-
Notifications
You must be signed in to change notification settings - Fork 2
/
data_transform.py
494 lines (424 loc) · 17.2 KB
/
data_transform.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
"""
Created on Thu Feb 1 19:31:56 2018
@ author: Xinjing Cheng
@ email : chengxinjing@baidu.com
"""
from __future__ import print_function, division
import os
import torch
import pandas as pd
from skimage import io, transform
import numpy as np
import matplotlib.pyplot as plt
from torch.utils.data import Dataset, DataLoader
from torchvision import transforms, utils
import math
import random
from PIL import Image, ImageOps
import numbers
import types
import scipy.ndimage as ndimage
try:
import accimage
except ImportError:
accimage = None
'''Set of tranform random routines that takes both input and target as arguments,
in order to have random but coherent transformations.
inputs are PIL Image pairs and targets are ndarrays'''
'''use torchvision.transform and my own transform:
torchvision.transform function list:
"Compose", "ToTensor", "ToPILImage", "Normalize", "Resize", "Scale", "CenterCrop", "Pad",
"Lambda", "RandomCrop", "RandomHorizontalFlip", "RandomVerticalFlip", "RandomResizedCrop",
"RandomSizedCrop", "FiveCrop", "TenCrop", "LinearTransformation", "ColorJitter",
"RandomRotation", "Grayscale", "RandomGrayscale"
my own transform function list:
ToTensor(without div(255)), ColorNormalize, DepthNormalize, Scale, CenterCropRectangle,
'''
def _is_pil_image(img):
if accimage is not None:
return isinstance(img, (Image.Image, accimage.Image))
else:
return isinstance(img, Image.Image)
def _is_numpy_image(img):
return isinstance(img, np.ndarray) and (img.ndim in {2, 3})
def _is_tensor_image(img):
return torch.is_tensor(img) and img.ndimension() == 3
def to_pil_image(pic, mode=None):
"""Convert a tensor or an ndarray to PIL Image.
See :class:`~torchvision.transforms.ToPIlImage` for more details.
Args:
pic (Tensor or numpy.ndarray): Image to be converted to PIL Image.
mode (`PIL.Image mode`_): color space and pixel depth of input data (optional).
.. _PIL.Image mode: http://pillow.readthedocs.io/en/3.4.x/handbook/concepts.html#modes
Returns:
PIL Image: Image converted to PIL Image.
"""
if not(_is_numpy_image(pic) or _is_tensor_image(pic)):
raise TypeError('pic should be Tensor or ndarray. Got {}.'.format(type(pic)))
npimg = pic
if isinstance(pic, torch.FloatTensor):
pic = pic.byte()
if torch.is_tensor(pic):
npimg = np.transpose(pic.numpy(), (1, 2, 0))
if not isinstance(npimg, np.ndarray):
raise TypeError('Input pic must be a torch.Tensor or NumPy ndarray, ' +
'not {}'.format(type(npimg)))
if npimg.shape[2] == 1:
expected_mode = None
npimg = npimg[:, :, 0]
if npimg.dtype == np.uint8:
expected_mode = 'L'
if npimg.dtype == np.int16:
expected_mode = 'I;16'
if npimg.dtype == np.int32:
expected_mode = 'I'
elif npimg.dtype == np.float32:
expected_mode = 'F'
if mode is not None and mode != expected_mode:
raise ValueError("Incorrect mode ({}) supplied for input type {}. Should be {}"
.format(mode, np.dtype, expected_mode))
mode = expected_mode
elif npimg.shape[2] == 4:
permitted_4_channel_modes = ['RGBA', 'CMYK']
if mode is not None and mode not in permitted_4_channel_modes:
raise ValueError("Only modes {} are supported for 4D inputs".format(permitted_4_channel_modes))
if mode is None and npimg.dtype == np.uint8:
mode = 'RGBA'
else:
permitted_3_channel_modes = ['RGB', 'YCbCr', 'HSV']
if mode is not None and mode not in permitted_3_channel_modes:
raise ValueError("Only modes {} are supported for 3D inputs".format(permitted_3_channel_modes))
if mode is None and npimg.dtype == np.uint8:
mode = 'RGB'
if mode is None:
raise TypeError('Input type {} is not supported'.format(npimg.dtype))
return Image.fromarray(npimg, mode=mode)
class ToPILImage(object):
"""Convert a tensor or an ndarray to PIL Image.
