forked from gopxl/pixel
-
Notifications
You must be signed in to change notification settings - Fork 0
/
vector.go
462 lines (385 loc) · 11.4 KB
/
vector.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
package pixel
import (
"fmt"
"math"
)
// Vec is a 2D vector type with X and Y coordinates.
//
// Create vectors with the V constructor:
//
// u := pixel.V(1, 2)
// v := pixel.V(8, -3)
//
// Use various methods to manipulate them:
//
// w := u.Add(v)
// fmt.Println(w) // Vec(9, -1)
// fmt.Println(u.Sub(v)) // Vec(-7, 5)
// u = pixel.V(2, 3)
// v = pixel.V(8, 1)
// if u.X < 0 {
// fmt.Println("this won't happen")
// }
// x := u.Unit().Dot(v.Unit())
type Vec struct {
X, Y float64
}
// ZV is a zero vector.
var ZV = Vec{0, 0}
// V returns a new 2D vector with the given coordinates.
func V(x, y float64) Vec {
return Vec{x, y}
}
// nearlyEqual compares two float64s and returns whether they are equal, accounting for rounding errors.At worst, the
// result is correct to 7 significant digits.
func nearlyEqual(a, b float64) bool {
epsilon := 0.000001
if a == b {
return true
}
diff := math.Abs(a - b)
if a == 0.0 || b == 0.0 || diff < math.SmallestNonzeroFloat64 {
return diff < (epsilon * math.SmallestNonzeroFloat64)
}
absA := math.Abs(a)
absB := math.Abs(b)
return diff/math.Min(absA+absB, math.MaxFloat64) < epsilon
}
// Eq will compare two vectors and return whether they are equal accounting for rounding errors. At worst, the result
// is correct to 7 significant digits.
func (u Vec) Eq(v Vec) bool {
return nearlyEqual(u.X, v.X) && nearlyEqual(u.Y, v.Y)
}
// Unit returns a vector of length 1 facing the given angle.
func Unit(angle float64) Vec {
return Vec{1, 0}.Rotated(angle)
}
// String returns the string representation of the vector u.
//
// u := pixel.V(4.5, -1.3)
// u.String() // returns "Vec(4.5, -1.3)"
// fmt.Println(u) // Vec(4.5, -1.3)
func (u Vec) String() string {
return fmt.Sprintf("Vec(%v, %v)", u.X, u.Y)
}
// XY returns the components of the vector in two return values.
func (u Vec) XY() (x, y float64) {
return u.X, u.Y
}
// Add returns the sum of vectors u and v.
func (u Vec) Add(v Vec) Vec {
return Vec{
u.X + v.X,
u.Y + v.Y,
}
}
// Sub returns the difference betweeen vectors u and v.
func (u Vec) Sub(v Vec) Vec {
return Vec{
u.X - v.X,
u.Y - v.Y,
}
}
// Floor converts x and y to their integer equivalents.
func (u Vec) Floor() Vec {
return Vec{
math.Floor(u.X),
math.Floor(u.Y),
}
}
// To returns the vector from u to v. Equivalent to v.Sub(u).
func (u Vec) To(v Vec) Vec {
return Vec{
v.X - u.X,
v.Y - u.Y,
}
}
// Scaled returns the vector u multiplied by c.
func (u Vec) Scaled(c float64) Vec {
return Vec{u.X * c, u.Y * c}
}
// ScaledXY returns the vector u multiplied by the vector v component-wise.
func (u Vec) ScaledXY(v Vec) Vec {
return Vec{u.X * v.X, u.Y * v.Y}
}
// Len returns the length of the vector u.
func (u Vec) Len() float64 {
return math.Hypot(u.X, u.Y)
}
// SqLen returns the squared length of the vector u (faster to compute than Len).
func (u Vec) SqLen() float64 {
return u.X*u.X + u.Y*u.Y
}
// Angle returns the angle between the vector u and the x-axis. The result is in range [-Pi, Pi].
func (u Vec) Angle() float64 {
return math.Atan2(u.Y, u.X)
}
// Unit returns a vector of length 1 facing the direction of u (has the same angle).
func (u Vec) Unit() Vec {
if u.X == 0 && u.Y == 0 {
return Vec{1, 0}
}
return u.Scaled(1 / u.Len())
}
// Rotated returns the vector u rotated by the given angle in radians.
func (u Vec) Rotated(angle float64) Vec {
sin, cos := math.Sincos(angle)
return Vec{
u.X*cos - u.Y*sin,
u.X*sin + u.Y*cos,
}
}
// Normal returns a vector normal to u. Equivalent to u.Rotated(math.Pi / 2), but faster.
func (u Vec) Normal() Vec {
return Vec{-u.Y, u.X}
}
// Dot returns the dot product of vectors u and v.
func (u Vec) Dot(v Vec) float64 {
return u.X*v.X + u.Y*v.Y
}
// Cross return the cross product of vectors u and v.
func (u Vec) Cross(v Vec) float64 {
return u.X*v.Y - v.X*u.Y
}
// Project returns a projection (or component) of vector u in the direction of vector v.
