From 163f12c533765fa3093134f9b7357ff9dc281fd2 Mon Sep 17 00:00:00 2001 From: Yuki <903728862@qq.com> Date: Mon, 8 Apr 2024 05:13:36 +0100 Subject: [PATCH] # fix com_zhipuglm.py illegal temperature problem (#1687) MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit * Update com_zhipuglm.py # fix 用户在使用 zhipuai 界面时遇到了关于温度参数的非法参数错误 --- request_llms/com_zhipuglm.py | 49 +++++++++++++++++++++++++++++++++--- 1 file changed, 46 insertions(+), 3 deletions(-) diff --git a/request_llms/com_zhipuglm.py b/request_llms/com_zhipuglm.py index b7bed2f043..d0326cfde7 100644 --- a/request_llms/com_zhipuglm.py +++ b/request_llms/com_zhipuglm.py @@ -55,6 +55,21 @@ def __conversation_history(self, history:list, llm_kwargs:dict): messages.append(what_gpt_answer) return messages + @staticmethod + def preprocess_param(param, default=0.95, min_val=0.01, max_val=0.99): + """预处理参数,保证其在允许范围内,并处理精度问题""" + try: + param = float(param) + except ValueError: + return default + + if param <= min_val: + return min_val + elif param >= max_val: + return max_val + else: + return round(param, 2) # 可挑选精度,目前是两位小数 + def __conversation_message_payload(self, inputs:str, llm_kwargs:dict, history:list, system_prompt:str): messages = [] if system_prompt: @@ -64,11 +79,39 @@ def __conversation_message_payload(self, inputs:str, llm_kwargs:dict, history:li if inputs.strip() == "": # 处理空输入导致报错的问题 https://github.com/binary-husky/gpt_academic/issues/1640 提示 {"error":{"code":"1214","message":"messages[1]:content和tool_calls 字段不能同时为空"} inputs = "." # 空格、换行、空字符串都会报错,所以用最没有意义的一个点代替 messages.append(self.__conversation_user(inputs, llm_kwargs)) # 处理用户对话 + """ + 采样温度,控制输出的随机性,必须为正数 + 取值范围是:(0.0, 1.0),不能等于 0,默认值为 0.95, + 值越大,会使输出更随机,更具创造性; + 值越小,输出会更加稳定或确定 + 建议您根据应用场景调整 top_p 或 temperature 参数,但不要同时调整两个参数 + """ + temperature = self.preprocess_param( + param=llm_kwargs.get('temperature', 0.95), + default=0.95, + min_val=0.01, + max_val=0.99 + ) + """ + 用温度取样的另一种方法,称为核取样 + 取值范围是:(0.0, 1.0) 开区间, + 不能等于 0 或 1,默认值为 0.7 + 模型考虑具有 top_p 概率质量 tokens 的结果 + 例如:0.1 意味着模型解码器只考虑从前 10% 的概率的候选集中取 tokens + 建议您根据应用场景调整 top_p 或 temperature 参数, + 但不要同时调整两个参数 + """ + top_p = self.preprocess_param( + param=llm_kwargs.get('top_p', 0.70), + default=0.70, + min_val=0.01, + max_val=0.99 + ) response = self.zhipu_bro.chat.completions.create( model=self.model, messages=messages, stream=True, - temperature=llm_kwargs.get('temperature', 0.95) * 0.95, # 只能传默认的 temperature 和 top_p - top_p=llm_kwargs.get('top_p', 0.7) * 0.7, - max_tokens=llm_kwargs.get('max_tokens', 1024 * 4), # 最大输出模型的一半 + temperature=temperature, + top_p=top_p, + max_tokens=llm_kwargs.get('max_tokens', 1024 * 4), ) return response