Converts a torch.*Tensor of shape C x H x W or a numpy ndarray of shape
H x W x C to a PIL Image while preserving the value range.
Args:
mode (`PIL.Image mode`_): color space and pixel depth of input data (optional).
If ``mode`` is ``None`` (default) there are some assumptions made about the input data:
1. If the input has 3 channels, the ``mode`` is assumed to be ``RGB``.
2. If the input has 4 channels, the ``mode`` is assumed to be ``RGBA``.
3. If the input has 1 channel, the ``mode`` is determined by the data type (i,e,
``int``, ``float``, ``short``).
.. _PIL.Image mode: http://pillow.readthedocs.io/en/3.4.x/handbook/concepts.html#modes
"""
def __init__(self, mode=None):
self.mode = mode
def __call__(self, pic):
"""
Args:
pic (Tensor or numpy.ndarray): Image to be converted to PIL Image.
Returns:
PIL Image: Image converted to PIL Image.
"""
return to_pil_image(pic, self.mode)
def __repr__(self):
return self.__class__.__name__ + '({0})'.format(self.mode)
def to_tensor(pic):
"""Convert a ``PIL Image`` or ``numpy.ndarray`` to tensor.
See ``ToTensor`` for more details.
Args:
pic (PIL Image or numpy.ndarray): Image to be converted to tensor.
Returns:
Tensor: Converted image.
"""
if not(_is_pil_image(pic) or _is_numpy_image(pic)):
raise TypeError('pic should be PIL Image or ndarray. Got {}'.format(type(pic)))
if isinstance(pic, np.ndarray):
# handle numpy array
img = torch.from_numpy(pic.transpose((2, 0, 1)))
# backward compatibility
return img.float()
if accimage is not None and isinstance(pic, accimage.Image):
nppic = np.zeros([pic.channels, pic.height, pic.width], dtype=np.float32)
pic.copyto(nppic)
return torch.from_numpy(nppic)
# handle PIL Image
if pic.mode == 'I':
img = torch.from_numpy(np.array(pic, np.int32, copy=False))
elif pic.mode == 'I;16':
img = torch.from_numpy(np.array(pic, np.int16, copy=False))
elif pic.mode == 'F':
img = torch.from_numpy(np.array(pic, np.float32, copy=False))
else:
img = torch.ByteTensor(torch.ByteStorage.from_buffer(pic.tobytes()))
# PIL image mode: 1, L, P, I, F, RGB, YCbCr, RGBA, CMYK
if pic.mode == 'YCbCr':
nchannel = 3
elif pic.mode == 'I;16':
nchannel = 1
else:
nchannel = len(pic.mode)
# print (nchannel)
img = img.view(pic.size[1], pic.size[0], nchannel)
# put it from HWC to CHW format
# yikes, this transpose takes 80% of the loading time/CPU
img = img.transpose(0, 1).transpose(0, 2).contiguous()
if isinstance(img, torch.ByteTensor):
return img.float()
else:
return img
def un_normalize(tensor, mean, std):
"""un_normalize a tensor image with mean and standard deviation.
See ``un_normalize`` for more details.
Args:
tensor (Tensor): Tensor image of size (C, H, W) to be normalized.
mean (sequence): Sequence of means for each channel.
std (sequence): Sequence of standard deviations for each channely.
Returns:
Tensor: Normalized Tensor image.
"""
if not _is_tensor_image(tensor):
raise TypeError('tensor is not a torch image.')
# TODO: make efficient
for t, m, s in zip(tensor, mean, std):
t.mul_(s).add_(m)
return tensor
class Un_Normalize(object):
"""Normalize an tensor image with mean and standard deviation.
Given mean: ``(M1,...,Mn)`` and std: ``(S1,..,Sn)`` for ``n`` channels, this transform
will normalize each channel of the input ``torch.*Tensor`` i.e.