//
// Behaviour is undefined if v is a zero vector.
func (u Vec) Project(v Vec) Vec {
len := u.Dot(v) / v.Len()
return v.Unit().Scaled(len)
}
// Map applies the function f to both x and y components of the vector u and returns the modified
// vector.
//
// u := pixel.V(10.5, -1.5)
// v := u.Map(math.Floor) // v is Vec(10, -2), both components of u floored
func (u Vec) Map(f func(float64) float64) Vec {
return Vec{
f(u.X),
f(u.Y),
}
}
// Lerp returns a linear interpolation between vectors a and b.
//
// This function basically returns a point along the line between a and b and t chooses which one.
// If t is 0, then a will be returned, if t is 1, b will be returned. Anything between 0 and 1 will
// return the appropriate point between a and b and so on.
func Lerp(a, b Vec, t float64) Vec {
return a.Scaled(1 - t).Add(b.Scaled(t))
}
// Line is a 2D line segment, between points A and B.
type Line struct {
A, B Vec
}
// L creates and returns a new Line.
func L(from, to Vec) Line {
return Line{
A: from,
B: to,
}
}
// Bounds returns the lines bounding box. This is in the form of a normalized Rect.
func (l Line) Bounds() Rect {
return R(l.A.X, l.A.Y, l.B.X, l.B.Y).Norm()
}
// Center will return the point at center of the line; that is, the point equidistant from either end.
func (l Line) Center() Vec {
return l.A.Add(l.A.To(l.B).Scaled(0.5))
}
// Closest will return the point on the line which is closest to the Vec provided.
func (l Line) Closest(v Vec) Vec {
// between is a helper function which determines whether x is greater than min(a, b) and less than max(a, b)
between := func(a, b, x float64) bool {
min := math.Min(a, b)
max := math.Max(a, b)
return min < x && x < max
}
// Closest point will be on a line which perpendicular to this line.
// If and only if the infinite perpendicular line intersects the segment.
m, b := l.Formula()
// Account for horizontal lines
if m == 0 {
x := v.X
y := l.A.Y
// check if the X coordinate of v is on the line
if between(l.A.X, l.B.X, v.X) {
return V(x, y)
}
// Otherwise get the closest endpoint
if l.A.To(v).Len() < l.B.To(v).Len() {
return l.A
}
return l.B
}
// Account for vertical lines
if math.IsInf(math.Abs(m), 1) {
x := l.A.X
y := v.Y
// check if the Y coordinate of v is on the line
if between(l.A.Y, l.B.Y, v.Y) {
return V(x, y)
}
// Otherwise get the closest endpoint
if l.A.To(v).Len() < l.B.To(v).Len() {
return l.A
}
return l.B
}
perpendicularM := -1 / m
perpendicularB := v.Y - (perpendicularM * v.X)
// Coordinates of intersect (of infinite lines)
x := (perpendicularB - b) / (m - perpendicularM)
y := m*x + b
// Check if the point lies between the x and y bounds of the segment
if !between(l.A.X, l.B.X, x) && !between(l.A.Y, l.B.Y, y) {
// Not within bounding box
toStart := v.To(l.A)
toEnd := v.To(l.B)
if toStart.Len() < toEnd.Len() {
return l.A
}
return l.B
}
return V(x, y)
}
// Contains returns whether the provided Vec lies on the line.
func (l Line) Contains(v Vec) bool {
return l.Closest(v).Eq(v)
}
// Formula will return the values that represent the line in the formula: y = mx + b
// This function will return math.Inf+, math.Inf- for a vertical line.
func (l Line) Formula() (m, b float64) {
// Account for horizontal lines
if l.B.Y == l.A.Y {
return 0, l.A.Y
}
m = (l.B.Y - l.A.Y) / (l.B.X - l.A.X)
b = l.A.Y - (m * l.A.X)
return m, b
}
// Intersect will return the point of intersection for the two line segments. If the line segments do not intersect,
// this function will return the zero-vector and false.
func (l Line) Intersect(k Line) (Vec, bool) {
// Check if the lines are parallel
lDir := l.A.To(l.B)
kDir := k.A.To(k.B)
if lDir.X == kDir.X && lDir.Y == kDir.Y {
return ZV, false
}
// The lines intersect - but potentially not within the line segments.
