From f2004bc6ba68d251ac9e8dd8022515261cb6ae43 Mon Sep 17 00:00:00 2001 From: Martin Grigorov Date: Wed, 20 Nov 2024 17:27:04 +0200 Subject: [PATCH] meryl: add linux-aarch64 and osx-arm64 build (#52237) * meryl: add linux-aarch64 build Signed-off-by: Martin Tzvetanov Grigorov * add aarch64 patch * Update build.sh * try arm64 * Update meta.yaml * meryl: Use git_url to be able to patch the Git submodule meryl-utility Signed-off-by: Martin Tzvetanov Grigorov * meryl: patch align-ssw.C for ARM64 too Signed-off-by: Martin Tzvetanov Grigorov * Update meta.yaml * Update build.sh * Update meta.yaml --------- Signed-off-by: Martin Tzvetanov Grigorov Co-authored-by: mencian Co-authored-by: Joshua Zhuang <71105179+mencian@users.noreply.github.com> --- recipes/meryl/0003-align.patch | 14 + recipes/meryl/build.sh | 9 +- recipes/meryl/meryl-utility-aarch64.patch | 9344 +++++++++++++++++++++ recipes/meryl/meta.yaml | 16 +- 4 files changed, 9378 insertions(+), 5 deletions(-) create mode 100644 recipes/meryl/0003-align.patch create mode 100644 recipes/meryl/meryl-utility-aarch64.patch diff --git a/recipes/meryl/0003-align.patch b/recipes/meryl/0003-align.patch new file mode 100644 index 0000000000000..f3877952ecc94 --- /dev/null +++ b/recipes/meryl/0003-align.patch @@ -0,0 +1,14 @@ +diff --git a/src/utility/src/align/align-ksw2-extz2-sse.C b/src/utility/src/align/align-ksw2-extz2-sse.C +index d237b48..f96c6fa 100644 +--- a/src/utility/src/align/align-ksw2-extz2-sse.C ++++ b/src/utility/src/align/align-ksw2-extz2-sse.C +@@ -304,6 +304,8 @@ void ksw_extz2_sse(void *km, int qlen, const uint8_t *query, int tlen, const uin + kfree(km, mem2); kfree(km, off); + } + } +-#endif // __SSE2__ + + } // merylutil::align::ksw2::v1 ++ ++#endif // __SSE2__ ++ diff --git a/recipes/meryl/build.sh b/recipes/meryl/build.sh index 5a69fa2ff4065..f88ab0e6c05bc 100644 --- a/recipes/meryl/build.sh +++ b/recipes/meryl/build.sh @@ -1,7 +1,14 @@ #!/bin/bash +set -xe + +ARCH_BUILD="-m64 -msse4.1" +case $(uname -m) in + arm64|aarch64) ARCH_BUILD="" ;; +esac + make -C src BUILD_DIR="$(pwd)" \ TARGET_DIR="${PREFIX}" \ CXX="${CXX}" \ - CXXFLAGS="${CXXFLAGS} -O3 -I${PREFIX}/include" \ + CXXFLAGS="${CXXFLAGS} -O3 -Wno-c++20-extensions -Wno-inline-namespace-reopened-noninline -Wno-format ${ARCH_BUILD} -I${PREFIX}/include" \ LDFLAGS="${LDFLAGS} -fopenmp -L${PREFIX}/lib" -j"${CPU_COUNT}" diff --git a/recipes/meryl/meryl-utility-aarch64.patch b/recipes/meryl/meryl-utility-aarch64.patch new file mode 100644 index 0000000000000..026a66fd6b1ad --- /dev/null +++ b/recipes/meryl/meryl-utility-aarch64.patch @@ -0,0 +1,9344 @@ +diff --git c/src/utility/src/align/align-ssw.C i/src/utility/src/align/align-ssw.C +index 8c53af5..e003195 100644 +--- c/src/utility/src/align/align-ssw.C ++++ i/src/utility/src/align/align-ssw.C +@@ -33,7 +33,16 @@ + */ + + //#include ++ ++#include ++#include ++#include ++#ifdef __ARM_NEON ++#include "sse2neon.h" ++#else + #include ++#endif ++ + #include + #include + #include +diff --git c/src/utility/src/align/align-ssw.H i/src/utility/src/align/align-ssw.H +index 78fb6be..508e9e3 100644 +--- c/src/utility/src/align/align-ssw.H ++++ i/src/utility/src/align/align-ssw.H +@@ -33,7 +33,11 @@ + #include + #include + #include ++#ifdef __ARM_NEON ++#include "sse2neon.h" ++#else + #include ++#endif + + namespace merylutil::inline align::inline ssw::inline v1 { + +diff --git c/src/utility/src/align/sse2neon.h i/src/utility/src/align/sse2neon.h +new file mode 100644 +index 0000000..2b12721 +--- /dev/null ++++ i/src/utility/src/align/sse2neon.h +@@ -0,0 +1,9301 @@ ++#ifndef SSE2NEON_H ++#define SSE2NEON_H ++ ++/* ++ * sse2neon is freely redistributable under the MIT License. ++ * ++ * Copyright (c) 2015-2024 SSE2NEON Contributors. ++ * ++ * Permission is hereby granted, free of charge, to any person obtaining a copy ++ * of this software and associated documentation files (the "Software"), to deal ++ * in the Software without restriction, including without limitation the rights ++ * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell ++ * copies of the Software, and to permit persons to whom the Software is ++ * furnished to do so, subject to the following conditions: ++ * ++ * The above copyright notice and this permission notice shall be included in ++ * all copies or substantial portions of the Software. ++ * ++ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR ++ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, ++ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE ++ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER ++ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, ++ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE ++ * SOFTWARE. ++ */ ++ ++// This header file provides a simple API translation layer ++// between SSE intrinsics to their corresponding Arm/Aarch64 NEON versions ++// ++// Contributors to this work are: ++// John W. Ratcliff ++// Brandon Rowlett ++// Ken Fast ++// Eric van Beurden ++// Alexander Potylitsin ++// Hasindu Gamaarachchi ++// Jim Huang ++// Mark Cheng ++// Malcolm James MacLeod ++// Devin Hussey (easyaspi314) ++// Sebastian Pop ++// Developer Ecosystem Engineering ++// Danila Kutenin ++// François Turban (JishinMaster) ++// Pei-Hsuan Hung ++// Yang-Hao Yuan ++// Syoyo Fujita ++// Brecht Van Lommel ++// Jonathan Hue ++// Cuda Chen ++// Aymen Qader ++// Anthony Roberts ++ ++/* Tunable configurations */ ++ ++/* Enable precise implementation of math operations ++ * This would slow down the computation a bit, but gives consistent result with ++ * x86 SSE. (e.g. would solve a hole or NaN pixel in the rendering result) ++ */ ++/* _mm_min|max_ps|ss|pd|sd */ ++#ifndef SSE2NEON_PRECISE_MINMAX ++#define SSE2NEON_PRECISE_MINMAX (0) ++#endif ++/* _mm_rcp_ps */ ++#ifndef SSE2NEON_PRECISE_DIV ++#define SSE2NEON_PRECISE_DIV (0) ++#endif ++/* _mm_sqrt_ps and _mm_rsqrt_ps */ ++#ifndef SSE2NEON_PRECISE_SQRT ++#define SSE2NEON_PRECISE_SQRT (0) ++#endif ++/* _mm_dp_pd */ ++#ifndef SSE2NEON_PRECISE_DP ++#define SSE2NEON_PRECISE_DP (0) ++#endif ++ ++/* Enable inclusion of windows.h on MSVC platforms ++ * This makes _mm_clflush functional on windows, as there is no builtin. ++ */ ++#ifndef SSE2NEON_INCLUDE_WINDOWS_H ++#define SSE2NEON_INCLUDE_WINDOWS_H (0) ++#endif ++ ++/* compiler specific definitions */ ++#if defined(__GNUC__) || defined(__clang__) ++#pragma push_macro("FORCE_INLINE") ++#pragma push_macro("ALIGN_STRUCT") ++#define FORCE_INLINE static inline __attribute__((always_inline)) ++#define ALIGN_STRUCT(x) __attribute__((aligned(x))) ++#define _sse2neon_likely(x) __builtin_expect(!!(x), 1) ++#define _sse2neon_unlikely(x) __builtin_expect(!!(x), 0) ++#elif defined(_MSC_VER) ++#if _MSVC_TRADITIONAL ++#error Using the traditional MSVC preprocessor is not supported! Use /Zc:preprocessor instead. ++#endif ++#ifndef FORCE_INLINE ++#define FORCE_INLINE static inline ++#endif ++#ifndef ALIGN_STRUCT ++#define ALIGN_STRUCT(x) __declspec(align(x)) ++#endif ++#define _sse2neon_likely(x) (x) ++#define _sse2neon_unlikely(x) (x) ++#else ++#pragma message("Macro name collisions may happen with unsupported compilers.") ++#endif ++ ++ ++#if defined(__GNUC__) && !defined(__clang__) ++#pragma push_macro("FORCE_INLINE_OPTNONE") ++#define FORCE_INLINE_OPTNONE static inline __attribute__((optimize("O0"))) ++#elif defined(__clang__) ++#pragma push_macro("FORCE_INLINE_OPTNONE") ++#define FORCE_INLINE_OPTNONE static inline __attribute__((optnone)) ++#else ++#define FORCE_INLINE_OPTNONE FORCE_INLINE ++#endif ++ ++#if !defined(__clang__) && defined(__GNUC__) && __GNUC__ < 10 ++#warning "GCC versions earlier than 10 are not supported." ++#endif ++ ++/* C language does not allow initializing a variable with a function call. */ ++#ifdef __cplusplus ++#define _sse2neon_const static const ++#else ++#define _sse2neon_const const ++#endif ++ ++#include ++#include ++ ++#if defined(_WIN32) ++/* Definitions for _mm_{malloc,free} are provided by ++ * from both MinGW-w64 and MSVC. ++ */ ++#define SSE2NEON_ALLOC_DEFINED ++#endif ++ ++/* If using MSVC */ ++#ifdef _MSC_VER ++#include ++#if SSE2NEON_INCLUDE_WINDOWS_H ++#include ++#include ++#endif ++ ++#if !defined(__cplusplus) ++#error SSE2NEON only supports C++ compilation with this compiler ++#endif ++ ++#ifdef SSE2NEON_ALLOC_DEFINED ++#include ++#endif ++ ++#if (defined(_M_AMD64) || defined(__x86_64__)) || \ ++ (defined(_M_ARM64) || defined(__arm64__)) ++#define SSE2NEON_HAS_BITSCAN64 ++#endif ++#endif ++ ++#if defined(__GNUC__) || defined(__clang__) ++#define _sse2neon_define0(type, s, body) \ ++ __extension__({ \ ++ type _a = (s); \ ++ body \ ++ }) ++#define _sse2neon_define1(type, s, body) \ ++ __extension__({ \ ++ type _a = (s); \ ++ body \ ++ }) ++#define _sse2neon_define2(type, a, b, body) \ ++ __extension__({ \ ++ type _a = (a), _b = (b); \ ++ body \ ++ }) ++#define _sse2neon_return(ret) (ret) ++#else ++#define _sse2neon_define0(type, a, body) [=](type _a) { body }(a) ++#define _sse2neon_define1(type, a, body) [](type _a) { body }(a) ++#define _sse2neon_define2(type, a, b, body) \ ++ [](type _a, type _b) { body }((a), (b)) ++#define _sse2neon_return(ret) return ret ++#endif ++ ++#define _sse2neon_init(...) \ ++ { \ ++ __VA_ARGS__ \ ++ } ++ ++/* Compiler barrier */ ++#if defined(_MSC_VER) ++#define SSE2NEON_BARRIER() _ReadWriteBarrier() ++#else ++#define SSE2NEON_BARRIER() \ ++ do { \ ++ __asm__ __volatile__("" ::: "memory"); \ ++ (void) 0; \ ++ } while (0) ++#endif ++ ++/* Memory barriers ++ * __atomic_thread_fence does not include a compiler barrier; instead, ++ * the barrier is part of __atomic_load/__atomic_store's "volatile-like" ++ * semantics. ++ */ ++#if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 201112L) ++#include ++#endif ++ ++FORCE_INLINE void _sse2neon_smp_mb(void) ++{ ++ SSE2NEON_BARRIER(); ++#if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 201112L) && \ ++ !defined(__STDC_NO_ATOMICS__) ++ atomic_thread_fence(memory_order_seq_cst); ++#elif defined(__GNUC__) || defined(__clang__) ++ __atomic_thread_fence(__ATOMIC_SEQ_CST); ++#else /* MSVC */ ++ __dmb(_ARM64_BARRIER_ISH); ++#endif ++} ++ ++/* Architecture-specific build options */ ++/* FIXME: #pragma GCC push_options is only available on GCC */ ++#if defined(__GNUC__) ++#if defined(__arm__) && __ARM_ARCH == 7 ++/* According to ARM C Language Extensions Architecture specification, ++ * __ARM_NEON is defined to a value indicating the Advanced SIMD (NEON) ++ * architecture supported. ++ */ ++#if !defined(__ARM_NEON) || !defined(__ARM_NEON__) ++#error "You must enable NEON instructions (e.g. -mfpu=neon) to use SSE2NEON." ++#endif ++#if !defined(__clang__) ++#pragma GCC push_options ++#pragma GCC target("fpu=neon") ++#endif ++#elif defined(__aarch64__) || defined(_M_ARM64) ++#if !defined(__clang__) && !defined(_MSC_VER) ++#pragma GCC push_options ++#pragma GCC target("+simd") ++#endif ++#elif __ARM_ARCH == 8 ++#if !defined(__ARM_NEON) || !defined(__ARM_NEON__) ++#error \ ++ "You must enable NEON instructions (e.g. -mfpu=neon-fp-armv8) to use SSE2NEON." ++#endif ++#if !defined(__clang__) && !defined(_MSC_VER) ++#pragma GCC push_options ++#endif ++#else ++#error \ ++ "Unsupported target. Must be either ARMv7-A+NEON or ARMv8-A \ ++(you could try setting target explicitly with -march or -mcpu)" ++#endif ++#endif ++ ++#include ++#if (!defined(__aarch64__) && !defined(_M_ARM64)) && (__ARM_ARCH == 8) ++#if defined __has_include && __has_include() ++#include ++#endif ++#endif ++ ++/* Apple Silicon cache lines are double of what is commonly used by Intel, AMD ++ * and other Arm microarchitectures use. ++ * From sysctl -a on Apple M1: ++ * hw.cachelinesize: 128 ++ */ ++#if defined(__APPLE__) && (defined(__aarch64__) || defined(__arm64__)) ++#define SSE2NEON_CACHELINE_SIZE 128 ++#else ++#define SSE2NEON_CACHELINE_SIZE 64 ++#endif ++ ++/* Rounding functions require either Aarch64 instructions or libm fallback */ ++#if !defined(__aarch64__) && !defined(_M_ARM64) ++#include ++#endif ++ ++/* On ARMv7, some registers, such as PMUSERENR and PMCCNTR, are read-only ++ * or even not accessible in user mode. ++ * To write or access to these registers in user mode, ++ * we have to perform syscall instead. ++ */ ++#if (!defined(__aarch64__) && !defined(_M_ARM64)) ++#include ++#endif ++ ++/* "__has_builtin" can be used to query support for built-in functions ++ * provided by gcc/clang and other compilers that support it. ++ */ ++#ifndef __has_builtin /* GCC prior to 10 or non-clang compilers */ ++/* Compatibility with gcc <= 9 */ ++#if defined(__GNUC__) && (__GNUC__ <= 9) ++#define __has_builtin(x) HAS##x ++#define HAS__builtin_popcount 1 ++#define HAS__builtin_popcountll 1 ++ ++// __builtin_shuffle introduced in GCC 4.7.0 ++#if (__GNUC__ >= 5) || ((__GNUC__ == 4) && (__GNUC_MINOR__ >= 7)) ++#define HAS__builtin_shuffle 1 ++#else ++#define HAS__builtin_shuffle 0 ++#endif ++ ++#define HAS__builtin_shufflevector 0 ++#define HAS__builtin_nontemporal_store 0 ++#else ++#define __has_builtin(x) 0 ++#endif ++#endif ++ ++/** ++ * MACRO for shuffle parameter for _mm_shuffle_ps(). ++ * Argument fp3 is a digit[0123] that represents the fp from argument "b" ++ * of mm_shuffle_ps that will be placed in fp3 of result. fp2 is the same ++ * for fp2 in result. fp1 is a digit[0123] that represents the fp from ++ * argument "a" of mm_shuffle_ps that will be places in fp1 of result. ++ * fp0 is the same for fp0 of result. ++ */ ++#define _MM_SHUFFLE(fp3, fp2, fp1, fp0) \ ++ (((fp3) << 6) | ((fp2) << 4) | ((fp1) << 2) | ((fp0))) ++ ++#if __has_builtin(__builtin_shufflevector) ++#define _sse2neon_shuffle(type, a, b, ...) \ ++ __builtin_shufflevector(a, b, __VA_ARGS__) ++#elif __has_builtin(__builtin_shuffle) ++#define _sse2neon_shuffle(type, a, b, ...) \ ++ __extension__({ \ ++ type tmp = {__VA_ARGS__}; \ ++ __builtin_shuffle(a, b, tmp); \ ++ }) ++#endif ++ ++#ifdef _sse2neon_shuffle ++#define vshuffle_s16(a, b, ...) _sse2neon_shuffle(int16x4_t, a, b, __VA_ARGS__) ++#define vshuffleq_s16(a, b, ...) _sse2neon_shuffle(int16x8_t, a, b, __VA_ARGS__) ++#define vshuffle_s32(a, b, ...) _sse2neon_shuffle(int32x2_t, a, b, __VA_ARGS__) ++#define vshuffleq_s32(a, b, ...) _sse2neon_shuffle(int32x4_t, a, b, __VA_ARGS__) ++#define vshuffle_s64(a, b, ...) _sse2neon_shuffle(int64x1_t, a, b, __VA_ARGS__) ++#define vshuffleq_s64(a, b, ...) _sse2neon_shuffle(int64x2_t, a, b, __VA_ARGS__) ++#endif ++ ++/* Rounding mode macros. */ ++#define _MM_FROUND_TO_NEAREST_INT 0x00 ++#define _MM_FROUND_TO_NEG_INF 0x01 ++#define _MM_FROUND_TO_POS_INF 0x02 ++#define _MM_FROUND_TO_ZERO 0x03 ++#define _MM_FROUND_CUR_DIRECTION 0x04 ++#define _MM_FROUND_NO_EXC 0x08 ++#define _MM_FROUND_RAISE_EXC 0x00 ++#define _MM_FROUND_NINT (_MM_FROUND_TO_NEAREST_INT | _MM_FROUND_RAISE_EXC) ++#define _MM_FROUND_FLOOR (_MM_FROUND_TO_NEG_INF | _MM_FROUND_RAISE_EXC) ++#define _MM_FROUND_CEIL (_MM_FROUND_TO_POS_INF | _MM_FROUND_RAISE_EXC) ++#define _MM_FROUND_TRUNC (_MM_FROUND_TO_ZERO | _MM_FROUND_RAISE_EXC) ++#define _MM_FROUND_RINT (_MM_FROUND_CUR_DIRECTION | _MM_FROUND_RAISE_EXC) ++#define _MM_FROUND_NEARBYINT (_MM_FROUND_CUR_DIRECTION | _MM_FROUND_NO_EXC) ++#define _MM_ROUND_NEAREST 0x0000 ++#define _MM_ROUND_DOWN 0x2000 ++#define _MM_ROUND_UP 0x4000 ++#define _MM_ROUND_TOWARD_ZERO 0x6000 ++/* Flush zero mode macros. */ ++#define _MM_FLUSH_ZERO_MASK 0x8000 ++#define _MM_FLUSH_ZERO_ON 0x8000 ++#define _MM_FLUSH_ZERO_OFF 0x0000 ++/* Denormals are zeros mode macros. */ ++#define _MM_DENORMALS_ZERO_MASK 0x0040 ++#define _MM_DENORMALS_ZERO_ON 0x0040 ++#define _MM_DENORMALS_ZERO_OFF 0x0000 ++ ++/* indicate immediate constant argument in a given range */ ++#define __constrange(a, b) const ++ ++/* A few intrinsics accept traditional data types like ints or floats, but ++ * most operate on data types that are specific to SSE. ++ * If a vector type ends in d, it contains doubles, and if it does not have ++ * a suffix, it contains floats. An integer vector type can contain any type ++ * of integer, from chars to shorts to unsigned long longs. ++ */ ++typedef int64x1_t __m64; ++typedef float32x4_t __m128; /* 128-bit vector containing 4 floats */ ++// On ARM 32-bit architecture, the float64x2_t is not supported. ++// The data type __m128d should be represented in a different way for related ++// intrinsic conversion. ++#if defined(__aarch64__) || defined(_M_ARM64) ++typedef float64x2_t __m128d; /* 128-bit vector containing 2 doubles */ ++#else ++typedef float32x4_t __m128d; ++#endif ++typedef int64x2_t __m128i; /* 128-bit vector containing integers */ ++ ++// Some intrinsics operate on unaligned data types. ++typedef int16_t ALIGN_STRUCT(1) unaligned_int16_t; ++typedef int32_t ALIGN_STRUCT(1) unaligned_int32_t; ++typedef int64_t ALIGN_STRUCT(1) unaligned_int64_t; ++ ++// __int64 is defined in the Intrinsics Guide which maps to different datatype ++// in different data model ++#if !