``input[channel] = (input[channel] - mean[channel]) / std[channel]``
Args:
mean (sequence): Sequence of means for each channel.
std (sequence): Sequence of standard deviations for each channel.
"""
def __init__(self, mean, std):
self.mean = mean
self.std = std
def __call__(self, tensor):
"""
Args:
tensor (Tensor): Tensor image of size (C, H, W) to be normalized.
Returns:
Tensor: Normalized Tensor image.
"""
return un_normalize(tensor, self.mean, self.std)
def __repr__(self):
return self.__class__.__name__ + '(mean={0}, std={1})'.format(self.mean, self.std)
class Compose(object):
""" Composes several co_transforms together.
For example:
>>> co_transforms.Compose([
>>> co_transforms.CenterCrop(10),
>>> co_transforms.ToTensor(),
>>> ])
"""
def __init__(self, co_transforms):
self.co_transforms = co_transforms
def __call__(self, input):
for _, t in enumerate(self.co_transforms):
input = t(input)
return input
class ToTensor(object):
"""Convert a ``PIL Image`` or ``numpy.ndarray`` to tensor.
Converts a PIL Image or numpy.ndarray (H x W x C) in the range
[0, 255] to a torch.FloatTensor of shape (C x H x W) in the range [0.0, 1.0].
"""
def __call__(self, pic):
"""
Args:
pic (PIL Image or numpy.ndarray): Image to be converted to tensor.
Returns:
Tensor: Converted image.
"""
return to_tensor(pic)
def __repr__(self):
return self.__class__.__name__ + '()'
class Crop(object):
"""Crops the given PIL Image to size: [left, right, up, down].
Args:
left, right, up, down pixel you want to crop in image
"""
def __init__(self, left, right, up, dowm):
self.left = left
self.right = right
self.up = up
self.dowm = dowm
def __call__(self, img):
"""
Args:
img (PIL Image): Image to be cropped.
Returns:
PIL Image: Cropped image.
"""
if not _is_pil_image(img):
raise TypeError('img should be PIL Image. Got {}'.format(type(img)))
return img.crop((self.left, self.up, self.right, self.dowm))
def __repr__(self):
return self.__class__.__name__ + '(size={0})'.format(self.size)
class ColorNormalize(object):
def __init__(self, mean, std):
self.mean = mean
self.std = std
def __call__(self, input_image):
input_image = input_image.clone()
print(input_image.size())
print(self.mean)
print(self.std)
for i in range(3):
input_image[i] = torch.add(input_image[i], self.mean[i])
input_image[i] = torch.div(input_image[i], self.std[i])
return input_image
class DepthNormalize(object):
def __init__(self, mean, std):
self.mean = mean
self.std = std
def __call__(self, input_depth):
input_depth = input_depth.copy()
input_depth = (input_depth - self.mean) / self.std
return input_depth
def resize(img, size, interpolation=Image.BILINEAR):
"""Resize the input PIL Image to the given size.
Args:
img (PIL Image): Image to be resized.
size (sequence or int): Desired output size. If size is a sequence like
(h, w), the output size will be matched to this. If size is an int,
the smaller edge of the image will be matched to this number maintaing
the aspect ratio. i.e, if height > width, then image will be rescaled to
(size * height / width, size)
interpolation (int, optional): Desired interpolation. Default is
``PIL.Image.BILINEAR``
Returns:
PIL Image: Resized image.
"""
if not _is_pil_image(img):
raise TypeError('img should be PIL Image. Got {}'.format(type(img)))
if not (isinstance(size, int) or (isinstance(size, collections.Iterable) and len(size) == 2)):
raise TypeError('Got inappropriate size arg: {}'.format(size))
if isinstance(size, int):
print("===========")
w, h = img.size
if (w <= h and w == size) or (h <= w and h == size):
return img
if w < h:
ow = size
oh = int(size * h / w)
return img.resize((ow, oh), interpolation)
else:
print(interpolation)
oh = size
ow = int(size * w / h)
return img.resize((ow, oh), interpolation)
else:
return img.resize(size[::-1], interpolation)
class Resize(object):
"""Resize the input PIL Image to the given size.