// Get the intersection point for the lines if they were infinitely long, check if the point exists on both of the
// segments
lm, lb := l.Formula()
km, kb := k.Formula()
// Account for vertical lines
if math.IsInf(math.Abs(lm), 1) && math.IsInf(math.Abs(km), 1) {
// Both vertical, therefore parallel
return ZV, false
}
var x, y float64
if math.IsInf(math.Abs(lm), 1) || math.IsInf(math.Abs(km), 1) {
// One line is vertical
intersectM := lm
intersectB := lb
verticalLine := k
if math.IsInf(math.Abs(lm), 1) {
intersectM = km
intersectB = kb
verticalLine = l
}
y = intersectM*verticalLine.A.X + intersectB
x = verticalLine.A.X
} else {
// Coordinates of intersect
x = (kb - lb) / (lm - km)
y = lm*x + lb
}
if l.Contains(V(x, y)) && k.Contains(V(x, y)) {
// The intersect point is on both line segments, they intersect.
return V(x, y), true
}
return ZV, false
}
// IntersectCircle will return the shortest Vec such that moving the Line by that Vec will cause the Line and Circle
// to no longer intesect. If they do not intersect at all, this function will return a zero-vector.
func (l Line) IntersectCircle(c Circle) Vec {
// Get the point on the line closest to the center of the circle.
closest := l.Closest(c.Center)
cirToClosest := c.Center.To(closest)
if cirToClosest.Len() >= c.Radius {
return ZV
}
return cirToClosest.Scaled(cirToClosest.Len() - c.Radius)
}
// IntersectRect will return the shortest Vec such that moving the Line by that Vec will cause the Line and Rect to
// no longer intesect. If they do not intersect at all, this function will return a zero-vector.
func (l Line) IntersectRect(r Rect) Vec {
// Check if either end of the line segment are within the rectangle
if r.Contains(l.A) || r.Contains(l.B) {
// Use the Rect.Intersect to get minimal return value
rIntersect := l.Bounds().Intersect(r)
if rIntersect.H() > rIntersect.W() {
// Go vertical
return V(0, rIntersect.H())
}
return V(rIntersect.W(), 0)
}
// Check if any of the rectangles' edges intersect with this line.
for _, edge := range r.Edges() {
if _, ok := l.Intersect(edge); ok {
// Get the closest points on the line to each corner, where:
// - the point is contained by the rectangle
// - the point is not the corner itself
corners := r.Vertices()
var closest *Vec
closestCorner := corners[0]
for _, c := range corners {
cc := l.Closest(c)
if closest == nil || (closest.Len() > cc.Len() && r.Contains(cc)) {
closest = &cc
closestCorner = c
}
}
return closest.To(closestCorner)
}
}
// No intersect
return ZV
}
// Len returns the length of the line segment.
func (l Line) Len() float64 {
return l.A.To(l.B).Len()
}
// Moved will return a line moved by the delta Vec provided.
func (l Line) Moved(delta Vec) Line {
return Line{
A: l.A.Add(delta),
B: l.B.Add(delta),
}
}
// Rotated will rotate the line around the provided Vec.
func (l Line) Rotated(around Vec, angle float64) Line {
// Move the line so we can use `Vec.Rotated`
lineShifted := l.Moved(around.Scaled(-1))
lineRotated := Line{
A: lineShifted.A.Rotated(angle),
B: lineShifted.B.Rotated(angle),
}
return lineRotated.Moved(around)
}
// Scaled will return the line scaled around the center point.
func (l Line) Scaled(scale float64) Line {
return l.ScaledXY(l.Center(), scale)
}
// ScaledXY will return the line scaled around the Vec provided.
func (l Line) ScaledXY(around Vec, scale float64) Line {
toA := around.To(l.A).Scaled(scale)
toB := around.To(l.B).Scaled(scale)
return Line{
A: around.Add(toA),
B: around.Add(toB),
}
}
func (l Line) String() string {
return fmt.Sprintf("Line(%v, %v)", l.A, l.B)
}