(defined(_WIN32) || defined(_WIN64) || defined(__int64)) ++#if (defined(__x86_64__) || defined(__i386__)) ++#define __int64 long long ++#else ++#define __int64 int64_t ++#endif ++#endif ++ ++/* type-safe casting between types */ ++ ++#define vreinterpretq_m128_f16(x) vreinterpretq_f32_f16(x) ++#define vreinterpretq_m128_f32(x) (x) ++#define vreinterpretq_m128_f64(x) vreinterpretq_f32_f64(x) ++ ++#define vreinterpretq_m128_u8(x) vreinterpretq_f32_u8(x) ++#define vreinterpretq_m128_u16(x) vreinterpretq_f32_u16(x) ++#define vreinterpretq_m128_u32(x) vreinterpretq_f32_u32(x) ++#define vreinterpretq_m128_u64(x) vreinterpretq_f32_u64(x) ++ ++#define vreinterpretq_m128_s8(x) vreinterpretq_f32_s8(x) ++#define vreinterpretq_m128_s16(x) vreinterpretq_f32_s16(x) ++#define vreinterpretq_m128_s32(x) vreinterpretq_f32_s32(x) ++#define vreinterpretq_m128_s64(x) vreinterpretq_f32_s64(x) ++ ++#define vreinterpretq_f16_m128(x) vreinterpretq_f16_f32(x) ++#define vreinterpretq_f32_m128(x) (x) ++#define vreinterpretq_f64_m128(x) vreinterpretq_f64_f32(x) ++ ++#define vreinterpretq_u8_m128(x) vreinterpretq_u8_f32(x) ++#define vreinterpretq_u16_m128(x) vreinterpretq_u16_f32(x) ++#define vreinterpretq_u32_m128(x) vreinterpretq_u32_f32(x) ++#define vreinterpretq_u64_m128(x) vreinterpretq_u64_f32(x) ++ ++#define vreinterpretq_s8_m128(x) vreinterpretq_s8_f32(x) ++#define vreinterpretq_s16_m128(x) vreinterpretq_s16_f32(x) ++#define vreinterpretq_s32_m128(x) vreinterpretq_s32_f32(x) ++#define vreinterpretq_s64_m128(x) vreinterpretq_s64_f32(x) ++ ++#define vreinterpretq_m128i_s8(x) vreinterpretq_s64_s8(x) ++#define vreinterpretq_m128i_s16(x) vreinterpretq_s64_s16(x) ++#define vreinterpretq_m128i_s32(x) vreinterpretq_s64_s32(x) ++#define vreinterpretq_m128i_s64(x) (x) ++ ++#define vreinterpretq_m128i_u8(x) vreinterpretq_s64_u8(x) ++#define vreinterpretq_m128i_u16(x) vreinterpretq_s64_u16(x) ++#define vreinterpretq_m128i_u32(x) vreinterpretq_s64_u32(x) ++#define vreinterpretq_m128i_u64(x) vreinterpretq_s64_u64(x) ++ ++#define vreinterpretq_f32_m128i(x) vreinterpretq_f32_s64(x) ++#define vreinterpretq_f64_m128i(x) vreinterpretq_f64_s64(x) ++ ++#define vreinterpretq_s8_m128i(x) vreinterpretq_s8_s64(x) ++#define vreinterpretq_s16_m128i(x) vreinterpretq_s16_s64(x) ++#define vreinterpretq_s32_m128i(x) vreinterpretq_s32_s64(x) ++#define vreinterpretq_s64_m128i(x) (x) ++ ++#define vreinterpretq_u8_m128i(x) vreinterpretq_u8_s64(x) ++#define vreinterpretq_u16_m128i(x) vreinterpretq_u16_s64(x) ++#define vreinterpretq_u32_m128i(x) vreinterpretq_u32_s64(x) ++#define vreinterpretq_u64_m128i(x) vreinterpretq_u64_s64(x) ++ ++#define vreinterpret_m64_s8(x) vreinterpret_s64_s8(x) ++#define vreinterpret_m64_s16(x) vreinterpret_s64_s16(x) ++#define vreinterpret_m64_s32(x) vreinterpret_s64_s32(x) ++#define vreinterpret_m64_s64(x) (x) ++ ++#define vreinterpret_m64_u8(x) vreinterpret_s64_u8(x) ++#define vreinterpret_m64_u16(x) vreinterpret_s64_u16(x) ++#define vreinterpret_m64_u32(x) vreinterpret_s64_u32(x) ++#define vreinterpret_m64_u64(x) vreinterpret_s64_u64(x) ++ ++#define vreinterpret_m64_f16(x) vreinterpret_s64_f16(x) ++#define vreinterpret_m64_f32(x) vreinterpret_s64_f32(x) ++#define vreinterpret_m64_f64(x) vreinterpret_s64_f64(x) ++ ++#define vreinterpret_u8_m64(x) vreinterpret_u8_s64(x) ++#define vreinterpret_u16_m64(x) vreinterpret_u16_s64(x) ++#define vreinterpret_u32_m64(x) vreinterpret_u32_s64(x) ++#define vreinterpret_u64_m64(x) vreinterpret_u64_s64(x) ++ ++#define vreinterpret_s8_m64(x) vreinterpret_s8_s64(x) ++#define vreinterpret_s16_m64(x) vreinterpret_s16_s64(x) ++#define vreinterpret_s32_m64(x) vreinterpret_s32_s64(x) ++#define vreinterpret_s64_m64(x) (x) ++ ++#define vreinterpret_f32_m64(x) vreinterpret_f32_s64(x) ++ ++#if defined(__aarch64__) || defined(_M_ARM64) ++#define vreinterpretq_m128d_s32(x) vreinterpretq_f64_s32(x) ++#define vreinterpretq_m128d_s64(x) vreinterpretq_f64_s64(x) ++ ++#define vreinterpretq_m128d_u64(x) vreinterpretq_f64_u64(x) ++ ++#define vreinterpretq_m128d_f32(x) vreinterpretq_f64_f32(x) ++#define vreinterpretq_m128d_f64(x) (x) ++ ++#define vreinterpretq_s64_m128d(x) vreinterpretq_s64_f64(x) ++ ++#define vreinterpretq_u32_m128d(x) vreinterpretq_u32_f64(x) ++#define vreinterpretq_u64_m128d(x) vreinterpretq_u64_f64(x) ++ ++#define vreinterpretq_f64_m128d(x) (x) ++#define vreinterpretq_f32_m128d(x) vreinterpretq_f32_f64(x) ++#else ++#define vreinterpretq_m128d_s32(x) vreinterpretq_f32_s32(x) ++#define vreinterpretq_m128d_s64(x) vreinterpretq_f32_s64(x) ++ ++#define vreinterpretq_m128d_u32(x) vreinterpretq_f32_u32(x) ++#define vreinterpretq_m128d_u64(x) vreinterpretq_f32_u64(x) ++ ++#define vreinterpretq_m128d_f32(x) (x) ++ ++#define vreinterpretq_s64_m128d(x) vreinterpretq_s64_f32(x) ++ ++#define vreinterpretq_u32_m128d(x) vreinterpretq_u32_f32(x) ++#define vreinterpretq_u64_m128d(x) vreinterpretq_u64_f32(x) ++ ++#define vreinterpretq_f32_m128d(x) (x) ++#endif ++ ++// A struct is defined in this header file called 'SIMDVec' which can be used ++// by applications which attempt to access the contents of an __m128 struct ++// directly. It is important to note that accessing the __m128 struct directly ++// is bad coding practice by Microsoft: @see: ++// https://learn.microsoft.com/en-us/cpp/cpp/m128 ++// ++// However, some legacy source code may try to access the contents of an __m128 ++// struct directly so the developer can use the SIMDVec as an alias for it. Any ++// casting must be done manually by the developer, as you cannot cast or ++// otherwise alias the base NEON data type for intrinsic operations. ++// ++// union intended to allow direct access to an __m128 variable using the names ++// that the MSVC compiler provides. This union should really only be used when ++// trying to access the members of the vector as integer values. GCC/clang ++// allow native access to the float members through a simple array access ++// operator (in C since 4.6, in C++ since 4.8). ++// ++// Ideally direct accesses to SIMD vectors should not be used since it can cause ++// a performance hit. If it really is needed however, the original __m128 ++// variable can be aliased with a pointer to this union and used to access ++// individual components. The use of this union should be hidden behind a macro ++// that is used throughout the codebase to access the members instead of always ++// declaring this type of variable. ++typedef union ALIGN_STRUCT(16) SIMDVec { ++ float m128_f32[4]; // as floats - DON'T USE. Added for convenience. ++ int8_t m128_i8[16]; // as signed 8-bit integers. ++ int16_t m128_i16[8]; // as signed 16-bit integers. ++ int32_t m128_i32[4]; // as signed 32-bit integers. ++ int64_t m128_i64[2]; // as signed 64-bit integers. ++ uint8_t m128_u8[16]; // as unsigned 8-bit integers. ++ uint16_t m128_u16[8]; // as unsigned 16-bit integers. ++ uint32_t m128_u32[4]; // as unsigned 32-bit integers. ++ uint64_t m128_u64[2]; // as unsigned 64-bit integers. ++} SIMDVec; ++ ++// casting using SIMDVec ++#define vreinterpretq_nth_u64_m128i(x, n) (((SIMDVec *) &x)->m128_u64[n]) ++#define vreinterpretq_nth_u32_m128i(x, n) (((SIMDVec *) &x)->m128_u32[n]) ++#define vreinterpretq_nth_u8_m128i(x, n) (((SIMDVec *) &x)->m128_u8[n]) ++ ++/* SSE macros */ ++#define _MM_GET_FLUSH_ZERO_MODE _sse2neon_mm_get_flush_zero_mode ++#define _MM_SET_FLUSH_ZERO_MODE _sse2neon_mm_set_flush_zero_mode ++#define _MM_GET_DENORMALS_ZERO_MODE _sse2neon_mm_get_denormals_zero_mode ++#define _MM_SET_DENORMALS_ZERO_MODE _sse2neon_mm_set_denormals_zero_mode ++ ++// Function declaration ++// SSE ++FORCE_INLINE unsigned int _MM_GET_ROUNDING_MODE(void); ++FORCE_INLINE __m128 _mm_move_ss(__m128, __m128); ++FORCE_INLINE __m128 _mm_or_ps(__m128, __m128); ++FORCE_INLINE __m128 _mm_set_ps1(float); ++FORCE_INLINE __m128 _mm_setzero_ps(void); ++// SSE2 ++FORCE_INLINE __m128i _mm_and_si128(__m128i, __m128i); ++FORCE_INLINE __m128i _mm_castps_si128(__m128); ++FORCE_INLINE __m128i _mm_cmpeq_epi32(__m128i, __m128i); ++FORCE_INLINE __m128i _mm_cvtps_epi32(__m128); ++FORCE_INLINE __m128d _mm_move_sd(__m128d, __m128d); ++FORCE_INLINE __m128i _mm_or_si128(__m128i, __m128i); ++FORCE_INLINE __m128i _mm_set_epi32(int, int, int, int); ++FORCE_INLINE __m128i _mm_set_epi64x(int64_t, int64_t); ++FORCE_INLINE __m128d _mm_set_pd(double, double); ++FORCE_INLINE __m128i _mm_set1_epi32(int); ++FORCE_INLINE __m128i _mm_setzero_si128(void); ++// SSE4.1 ++FORCE_INLINE __m128d _mm_ceil_pd(__m128d); ++FORCE_INLINE __m128 _mm_ceil_ps(__m128); ++FORCE_INLINE __m128d _mm_floor_pd(__m128d); ++FORCE_INLINE __m128 _mm_floor_ps(__m128); ++FORCE_INLINE_OPTNONE __m128d _mm_round_pd(__m128d, int); ++FORCE_INLINE_OPTNONE __m128 _mm_round_ps(__m128, int); ++// SSE4.2 ++FORCE_INLINE uint32_t _mm_crc32_u8(uint32_t, uint8_t); ++ ++/* Backwards compatibility for compilers with lack of specific type support */ ++ ++// Older gcc does not define vld1q_u8_x4 type ++#if defined(__GNUC__) && !defined(__clang__) && \ ++ ((__GNUC__ <= 13 && defined(__arm__)) || \ ++ (__GNUC__ == 10 && __GNUC_MINOR__ < 3 && defined(__aarch64__)) || \ ++ (__GNUC__ <= 9 && defined(__aarch64__))) ++FORCE_INLINE uint8x16x4_t _sse2neon_vld1q_u8_x4(const uint8_t *p) ++{ ++ uint8x16x4_t ret; ++ ret.val[0] = vld1q_u8(p + 0); ++ ret.val[1] = vld1q_u8(p + 16); ++ ret.val[2] = vld1q_u8(p + 32); ++ ret.val[3] = vld1q_u8(p + 48); ++ return ret; ++} ++#else ++// Wraps vld1q_u8_x4 ++FORCE_INLINE uint8x16x4_t _sse2neon_vld1q_u8_x4(const uint8_t *p) ++{ ++ return vld1q_u8_x4(p); ++} ++#endif ++ ++#if !defined(__aarch64__) && !defined(_M_ARM64) ++/* emulate vaddv u8 variant */ ++FORCE_INLINE uint8_t _sse2neon_vaddv_u8(uint8x8_t v8) ++{ ++ const uint64x1_t v1 = vpaddl_u32(vpaddl_u16(vpaddl_u8(v8))); ++ return vget_lane_u8(vreinterpret_u8_u64(v1), 0); ++} ++#else ++// Wraps vaddv_u8 ++FORCE_INLINE uint8_t _sse2neon_vaddv_u8(uint8x8_t v8) ++{ ++ return vaddv_u8(v8); ++} ++#endif ++ ++#if !defined(__aarch64__) && !defined(_M_ARM64) ++/* emulate vaddvq u8 variant */ ++FORCE_INLINE uint8_t _sse2neon_vaddvq_u8(uint8x16_t a) ++{ ++ uint8x8_t tmp = vpadd_u8(vget_low_u8(a), vget_high_u8(a)); ++ uint8_t res = 0; ++ for (int i = 0; i < 8; ++i) ++ res += tmp[i]; ++ return res; ++} ++#else ++// Wraps vaddvq_u8 ++FORCE_INLINE uint8_t _sse2neon_vaddvq_u8(uint8x16_t a) ++{ ++ return vaddvq_u8(a); ++} ++#endif ++ ++#if !defined(__aarch64__) && !defined(_M_ARM64) ++/* emulate vaddvq u16 variant */ ++FORCE_INLINE uint16_t _sse2neon_vaddvq_u16(uint16x8_t a) ++{ ++ uint32x4_t m = vpaddlq_u16(a); ++ uint64x2_t n = vpaddlq_u32(m); ++ uint64x1_t o = vget_low_u64(n) + vget_high_u64(n); ++ ++ return vget_lane_u32((uint32x2_t) o, 0); ++} ++#else ++// Wraps vaddvq_u16 ++FORCE_INLINE uint16_t _sse2neon_vaddvq_u16(uint16x8_t a) ++{ ++ return vaddvq_u16(a); ++} ++#endif ++ ++/* Function Naming Conventions ++ * The naming convention of SSE intrinsics is straightforward. A generic SSE ++ * intrinsic function is given as follows: ++ * _mm__ ++ * ++ * The parts of this format are given as follows: ++ * 1. describes the operation performed by the intrinsic ++ * 2. identifies the data type of the function's primary arguments ++ * ++ * This last part, , is a little complicated. It identifies the ++ * content of the input values, and can be set to any of the following values: ++ * + ps - vectors contain floats (ps stands for packed single-precision) ++ * + pd - vectors contain doubles (pd stands for packed double-precision) ++ * + epi8/epi16/epi32/epi64 - vectors contain 8-bit/16-bit/32-bit/64-bit ++ * signed integers ++ * + epu8/epu16/epu32/epu64 - vectors contain 8-bit/16-bit/32-bit/64-bit ++ * unsigned integers ++ * + si128 - unspecified 128-bit vector or 256-bit vector ++ * + m128/m128i/m128d - identifies input vector types when they are different ++ * than the type of the returned vector ++ * ++ * For example, _mm_setzero_ps. The _mm implies that the function returns ++ * a 128-bit vector. The _ps at the end implies that the argument vectors ++ * contain floats. ++ * ++ * A complete example: Byte Shuffle - pshufb (_mm_shuffle_epi8) ++ * // Set packed 16-bit integers. 128 bits, 8 short, per 16 bits ++ * __m128i v_in = _mm_setr_epi16(1, 2, 3, 4, 5, 6, 7, 8); ++ * // Set packed 8-bit integers ++ * // 128 bits, 16 chars, per 8 bits ++ * __m128i v_perm = _mm_setr_epi8(1, 0, 2, 3, 8, 9, 10, 11, ++ * 4, 5, 12, 13, 6, 7, 14, 15); ++ * // Shuffle packed 8-bit integers ++ * __m128i v_out = _mm_shuffle_epi8(v_in, v_perm); // pshufb ++ */ ++ ++/* Constants for use with _mm_prefetch. */ ++enum _mm_hint { ++ _MM_HINT_NTA = 0, /* load data to L1 and L2 cache, mark it as NTA */ ++ _MM_HINT_T0 = 1, /* load data to L1 and L2 cache */ ++ _MM_HINT_T1 = 2, /* load data to L2 cache only */ ++ _MM_HINT_T2 = 3, /* load data to L2 cache only, mark it as NTA */ ++}; ++ ++// The bit field mapping to the FPCR(floating-point control register) ++typedef struct { ++ uint16_t res0; ++ uint8_t res1 : 6; ++ uint8_t bit22 : 1; ++ uint8_t bit23 : 1; ++ uint8_t bit24 : 1; ++ uint8_t res2 : 7; ++#if defined(__aarch64__) || defined(_M_ARM64) ++ uint32_t res3; ++#endif ++} fpcr_bitfield; ++ ++// Takes the upper 64 bits of a and places it in the low end of the result ++// Takes the lower 64 bits of b and places it into the high end of the result. ++FORCE_INLINE __m128 _mm_shuffle_ps_1032(__m128 a, __m128 b) ++{ ++ float32x2_t a32 = vget_high_f32(vreinterpretq_f32_m128(a)); ++ float32x2_t b10 = vget_low_f32(vreinterpretq_f32_m128(b)); ++ return vreinterpretq_m128_f32(vcombine_f32(a32, b10)); ++} ++ ++// takes the lower two 32-bit values from a and swaps them and places in high ++// end of result takes the higher two 32 bit values from b and swaps them and ++// places in low end of result. ++FORCE_INLINE __m128 _mm_shuffle_ps_2301(__m128 a, __m128 b) ++{ ++ float32x2_t a01 = vrev64_f32(vget_low_f32(vreinterpretq_f32_m128(a))); ++ float32x2_t b23 = vrev64_f32(vget_high_f32(vreinterpretq_f32_m128(b))); ++ return vreinterpretq_m128_f32(vcombine_f32(a01, b23)); ++} ++ ++FORCE_INLINE __m128 _mm_shuffle_ps_0321(__m128 a, __m128 b) ++{ ++ float32x2_t a21 = vget_high_f32( ++ vextq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(a), 3)); ++ float32x2_t b03 = vget_low_f32( ++ vextq_f32(vreinterpretq_f32_m128(b), vreinterpretq_f32_m128(b), 3)); ++ return vreinterpretq_m128_f32(vcombine_f32(a21, b03)); ++} ++ ++FORCE_INLINE __m128 _mm_shuffle_ps_2103(__m128 a, __m128 b) ++{ ++ float32x2_t a03 = vget_low_f32( ++ vextq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(a), 3)); ++ float32x2_t b21 = vget_high_f32( ++ vextq_f32(vreinterpretq_f32_m128(b), vreinterpretq_f32_m128(b), 3)); ++ return vreinterpretq_m128_f32(vcombine_f32(a03, b21)); ++} ++ ++FORCE_INLINE __m128 _mm_shuffle_ps_1010(__m128 a, __m128 b) ++{ ++ float32x2_t a10 = vget_low_f32(vreinterpretq_f32_m128(a)); ++ float32x2_t b10 = vget_low_f32(vreinterpretq_f32_m128(b)); ++ return vreinterpretq_m128_f32(vcombine_f32(a10, b10)); ++} ++ ++FORCE_INLINE __m128 _mm_shuffle_ps_1001(__m128 a, __m128 b) ++{ ++ float32x2_t a01 = vrev64_f32(vget_low_f32(vreinterpretq_f32_m128(a))); ++ float32x2_t b10 = vget_low_f32(vreinterpretq_f32_m128(b)); ++ return vreinterpretq_m128_f32(vcombine_f32(a01, b10)); ++} ++ ++FORCE_INLINE __m128 _mm_shuffle_ps_0101(__m128 a, __m128 b) ++{ ++ float32x2_t a01 = vrev64_f32(vget_low_f32(vreinterpretq_f32_m128(a))); ++ float32x2_t b01 = vrev64_f32(vget_low_f32(vreinterpretq_f32_m128(b))); ++ return vreinterpretq_m128_f32(vcombine_f32(a01, b01)); ++} ++ ++// keeps the low 64 bits of b in the low and puts the high 64 bits of a in the ++// high ++FORCE_INLINE __m128 _mm_shuffle_ps_3210(__m128 a, __m128 b) ++{ ++ float32x2_t a10 = vget_low_f32(vreinterpretq_f32_m128(a)); ++ float32x2_t b32 = vget_high_f32(vreinterpretq_f32_m128(b)); ++ return vreinterpretq_m128_f32(vcombine_f32(a10, b32)); ++} ++ ++FORCE_INLINE __m128 _mm_shuffle_ps_0011(__m128 a, __m128 b) ++{ ++ float32x2_t a11 = vdup_lane_f32(vget_low_f32(vreinterpretq_f32_m128(a)), 1); ++ float32x2_t b00 = vdup_lane_f32(vget_low_f32(vreinterpretq_f32_m128(b)), 0); ++ return vreinterpretq_m128_f32(vcombine_f32(a11, b00)); ++} ++ ++FORCE_INLINE __m128 _mm_shuffle_ps_0022(__m128 a, __m128 b) ++{ ++ float32x2_t a22 = ++ vdup_lane_f32(vget_high_f32(vreinterpretq_f32_m128(a)), 0); ++ float32x2_t b00 = vdup_lane_f32(vget_low_f32(vreinterpretq_f32_m128(b)), 0); ++ return vreinterpretq_m128_f32(vcombine_f32(a22, b00)); ++} ++ ++FORCE_INLINE __m128 _mm_shuffle_ps_2200(__m128 a, __m128 b) ++{ ++ float32x2_t a00 = vdup_lane_f32(vget_low_f32(vreinterpretq_f32_m128(a)), 0); ++ float32x2_t b22 = ++ vdup_lane_f32(vget_high_f32(vreinterpretq_f32_m128(b)), 0); ++ return vreinterpretq_m128_f32(vcombine_f32(a00, b22)); ++} ++ ++FORCE_INLINE __m128 _mm_shuffle_ps_3202(__m128 a, __m128 b) ++{ ++ float32_t a0 = vgetq_lane_f32(vreinterpretq_f32_m128(a), 0); ++ float32x2_t a22 = ++ vdup_lane_f32(vget_high_f32(vreinterpretq_f32_m128(a)), 0); ++ float32x2_t a02 = vset_lane_f32(a0, a22, 1); /* TODO: use vzip ?