Args:
size (sequence or int): Desired output size. If size is a sequence like
(h, w), output size will be matched to this. If size is an int,
smaller edge of the image will be matched to this number.
i.e, if height > width, then image will be rescaled to
(size * height / width, size)
interpolation (int, optional): Desired interpolation. Default is
``PIL.Image.BILINEAR``
"""
def __init__(self, size, interpolation=Image.BILINEAR):
assert isinstance(size, int) or (isinstance(size, collections.Iterable) and len(size) == 2)
self.size = size
self.interpolation = interpolation
def __call__(self, img):
"""
Args:
img (PIL Image): Image to be scaled.
Returns:
PIL Image: Rescaled image.
"""
return resize(img, self.size, self.interpolation)
class Scale(object):
#Scales the smaller edge to size
def __init__(self, size, interpolation='bicubic'):
self.output_size = size
# 0: Nearest-neighbor
# 1: Bi-linear (default)
# 2: Bi-quadratic
# 3: Bi-cubic
# 4: Bi-quartic
# 5: Bi-quintic
if interpolation == 'bicubic':
self.order = 3
elif interpolation == 'nearest':
self.order = 0
else:
self.order = 1
def __call__(self, input_image):
h, w = input_image.shape[:2]
if isinstance(self.output_size, int):
if h > w:
new_h, new_w = self.output_size * h / w, self.output_size
else:
new_h, new_w = self.output_size, self.output_size * w / h
else:
new_h, new_w = self.output_size, self.output_size
new_h, new_w = int(new_h), int(new_w)
img = transform.resize(input_image, (new_h, new_w), order=self.order)
return img
class CenterCropRectangle(object):
#Crop to centered rectangle
def __init__(self, height, width):
self.width = width
self.height = height
def __call__(self, input_image):
input_image = input_image.copy()
h, w = input_image.shape[:2]
top = np.int16((h - self.height)/2)
left = np.int16((w - self.width)/2)
input_image = input_image[top:top+self.height, left:left+self.width]
return input_image
class RandomHorizontalFlip_rgbd(object):
"""Horizontally flip the given PIL Image randomly with a probability of 1."""
def __call__(self, img, depth):
"""
Args:
img (PIL Image): Image to be flipped.
Returns:
PIL Image: Horizontally flipped image.
"""
if not _is_pil_image(img):
raise TypeError('img should be PIL Image. Got {}'.format(type(img)))
if not _is_pil_image(depth):
raise TypeError('img should be PIL Image. Got {}'.format(type(depth)))
if np.random.uniform() < 0.5:
img = img.transpose(Image.FLIP_LEFT_RIGHT)
depth = depth.transpose(Image.FLIP_LEFT_RIGHT)
return img, depth
def __repr__(self):
return self.__class__.__name__ + '()'
class Rotation(object):
"""Rotate the image by angle.
Args:
degrees (sequence or float or int): Range of degrees to select from.
If degrees is a number instead of sequence like (min, max), the range of degrees
will be (-degrees, +degrees).
resample ({PIL.Image.NEAREST, PIL.Image.BILINEAR, PIL.Image.BICUBIC}, optional):
An optional resampling filter.
See http://pillow.readthedocs.io/en/3.4.x/handbook/concepts.html#filters
If omitted, or if the image has mode "1" or "P", it is set to PIL.Image.NEAREST.
expand (bool, optional): Optional expansion flag.
If true, expands the output to make it large enough to hold the entire rotated image.
If false or omitted, make the output image the same size as the input image.
Note that the expand flag assumes rotation around the center and no translation.
center (2-tuple, optional): Optional center of rotation.
Origin is the upper left corner.
Default is the center of the image.
"""
def __init__(self, degrees, resample=False, expand=False, center=None):
self.degrees = degrees
self.resample = resample
self.expand = expand
self.center = center
def __call__(self, img):
"""
img (PIL Image): Image to be rotated.
Returns:
PIL Image: Rotated image.
"""
if not _is_pil_image(img):
raise TypeError('img should be PIL Image. Got {}'.format(type(img)))
return img.rotate(self.degrees, self.resample, self.expand, self.center)
def __repr__(self):
return self.__class__.__name__ + '(degrees={0})'.format(self.degrees)