char_genders = {}
try:
with open(file_path, 'r') as h:
for i, line in enumerate(h):
if line != {}:
coref_dict = json.loads(line)
for key, value in coref_dict.items():
try:
char_genders[key] = char_genders[key] + [1 if i in male else 0 for i in value]
except KeyError:
char_genders[key] = [1 if i in male else 0 for i in value]
for key, value in char_genders.items():
char_genders[key] = Counter(value).most_common(1)[0][0]
except FileNotFoundError:
pass
g.write(json.dumps({"movie_id": movie_index, "char_genders": char_genders}))
g.write('\n')
# %%
## Create a gendered version of the movie_dialogues.txt
with open('data/movie_dialogues.txt', 'r') as f, open('data/coreference_dict.txt','r') as g, \
open('data/movie_gdialogues.txt','w') as h:
for i, (movie, coref) in enumerate(zip(f,g)):
movie_json = json.loads(movie)
coref_json = json.loads(coref)
movie_index = movie_json['movie_id']
paragraphs = []
for pg in movie_json['paragraphs']:
dialogues = []
for dialogue in pg['dialogues']:
char = dialogue['character']
try:
gender = coref_json['char_genders'][char]
except KeyError:
gender = 'NA'
dialogue_dict = {'character': char, 'gender': gender, 'line': dialogue['line']}
dialogues.append(dialogue_dict)
paragraphs.append({'header': pg['header'], 'dialogues': dialogues})
movie = json.dumps({'movie_id': movie_index, 'paragraphs': paragraphs})
h.write(movie)
h.write('\n')
# %%