*/ ++ float32x2_t b32 = vget_high_f32(vreinterpretq_f32_m128(b)); ++ return vreinterpretq_m128_f32(vcombine_f32(a02, b32)); ++} ++ ++FORCE_INLINE __m128 _mm_shuffle_ps_1133(__m128 a, __m128 b) ++{ ++ float32x2_t a33 = ++ vdup_lane_f32(vget_high_f32(vreinterpretq_f32_m128(a)), 1); ++ float32x2_t b11 = vdup_lane_f32(vget_low_f32(vreinterpretq_f32_m128(b)), 1); ++ return vreinterpretq_m128_f32(vcombine_f32(a33, b11)); ++} ++ ++FORCE_INLINE __m128 _mm_shuffle_ps_2010(__m128 a, __m128 b) ++{ ++ float32x2_t a10 = vget_low_f32(vreinterpretq_f32_m128(a)); ++ float32_t b2 = vgetq_lane_f32(vreinterpretq_f32_m128(b), 2); ++ float32x2_t b00 = vdup_lane_f32(vget_low_f32(vreinterpretq_f32_m128(b)), 0); ++ float32x2_t b20 = vset_lane_f32(b2, b00, 1); ++ return vreinterpretq_m128_f32(vcombine_f32(a10, b20)); ++} ++ ++FORCE_INLINE __m128 _mm_shuffle_ps_2001(__m128 a, __m128 b) ++{ ++ float32x2_t a01 = vrev64_f32(vget_low_f32(vreinterpretq_f32_m128(a))); ++ float32_t b2 = vgetq_lane_f32(b, 2); ++ float32x2_t b00 = vdup_lane_f32(vget_low_f32(vreinterpretq_f32_m128(b)), 0); ++ float32x2_t b20 = vset_lane_f32(b2, b00, 1); ++ return vreinterpretq_m128_f32(vcombine_f32(a01, b20)); ++} ++ ++FORCE_INLINE __m128 _mm_shuffle_ps_2032(__m128 a, __m128 b) ++{ ++ float32x2_t a32 = vget_high_f32(vreinterpretq_f32_m128(a)); ++ float32_t b2 = vgetq_lane_f32(b, 2); ++ float32x2_t b00 = vdup_lane_f32(vget_low_f32(vreinterpretq_f32_m128(b)), 0); ++ float32x2_t b20 = vset_lane_f32(b2, b00, 1); ++ return vreinterpretq_m128_f32(vcombine_f32(a32, b20)); ++} ++ ++// For MSVC, we check only if it is ARM64, as every single ARM64 processor ++// supported by WoA has crypto extensions. If this changes in the future, ++// this can be verified via the runtime-only method of: ++// IsProcessorFeaturePresent(PF_ARM_V8_CRYPTO_INSTRUCTIONS_AVAILABLE) ++#if (defined(_M_ARM64) && !defined(__clang__)) || \ ++ (defined(__ARM_FEATURE_CRYPTO) && \ ++ (defined(__aarch64__) || __has_builtin(__builtin_arm_crypto_vmullp64))) ++// Wraps vmull_p64 ++FORCE_INLINE uint64x2_t _sse2neon_vmull_p64(uint64x1_t _a, uint64x1_t _b) ++{ ++ poly64_t a = vget_lane_p64(vreinterpret_p64_u64(_a), 0); ++ poly64_t b = vget_lane_p64(vreinterpret_p64_u64(_b), 0); ++#if defined(_MSC_VER) ++ __n64 a1 = {a}, b1 = {b}; ++ return vreinterpretq_u64_p128(vmull_p64(a1, b1)); ++#else ++ return vreinterpretq_u64_p128(vmull_p64(a, b)); ++#endif ++} ++#else // ARMv7 polyfill ++// ARMv7/some A64 lacks vmull_p64, but it has vmull_p8. ++// ++// vmull_p8 calculates 8 8-bit->16-bit polynomial multiplies, but we need a ++// 64-bit->128-bit polynomial multiply. ++// ++// It needs some work and is somewhat slow, but it is still faster than all ++// known scalar methods. ++// ++// Algorithm adapted to C from ++// https://www.workofard.com/2017/07/ghash-for-low-end-cores/, which is adapted ++// from "Fast Software Polynomial Multiplication on ARM Processors Using the ++// NEON Engine" by Danilo Camara, Conrado Gouvea, Julio Lopez and Ricardo Dahab ++// (https://hal.inria.fr/hal-01506572) ++static uint64x2_t _sse2neon_vmull_p64(uint64x1_t _a, uint64x1_t _b) ++{ ++ poly8x8_t a = vreinterpret_p8_u64(_a); ++ poly8x8_t b = vreinterpret_p8_u64(_b); ++ ++ // Masks ++ uint8x16_t k48_32 = vcombine_u8(vcreate_u8(0x0000ffffffffffff), ++ vcreate_u8(0x00000000ffffffff)); ++ uint8x16_t k16_00 = vcombine_u8(vcreate_u8(0x000000000000ffff), ++ vcreate_u8(0x0000000000000000)); ++ ++ // Do the multiplies, rotating with vext to get all combinations ++ uint8x16_t d = vreinterpretq_u8_p16(vmull_p8(a, b)); // D = A0 * B0 ++ uint8x16_t e = ++ vreinterpretq_u8_p16(vmull_p8(a, vext_p8(b, b, 1))); // E = A0 * B1 ++ uint8x16_t f = ++ vreinterpretq_u8_p16(vmull_p8(vext_p8(a, a, 1), b)); // F = A1 * B0 ++ uint8x16_t g = ++ vreinterpretq_u8_p16(vmull_p8(a, vext_p8(b, b, 2))); // G = A0 * B2 ++ uint8x16_t h = ++ vreinterpretq_u8_p16(vmull_p8(vext_p8(a, a, 2), b)); // H = A2 * B0 ++ uint8x16_t i = ++ vreinterpretq_u8_p16(vmull_p8(a, vext_p8(b, b, 3))); // I = A0 * B3 ++ uint8x16_t j = ++ vreinterpretq_u8_p16(vmull_p8(vext_p8(a, a, 3), b)); // J = A3 * B0 ++ uint8x16_t k = ++ vreinterpretq_u8_p16(vmull_p8(a, vext_p8(b, b, 4))); // L = A0 * B4 ++ ++ // Add cross products ++ uint8x16_t l = veorq_u8(e, f); // L = E + F ++ uint8x16_t m = veorq_u8(g, h); // M = G + H ++ uint8x16_t n = veorq_u8(i, j); // N = I + J ++ ++ // Interleave. Using vzip1 and vzip2 prevents Clang from emitting TBL ++ // instructions. ++#if defined(__aarch64__) ++ uint8x16_t lm_p0 = vreinterpretq_u8_u64( ++ vzip1q_u64(vreinterpretq_u64_u8(l), vreinterpretq_u64_u8(m))); ++ uint8x16_t lm_p1 = vreinterpretq_u8_u64( ++ vzip2q_u64(vreinterpretq_u64_u8(l), vreinterpretq_u64_u8(m))); ++ uint8x16_t nk_p0 = vreinterpretq_u8_u64( ++ vzip1q_u64(vreinterpretq_u64_u8(n), vreinterpretq_u64_u8(k))); ++ uint8x16_t nk_p1 = vreinterpretq_u8_u64( ++ vzip2q_u64(vreinterpretq_u64_u8(n), vreinterpretq_u64_u8(k))); ++#else ++ uint8x16_t lm_p0 = vcombine_u8(vget_low_u8(l), vget_low_u8(m)); ++ uint8x16_t lm_p1 = vcombine_u8(vget_high_u8(l), vget_high_u8(m)); ++ uint8x16_t nk_p0 = vcombine_u8(vget_low_u8(n), vget_low_u8(k)); ++ uint8x16_t nk_p1 = vcombine_u8(vget_high_u8(n), vget_high_u8(k)); ++#endif ++ // t0 = (L) (P0 + P1) << 8 ++ // t1 = (M) (P2 + P3) << 16 ++ uint8x16_t t0t1_tmp = veorq_u8(lm_p0, lm_p1); ++ uint8x16_t t0t1_h = vandq_u8(lm_p1, k48_32); ++ uint8x16_t t0t1_l = veorq_u8(t0t1_tmp, t0t1_h); ++ ++ // t2 = (N) (P4 + P5) << 24 ++ // t3 = (K) (P6 + P7) << 32 ++ uint8x16_t t2t3_tmp = veorq_u8(nk_p0, nk_p1); ++ uint8x16_t t2t3_h = vandq_u8(nk_p1, k16_00); ++ uint8x16_t t2t3_l = veorq_u8(t2t3_tmp, t2t3_h); ++ ++ // De-interleave ++#if defined(__aarch64__) ++ uint8x16_t t0 = vreinterpretq_u8_u64( ++ vuzp1q_u64(vreinterpretq_u64_u8(t0t1_l), vreinterpretq_u64_u8(t0t1_h))); ++ uint8x16_t t1 = vreinterpretq_u8_u64( ++ vuzp2q_u64(vreinterpretq_u64_u8(t0t1_l), vreinterpretq_u64_u8(t0t1_h))); ++ uint8x16_t t2 = vreinterpretq_u8_u64( ++ vuzp1q_u64(vreinterpretq_u64_u8(t2t3_l), vreinterpretq_u64_u8(t2t3_h))); ++ uint8x16_t t3 = vreinterpretq_u8_u64( ++ vuzp2q_u64(vreinterpretq_u64_u8(t2t3_l), vreinterpretq_u64_u8(t2t3_h))); ++#else ++ uint8x16_t t1 = vcombine_u8(vget_high_u8(t0t1_l), vget_high_u8(t0t1_h)); ++ uint8x16_t t0 = vcombine_u8(vget_low_u8(t0t1_l), vget_low_u8(t0t1_h)); ++ uint8x16_t t3 = vcombine_u8(vget_high_u8(t2t3_l), vget_high_u8(t2t3_h)); ++ uint8x16_t t2 = vcombine_u8(vget_low_u8(t2t3_l), vget_low_u8(t2t3_h)); ++#endif ++ // Shift the cross products ++ uint8x16_t t0_shift = vextq_u8(t0, t0, 15); // t0 << 8 ++ uint8x16_t t1_shift = vextq_u8(t1, t1, 14); // t1 << 16 ++ uint8x16_t t2_shift = vextq_u8(t2, t2, 13); // t2 << 24 ++ uint8x16_t t3_shift = vextq_u8(t3, t3, 12); // t3 << 32 ++ ++ // Accumulate the products ++ uint8x16_t cross1 = veorq_u8(t0_shift, t1_shift); ++ uint8x16_t cross2 = veorq_u8(t2_shift, t3_shift); ++ uint8x16_t mix = veorq_u8(d, cross1); ++ uint8x16_t r = veorq_u8(mix, cross2); ++ return vreinterpretq_u64_u8(r); ++} ++#endif // ARMv7 polyfill ++ ++// C equivalent: ++// __m128i _mm_shuffle_epi32_default(__m128i a, ++// __constrange(0, 255) int imm) { ++// __m128i ret; ++// ret[0] = a[imm & 0x3]; ret[1] = a[(imm >> 2) & 0x3]; ++// ret[2] = a[(imm >> 4) & 0x03]; ret[3] = a[(imm >> 6) & 0x03]; ++// return ret; ++// } ++#define _mm_shuffle_epi32_default(a, imm) \ ++ vreinterpretq_m128i_s32(vsetq_lane_s32( \ ++ vgetq_lane_s32(vreinterpretq_s32_m128i(a), ((imm) >> 6) & 0x3), \ ++ vsetq_lane_s32( \ ++ vgetq_lane_s32(vreinterpretq_s32_m128i(a), ((imm) >> 4) & 0x3), \ ++ vsetq_lane_s32(vgetq_lane_s32(vreinterpretq_s32_m128i(a), \ ++ ((imm) >> 2) & 0x3), \ ++ vmovq_n_s32(vgetq_lane_s32( \ ++ vreinterpretq_s32_m128i(a), (imm) & (0x3))), \ ++ 1), \ ++ 2), \ ++ 3)) ++ ++// Takes the upper 64 bits of a and places it in the low end of the result ++// Takes the lower 64 bits of a and places it into the high end of the result. ++FORCE_INLINE __m128i _mm_shuffle_epi_1032(__m128i a) ++{ ++ int32x2_t a32 = vget_high_s32(vreinterpretq_s32_m128i(a)); ++ int32x2_t a10 = vget_low_s32(vreinterpretq_s32_m128i(a)); ++ return vreinterpretq_m128i_s32(vcombine_s32(a32, a10)); ++} ++ ++// takes the lower two 32-bit values from a and swaps them and places in low end ++// of result takes the higher two 32 bit values from a and swaps them and places ++// in high end