-
Notifications
You must be signed in to change notification settings - Fork 0
/
app.py
102 lines (71 loc) · 2.08 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
from __future__ import division, print_function
# coding=utf-8
import sys
import os
import glob
import re
import numpy as np
# keras
import tensorflow as tf
# from keras import load_img
from keras.models import load_model
from keras.preprocessing import image
# Flask utils
from flask import Flask, request, render_template
from werkzeug.utils import secure_filename
from gevent.pywsgi import WSGIServer
# Define a flask app
app = Flask(__name__)
# Model saved with Keras model.save()
MODEL_PATH = './model/model_f.h5'
# Load your trained model
model = load_model(MODEL_PATH)
print('Model loaded. Check http://127.0.0.1:5000/')
def get_key(val):
if(val == 0):
return "Infected"
else:
return "Not Infected"
def model_predict(img_path, model):
img = tf.keras.utils.load_img(
img_path,
target_size=(224, 224)
,interpolation='nearest'
,keep_aspect_ratio=False)
x = np.array(img)
x = x/255.0
x = x.reshape(1,224,224,3)
preds = model.predict(x)
return preds
@app.route('/', methods=['GET'])
def index():
# Main page
return render_template('./index.html')
@app.route('/aboutus', methods=['GET'])
def aboutus():
# about us page
return render_template('./about.html')
@app.route('/contactus', methods=['GET'])
def contactus():
# contactus page
return render_template('./contact.html')
@app.route('/predict', methods=['GET', 'POST'])
def upload():
if request.method == 'POST':
# Get the file from post request
f = request.files['file']
# Save the file to ./uploads
basepath = os.path.dirname(__file__)
file_path = os.path.join(
basepath, 'uploads', secure_filename(f.filename))
f.save(file_path)
# Make prediction
preds = model_predict(file_path, model)
# j = preds.max()
# l={"infected":preds[0][0],"not infected":preds[0][1]}
# temp = preds[0][0]
y_class = ((preds > 0.5)+0).ravel()
ans = get_key(y_class)
return ans
if __name__ == '__main__':
app.run(debug=True)