-
Notifications
You must be signed in to change notification settings - Fork 2
/
color_compl.py
118 lines (94 loc) · 3.66 KB
/
color_compl.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
# Original Matlab code https://cs.nyu.edu/~silberman/datasets/nyu_depth_v2.html
#
#
# Python port of depth filling code from NYU toolbox
# Speed needs to be improved
#
# Uses 'pypardiso' solver
#
import scipy
import skimage.color
import numpy as np
from pypardiso import spsolve
from PIL import Image
#
# fill_depth_colorization.m
# Preprocesses the kinect depth image using a gray scale version of the
# RGB image as a weighting for the smoothing. This code is a slight
# adaptation of Anat Levin's colorization code:
#
# See: www.cs.huji.ac.il/~yweiss/Colorization/
#
# Args:
# imgRgb - HxWx3 matrix, the rgb image for the current frame. This must
# be between 0 and 1.
# imgDepth - HxW matrix, the depth image for the current frame in
# absolute (meters) space.
# alpha - a penalty value between 0 and 1 for the current depth values.
def fill_depth_colorization(imgRgb=None, imgDepthInput=None, alpha=1):
imgIsNoise = imgDepthInput == 0
maxImgAbsDepth = np.max(imgDepthInput)
imgDepth = imgDepthInput / maxImgAbsDepth
imgDepth[imgDepth > 1] = 1
(H, W) = imgDepth.shape
numPix = H * W
indsM = np.arange(numPix).reshape((W, H)).transpose()
knownValMask = (imgIsNoise == False).astype(int)
grayImg = skimage.color.rgb2gray(imgRgb)
winRad = 1
len_ = 0
absImgNdx = 0
len_window = (2 * winRad + 1) ** 2
len_zeros = numPix * len_window
cols = np.zeros(len_zeros) - 1
rows = np.zeros(len_zeros) - 1
vals = np.zeros(len_zeros) - 1
gvals = np.zeros(len_window) - 1
for j in range(W):
for i in range(H):
nWin = 0
for ii in range(max(0, i - winRad), min(i + winRad + 1, H)):
for jj in range(max(0, j - winRad), min(j + winRad + 1, W)):
if ii == i and jj == j:
continue
rows[len_] = absImgNdx
cols[len_] = indsM[ii, jj]
gvals[nWin] = grayImg[ii, jj]
len_ = len_ + 1
nWin = nWin + 1
curVal = grayImg[i, j]
gvals[nWin] = curVal
c_var = np.mean((gvals[:nWin + 1] - np.mean(gvals[:nWin + 1])) ** 2)
csig = c_var * 0.6
mgv = np.min((gvals[:nWin] - curVal) ** 2)
if csig < -mgv / np.log(0.01):
csig = -mgv / np.log(0.01)
if csig < 2e-06:
csig = 2e-06
gvals[:nWin] = np.exp(-(gvals[:nWin] - curVal) ** 2 / csig)
gvals[:nWin] = gvals[:nWin] / sum(gvals[:nWin])
vals[len_ - nWin:len_] = -gvals[:nWin]
# Now the self-reference (along the diagonal).
rows[len_] = absImgNdx
cols[len_] = absImgNdx
vals[len_] = 1 # sum(gvals(1:nWin))
len_ = len_ + 1
absImgNdx = absImgNdx + 1
vals = vals[:len_]
cols = cols[:len_]
rows = rows[:len_]
A = scipy.sparse.csr_matrix((vals, (rows, cols)), (numPix, numPix))
rows = np.arange(0, numPix)
cols = np.arange(0, numPix)
vals = (knownValMask * alpha).transpose().reshape(numPix)
G = scipy.sparse.csr_matrix((vals, (rows, cols)), (numPix, numPix))
A = A + G
b = np.multiply(vals.reshape(numPix), imgDepth.flatten('F'))
# print ('Solving system..')
new_vals = spsolve(A, b)
new_vals = np.reshape(new_vals, (H, W), 'F')
# print ('Done.')
denoisedDepthImg = new_vals * maxImgAbsDepth
output = denoisedDepthImg.reshape((H, W)).astype('float32')
output = np.multiply(output, (1 - knownValMask)) + imgDepthInput
return output