of result. ++FORCE_INLINE __m128i _mm_shuffle_epi_2301(__m128i a) ++{ ++ int32x2_t a01 = vrev64_s32(vget_low_s32(vreinterpretq_s32_m128i(a))); ++ int32x2_t a23 = vrev64_s32(vget_high_s32(vreinterpretq_s32_m128i(a))); ++ return vreinterpretq_m128i_s32(vcombine_s32(a01, a23)); ++} ++ ++// rotates the least significant 32 bits into the most significant 32 bits, and ++// shifts the rest down ++FORCE_INLINE __m128i _mm_shuffle_epi_0321(__m128i a) ++{ ++ return vreinterpretq_m128i_s32( ++ vextq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(a), 1)); ++} ++ ++// rotates the most significant 32 bits into the least significant 32 bits, and ++// shifts the rest up ++FORCE_INLINE __m128i _mm_shuffle_epi_2103(__m128i a) ++{ ++ return vreinterpretq_m128i_s32( ++ vextq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(a), 3)); ++} ++ ++// gets the lower 64 bits of a, and places it in the upper 64 bits ++// gets the lower 64 bits of a and places it in the lower 64 bits ++FORCE_INLINE __m128i _mm_shuffle_epi_1010(__m128i a) ++{ ++ int32x2_t a10 = vget_low_s32(vreinterpretq_s32_m128i(a)); ++ return vreinterpretq_m128i_s32(vcombine_s32(a10, a10)); ++} ++ ++// gets the lower 64 bits of a, swaps the 0 and 1 elements, and places it in the ++// lower 64 bits gets the lower 64 bits of a, and places it in the upper 64 bits ++FORCE_INLINE __m128i _mm_shuffle_epi_1001(__m128i a) ++{ ++ int32x2_t a01 = vrev64_s32(vget_low_s32(vreinterpretq_s32_m128i(a))); ++ int32x2_t a10 = vget_low_s32(vreinterpretq_s32_m128i(a)); ++ return vreinterpretq_m128i_s32(vcombine_s32(a01, a10)); ++} ++ ++// gets the lower 64 bits of a, swaps the 0 and 1 elements and places it in the ++// upper 64 bits gets the lower 64 bits of a, swaps the 0 and 1 elements, and ++// places it in the lower 64 bits ++FORCE_INLINE __m128i _mm_shuffle_epi_0101(__m128i a) ++{ ++ int32x2_t a01 = vrev64_s32(vget_low_s32(vreinterpretq_s32_m128i(a))); ++ return vreinterpretq_m128i_s32(vcombine_s32(a01, a01)); ++} ++ ++FORCE_INLINE __m128i _mm_shuffle_epi_2211(__m128i a) ++{ ++ int32x2_t a11 = vdup_lane_s32(vget_low_s32(vreinterpretq_s32_m128i(a)), 1); ++ int32x2_t a22 = vdup_lane_s32(vget_high_s32(vreinterpretq_s32_m128i(a)), 0); ++ return vreinterpretq_m128i_s32(vcombine_s32(a11, a22)); ++} ++ ++FORCE_INLINE __m128i _mm_shuffle_epi_0122(__m128i a) ++{ ++ int32x2_t a22 = vdup_lane_s32(vget_high_s32(vreinterpretq_s32_m128i(a)), 0); ++ int32x2_t a01 = vrev64_s32(vget_low_s32(vreinterpretq_s32_m128i(a))); ++ return vreinterpretq_m128i_s32(vcombine_s32(a22, a01)); ++} ++ ++FORCE_INLINE __m128i _mm_shuffle_epi_3332(__m128i a) ++{ ++ int32x2_t a32 = vget_high_s32(vreinterpretq_s32_m128i(a)); ++ int32x2_t a33 = vdup_lane_s32(vget_high_s32(vreinterpretq_s32_m128i(a)), 1); ++ return vreinterpretq_m128i_s32(vcombine_s32(a32, a33)); ++} ++ ++#if defined(__aarch64__) || defined(_M_ARM64) ++#define _mm_shuffle_epi32_splat(a, imm) \ ++ vreinterpretq_m128i_s32(vdupq_laneq_s32(vreinterpretq_s32_m128i(a), (imm))) ++#else ++#define _mm_shuffle_epi32_splat(a, imm) \ ++ vreinterpretq_m128i_s32( \ ++ vdupq_n_s32(vgetq_lane_s32(vreinterpretq_s32_m128i(a), (imm)))) ++#endif ++ ++// NEON does not support a general purpose permute intrinsic. ++// Shuffle single-precision (32-bit) floating-point elements in a using the ++// control in imm8, and store the results in dst. ++// ++// C equivalent: ++// __m128 _mm_shuffle_ps_default(__m128 a, __m128 b, ++// __constrange(0, 255) int imm) { ++// __m128 ret; ++// ret[0] = a[imm & 0x3]; ret[1] = a[(imm >> 2) & 0x3]; ++// ret[2] = b[(imm >> 4) & 0x03]; ret[3] = b[(imm >> 6) & 0x03]; ++// return ret; ++// } ++// ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_shuffle_ps ++#define _mm_shuffle_ps_default(a, b, imm) \ ++ vreinterpretq_m128_f32(vsetq_lane_f32( \ ++ vgetq_lane_f32(vreinterpretq_f32_m128(b), ((imm) >> 6) & 0x3), \ ++ vsetq_lane_f32( \ ++ vgetq_lane_f32(vreinterpretq_f32_m128(b), ((imm) >> 4) & 0x3), \ ++ vsetq_lane_f32( \ ++ vgetq_lane_f32(vreinterpretq_f32_m128(a), ((imm) >> 2) & 0x3), \ ++ vmovq_n_f32( \ ++ vgetq_lane_f32(vreinterpretq_f32_m128(a), (imm) & (0x3))), \ ++ 1), \ ++ 2), \ ++ 3)) ++ ++// Shuffle 16-bit integers in the low 64 bits of a using the control in imm8. ++// Store the results in the low 64 bits of dst, with the high 64 bits being ++// copied from a to dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_shufflelo_epi16 ++#define _mm_shufflelo_epi16_function(a, imm) \ ++ _sse2neon_define1( \ ++ __m128i, a, int16x8_t ret = vreinterpretq_s16_m128i(_a); \ ++ int16x4_t lowBits = vget_low_s16(ret); \ ++ ret = vsetq_lane_s16(vget_lane_s16(lowBits, (imm) & (0x3)), ret, 0); \ ++ ret = vsetq_lane_s16(vget_lane_s16(lowBits, ((imm) >> 2) & 0x3), ret, \ ++ 1); \ ++ ret = vsetq_lane_s16(vget_lane_s16(lowBits, ((imm) >> 4) & 0x3), ret, \ ++ 2); \ ++ ret = vsetq_lane_s16(vget_lane_s16(lowBits, ((imm) >> 6) & 0x3), ret, \ ++ 3); \ ++ _sse2neon_return(vreinterpretq_m128i_s16(ret));) ++ ++// Shuffle 16-bit integers in the high 64 bits of a using the control in imm8. ++// Store the results in the high 64 bits of dst, with the low 64 bits being ++// copied from a to dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_shufflehi_epi16 ++#define _mm_shufflehi_epi16_function(a, imm) \ ++ _sse2neon_define1( \ ++ __m128i, a, int16x8_t ret = vreinterpretq_s16_m128i(_a); \ ++ int16x4_t highBits = vget_high_s16(ret); \ ++ ret = vsetq_lane_s16(vget_lane_s16(highBits, (imm) & (0x3)), ret, 4); \ ++ ret = vsetq_lane_s16(vget_lane_s16(highBits, ((imm) >> 2) & 0x3), ret, \ ++ 5); \ ++ ret = vsetq_lane_s16(vget_lane_s16(highBits, ((imm) >> 4) & 0x3), ret, \ ++ 6); \ ++ ret = vsetq_lane_s16(vget_lane_s16(highBits, ((imm) >> 6) & 0x3), ret, \ ++ 7); \ ++ _sse2neon_return(vreinterpretq_m128i_s16(ret));) ++ ++/* MMX */ ++ ++//_mm_empty is a no-op on arm ++FORCE_INLINE void _mm_empty(void) {} ++ ++/* SSE */ ++ ++// Add packed single-precision (32-bit) floating-point elements in a and b, and ++// store the results in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_add_ps ++FORCE_INLINE __m128 _mm_add_ps(__m128 a, __m128 b) ++{ ++ return vreinterpretq_m128_f32( ++ vaddq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b))); ++} ++ ++// Add the lower single-precision (32-bit) floating-point element in a and b, ++// store the result in the lower element of dst, and copy the upper 3 packed ++// elements from a to the upper elements of dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_add_ss ++FORCE_INLINE __m128 _mm_add_ss(__m128 a, __m128 b) ++{ ++ float32_t b0 = vgetq_lane_f32(vreinterpretq_f32_m128(b), 0); ++ float32x4_t value = vsetq_lane_f32(b0, vdupq_n_f32(0), 0); ++ // the upper values in the result must be the remnants of . ++ return vreinterpretq_m128_f32(vaddq_f32(a, value)); ++} ++ ++// Compute the bitwise AND of packed single-precision (32-bit) floating-point ++// elements in a and b, and store the results in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_and_ps ++FORCE_INLINE __m128 _mm_and_ps(__m128 a, __m128 b) ++{ ++ return vreinterpretq_m128_s32( ++ vandq_s32(vreinterpretq_s32_m128(a), vreinterpretq_s32_m128(b))); ++} ++ ++// Compute the bitwise NOT of packed single-precision (32-bit) floating-point ++// elements in a and then AND with b, and store the results in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_andnot_ps ++FORCE_INLINE __m128 _mm_andnot_ps(__m128 a, __m128 b) ++{ ++ return vreinterpretq_m128_s32( ++ vbicq_s32(vreinterpretq_s32_m128(b), ++ vreinterpretq_s32_m128(a))); // *NOTE* argument swap ++} ++ ++// Average packed unsigned 16-bit integers in a and b, and store the results in ++// dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_avg_pu16 ++FORCE_INLINE __m64 _mm_avg_pu16(__m64 a, __m64 b) ++{ ++ return vreinterpret_m64_u16( ++ vrhadd_u16(vreinterpret_u16_m64(a), vreinterpret_u16_m64(b))); ++} ++ ++// Average packed unsigned 8-bit integers in a and b, and store the results in ++// dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_avg_pu8 ++FORCE_INLINE __m64 _mm_avg_pu8(__m64 a, __m64 b) ++{ ++ return vreinterpret_m64_u8( ++ vrhadd_u8(vreinterpret_u8_m64(a), vreinterpret_u8_m64(b))); ++} ++ ++// Compare packed single-precision (32-bit) floating-point elements in a and b ++// for equality, and store the results in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpeq_ps ++FORCE_INLINE __m128 _mm_cmpeq_ps(__m128 a, __m128 b) ++{ ++ return vreinterpretq_m128_u32( ++ vceqq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b))); ++} ++ ++// Compare the lower single-precision (32-bit) floating-point elements in a and ++// b for equality, store the result in the lower element of dst, and copy the ++// upper 3 packed elements from a to the upper elements of dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpeq_ss ++FORCE_INLINE __m128 _mm_cmpeq_ss(__m128 a, __m128 b) ++{ ++ return _mm_move_ss(a, _mm_cmpeq_ps(a, b)); ++} ++ ++// Compare packed single-precision (32-bit) floating-point elements in a and b ++// for greater-than-or-equal, and store the results in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpge_ps ++FORCE_INLINE __m128 _mm_cmpge_ps(__m128 a, __m128 b) ++{ ++ return vreinterpretq_m128_u32( ++ vcgeq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b))); ++} ++ ++// Compare the lower single-precision (32-bit) floating-point elements in a and ++// b for greater-than-or-equal, store the result in the lower element of dst, ++// and copy the upper 3 packed elements from a to the upper elements of dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpge_ss ++FORCE_INLINE __m128 _mm_cmpge_ss(__m128 a, __m128 b) ++{ ++ return _mm_move_ss(a, _mm_cmpge_ps(a, b)); ++} ++ ++// Compare packed single-precision (32-bit) floating-point elements in a and b ++// for greater-than, and store the results in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpgt_ps ++FORCE_INLINE __m128 _mm_cmpgt_ps(__m128 a, __m128 b) ++{ ++ return vreinterpretq_m128_u32( ++ vcgtq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b))); ++} ++ ++// Compare the lower single-precision (32-bit) floating-point elements in a and ++// b for greater-than, store the result in the lower element of dst, and copy ++// the upper 3 packed elements from a to the upper elements of dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpgt_ss ++FORCE_INLINE __m128 _mm_cmpgt_ss(__m128 a, __m128 b) ++{ ++ return _mm_move_ss(a, _mm_cmpgt_ps(a, b)); ++} ++ ++// Compare packed single-precision (32-bit) floating-point elements in a and b ++// for less-than-or-equal, and store the results in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmple_ps ++FORCE_INLINE __m128 _mm_cmple_ps(__m128 a, __m128 b) ++{ ++ return vreinterpretq_m128_u32( ++ vcleq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b))); ++} ++ ++// Compare the lower single-precision (32-bit) floating-point elements in a and ++// b for less-than-or-equal, store the result in the lower element of dst, and ++// copy the upper 3 packed elements from a to the upper elements of dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmple_ss ++FORCE_INLINE __m128 _mm_cmple_ss(__m128 a, __m128 b) ++{ ++ return _mm_move_ss(a, _mm_cmple_ps(a, b)); ++} ++ ++// Compare packed single-precision (32-bit) floating-point elements in a and b ++// for less-than, and store the results in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmplt_ps ++FORCE_INLINE __m128 _mm_cmplt_ps(__m128 a, __m128 b) ++{ ++ return vreinterpretq_m128_u32( ++ vcltq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b))); ++} ++ ++// Compare the lower single-precision (32-bit) floating-point elements in a and ++// b for less-than, store the result in the lower element of dst, and copy the ++// upper 3 packed elements from a to the upper elements of dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmplt_ss ++FORCE_INLINE __m128 _mm_cmplt_ss(__m128 a, __m128 b) ++{ ++ return _mm_move_ss(a, _mm_cmplt_ps(a, b)); ++} ++ ++// Compare packed single-precision (32-bit) floating-point elements in a and b ++// for not-equal, and store the results in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpneq_ps ++FORCE_INLINE __m128 _mm_cmpneq_ps(__m128 a, __m128 b) ++{ ++ return vreinterpretq_m128_u32(vmvnq_u32( ++ vceqq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)))); ++} ++ ++// Compare the lower single-precision (32-bit) floating-point elements in a and ++// b for not-equal, store the result in the lower element of dst, and copy the ++// upper 3 packed elements from a to the upper elements of dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpneq_ss ++FORCE_INLINE __m128 _mm_cmpneq_ss(__m128 a, __m128 b) ++{ ++ return _mm_move_ss(a, _mm_cmpneq_ps(a, b)); ++} ++ ++// Compare packed single-precision (32-bit) floating-point elements in a and b ++// for not-greater-than-or-equal, and store the results in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpnge_ps ++FORCE_INLINE __m128 _mm_cmpnge_ps(__m128 a, __m128 b) ++{ ++ return vreinterpretq_m128_u32(vmvnq_u32( ++ vcgeq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)))); ++} ++ ++// Compare the lower single-precision (32-bit) floating-point elements in a and ++// b for not-greater-than-or-equal, store the result in the lower element of ++// dst, and copy the upper 3 packed elements from a to the upper elements of ++// dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpnge_ss ++FORCE_INLINE __m128 _mm_cmpnge_ss(__m128 a, __m128 b) ++{ ++ return _mm_move_ss(a, _mm_cmpnge_ps(a, b)); ++} ++ ++// Compare packed single-precision (32-bit) floating-point elements in a and b ++// for not-greater-than, and store the results in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpngt_ps ++FORCE_INLINE __m128 _mm_cmpngt_ps(__m128 a, __m128 b) ++{ ++ return vreinterpretq_m128_u32(vmvnq_u32( ++ vcgtq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)))); ++} ++ ++// Compare the lower single-precision (32-bit) floating-point elements in a and ++// b for not-greater-than, store the result in the lower element of dst, and ++// copy the upper 3 packed elements from a to the upper elements of dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpngt_ss ++FORCE_INLINE __m128 _mm_cmpngt_ss(__m128 a, __m128 b) ++{ ++ return _mm_move_ss(a, _mm_cmpngt_ps(a, b)); ++} ++ ++// Compare packed single-precision (32-bit) floating-point elements in a and b ++// for not-less-than-or-equal, and store the results in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpnle_ps ++FORCE_INLINE __m128 _mm_cmpnle_ps(__m128 a, __m128 b) ++{ ++ return vreinterpretq_m128_u32(vmvnq_u32( ++ vcleq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)))); ++} ++ ++// Compare the lower single-precision (32-bit) floating-point elements in a and ++// b for not-less-than-or-equal, store the result in the lower element of dst, ++// and copy the upper 3 packed elements from a to the upper elements of dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpnle_ss ++FORCE_INLINE __m128 _mm_cmpnle_ss(__m128 a, __m128 b) ++{ ++ return _mm_move_ss(a, _mm_cmpnle_ps(a, b)); ++} ++ ++// Compare packed single-precision (32-bit) floating-point elements in a and b ++// for not-less-than, and store the results in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpnlt_ps ++FORCE_INLINE __m128 _mm_cmpnlt_ps(__m128 a, __m128 b) ++{ ++ return vreinterpretq_m128_u32(vmvnq_u32( ++ vcltq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)))); ++} ++ ++// Compare the lower single-precision (32-bit) floating-point elements in a and ++// b for not-less-than, store the result in the lower element of dst, and copy ++// the upper 3 packed elements from a to the upper elements of dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpnlt_ss ++FORCE_INLINE __m128 _mm_cmpnlt_ss(__m128 a, __m128 b) ++{ ++ return _mm_move_ss(a, _mm_cmpnlt_ps(a, b)); ++} ++ ++// Compare packed single-precision (32-bit) floating-point elements in a and b ++// to see if neither is NaN, and store the results in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpord_ps ++// ++// See also: ++// http://stackoverflow.com/questions/8627331/what-does-ordered-unordered-comparison-mean ++// http://stackoverflow.com/questions/29349621/neon-isnanval-intrinsics ++FORCE_INLINE __m128 _mm_cmpord_ps(__m128 a, __m128 b) ++{ ++ // Note: NEON does not have ordered compare builtin ++ // Need to compare a eq a and b eq b to check for NaN ++ // Do AND of results to get final ++ uint32x4_t ceqaa = ++ vceqq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(a)); ++ uint32x4_t ceqbb = ++ vceqq_f32(vreinterpretq_f32_m128(b), vreinterpretq_f32_m128(b)); ++ return vreinterpretq_m128_u32(vandq_u32(ceqaa, ceqbb)); ++} ++ ++// Compare the lower single-precision (32-bit) floating-point elements in a and ++// b to see if neither is NaN, store the result in the lower element of dst, and ++// copy the upper 3 packed elements from a to the upper elements of dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpord_ss ++FORCE_INLINE __m128 _mm_cmpord_ss(__m128 a, __m128 b) ++{ ++ return _mm_move_ss(a, _mm_cmpord_ps(a, b)); ++} ++ ++// Compare packed single-precision (32-bit) floating-point elements in a and b ++// to see if either is NaN, and store the results in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpunord_ps ++FORCE_INLINE __m128 _mm_cmpunord_ps(__m128 a, __m128 b) ++{ ++ uint32x4_t f32a = ++ vceqq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(a)); ++ uint32x4_t f32b = ++ vceqq_f32(vreinterpretq_f32_m128(b), vreinterpretq_f32_m128(b)); ++ return vreinterpretq_m128_u32(vmvnq_u32(vandq_u32(f32a, f32b))); ++} ++ ++// Compare the lower single-precision (32-bit) floating-point elements in a and ++// b to see if either is NaN, store the result in the lower element of dst, and ++// copy the upper 3 packed elements from a to the upper elements of dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpunord_ss ++FORCE_INLINE __m128 _mm_cmpunord_ss(__m128 a, __m128 b) ++{ ++ return _mm_move_ss(a, _mm_cmpunord_ps(a, b)); ++} ++ ++// Compare the lower single-precision (32-bit) floating-point element in a and b ++// for equality, and return the boolean result (0 or 1). ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_comieq_ss ++FORCE_INLINE int _mm_comieq_ss(__m128 a, __m128 b) ++{ ++ uint32x4_t a_eq_b = ++ vceqq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)); ++ return vgetq_lane_u32(a_eq_b, 0) & 0x1; ++} ++ ++// Compare the lower single-precision (32-bit) floating-point element in a and b ++// for greater-than-or-equal, and return the boolean result (0 or 1). ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_comige_ss ++FORCE_INLINE int _mm_comige_ss(__m128 a, __m128 b) ++{ ++ uint32x4_t a_ge_b = ++ vcgeq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)); ++ return vgetq_lane_u32(a_ge_b, 0) & 0x1; ++} ++ ++// Compare the lower single-precision (32-bit) floating-point element in a and b ++// for greater-than, and return the boolean result (0 or 1). ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_comigt_ss ++FORCE_INLINE int _mm_comigt_ss(__m128 a, __m128 b) ++{ ++ uint32x4_t a_gt_b = ++ vcgtq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)); ++ return vgetq_lane_u32(a_gt_b, 0) & 0x1; ++} ++ ++// Compare the lower single-precision (32-bit) floating-point element in a and b ++// for less-than-or-equal, and return the boolean result (0 or 1). ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_comile_ss ++FORCE_INLINE int _mm_comile_ss(__m128 a, __m128 b) ++{ ++ uint32x4_t a_le_b = ++ vcleq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)); ++ return vgetq_lane_u32(a_le_b, 0) & 0x1; ++} ++ ++// Compare the lower single-precision (32-bit) floating-point element in a and b ++// for less-than, and return the boolean result (0 or 1). ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_comilt_ss ++FORCE_INLINE int _mm_comilt_ss(__m128 a, __m128 b) ++{ ++ uint32x4_t a_lt_b = ++ vcltq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)); ++ return vgetq_lane_u32(a_lt_b, 0) & 0x1; ++} ++ ++// Compare the lower single-precision (32-bit) floating-point element in a and b ++// for not-equal, and return the boolean result (0 or 1). ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_comineq_ss ++FORCE_INLINE int _mm_comineq_ss(__m128 a, __m128 b) ++{ ++ return !_mm_comieq_ss(a, b); ++} ++ ++// Convert packed signed 32-bit integers in b to packed single-precision ++// (32-bit) floating-point elements, store the results in the lower 2 elements ++// of dst, and copy the upper 2 packed elements from a to the upper elements of ++// dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvt_pi2ps ++FORCE_INLINE __m128 _mm_cvt_pi2ps(__m128 a, __m64 b) ++{ ++ return vreinterpretq_m128_f32( ++ vcombine_f32(vcvt_f32_s32(vreinterpret_s32_m64(b)), ++ vget_high_f32(vreinterpretq_f32_m128(a)))); ++} ++ ++// Convert packed single-precision (32-bit) floating-point elements in a to ++// packed 32-bit integers, and store the results in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvt_ps2pi ++FORCE_INLINE __m64 _mm_cvt_ps2pi(__m128 a) ++{ ++#if (defined(__aarch64__) || defined(_M_ARM64)) || \ ++ defined(__ARM_FEATURE_DIRECTED_ROUNDING) ++ return vreinterpret_m64_s32( ++ vget_low_s32(vcvtnq_s32_f32(vrndiq_f32(vreinterpretq_f32_m128(a))))); ++#else ++ return vreinterpret_m64_s32(vcvt_s32_f32(vget_low_f32( ++ vreinterpretq_f32_m128(_mm_round_ps(a, _MM_FROUND_CUR_DIRECTION))))); ++#endif ++} ++ ++// Convert the signed 32-bit integer b to a single-precision (32-bit) ++// floating-point element, store the result in the lower element of dst, and ++// copy the upper 3 packed elements from a to the upper elements of dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvt_si2ss ++FORCE_INLINE __m128 _mm_cvt_si2ss(__m128 a, int b) ++{ ++ return vreinterpretq_m128_f32( ++ vsetq_lane_f32((float) b, vreinterpretq_f32_m128(a), 0)); ++} ++ ++// Convert the lower single-precision (32-bit) floating-point element in a to a ++// 32-bit integer, and store the result in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvt_ss2si ++FORCE_INLINE int _mm_cvt_ss2si(__m128 a) ++{ ++#if (defined(__aarch64__) || defined(_M_ARM64)) || \ ++ defined(__ARM_FEATURE_DIRECTED_ROUNDING) ++ return vgetq_lane_s32(vcvtnq_s32_f32(vrndiq_f32(vreinterpretq_f32_m128(a))), ++ 0); ++#else ++ float32_t data = vgetq_lane_f32( ++ vreinterpretq_f32_m128(_mm_round_ps(a, _MM_FROUND_CUR_DIRECTION)), 0); ++ return (int32_t) data; ++#endif ++} ++ ++// Convert packed 16-bit integers in a to packed single-precision (32-bit) ++// floating-point elements, and store the results in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtpi16_ps ++FORCE_INLINE __m128 _mm_cvtpi16_ps(__m64 a) ++{ ++ return vreinterpretq_m128_f32( ++ vcvtq_f32_s32(vmovl_s16(vreinterpret_s16_m64(a)))); ++} ++ ++// Convert packed 32-bit integers in b to packed single-precision (32-bit) ++// floating-point elements, store the results in the lower 2 elements of dst, ++// and copy the upper 2 packed elements from a to the upper elements of dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtpi32_ps ++FORCE_INLINE __m128 _mm_cvtpi32_ps(__m128 a, __m64 b) ++{ ++ return vreinterpretq_m128_f32( ++ vcombine_f32(vcvt_f32_s32(vreinterpret_s32_m64(b)), ++ vget_high_f32(vreinterpretq_f32_m128(a)))); ++} ++ ++// Convert packed signed 32-bit integers in a to packed single-precision ++// (32-bit) floating-point elements, store the results in the lower 2 elements ++// of dst, then convert the packed signed 32-bit integers in b to ++// single-precision (32-bit) floating-point element, and store the results in ++// the upper 2 elements of dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtpi32x2_ps ++FORCE_INLINE __m128 _mm_cvtpi32x2_ps(__m64 a, __m64 b) ++{ ++ return vreinterpretq_m128_f32(vcvtq_f32_s32( ++ vcombine_s32(vreinterpret_s32_m64(a), vreinterpret_s32_m64(b)))); ++} ++ ++// Convert the lower packed 8-bit integers in a to packed single-precision ++// (32-bit) floating-point elements, and store the results in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtpi8_ps ++FORCE_INLINE __m128 _mm_cvtpi8_ps(__m64 a) ++{ ++ return vreinterpretq_m128_f32(vcvtq_f32_s32( ++ vmovl_s16(vget_low_s16(vmovl_s8(vreinterpret_s8_m64(a)))))); ++} ++ ++// Convert packed single-precision (32-bit) floating-point elements in a to ++// packed 16-bit integers, and store the results in dst. Note: this intrinsic ++// will generate 0x7FFF, rather than 0x8000, for input values between 0x7FFF and ++// 0x7FFFFFFF. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtps_pi16 ++FORCE_INLINE __m64 _mm_cvtps_pi16(__m128 a) ++{ ++ return vreinterpret_m64_s16( ++ vqmovn_s32(vreinterpretq_s32_m128i(_mm_cvtps_epi32(a)))); ++} ++ ++// Convert packed single-precision (32-bit) floating-point elements in a to ++// packed 32-bit integers, and store the results in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtps_pi32 ++#define _mm_cvtps_pi32(a) _mm_cvt_ps2pi(a) ++ ++// Convert packed single-precision (32-bit) floating-point elements in a to ++// packed 8-bit integers, and store the results in lower 4 elements of dst. ++// Note: this intrinsic will generate 0x7F, rather than 0x80, for input values ++// between 0x7F and 0x7FFFFFFF. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtps_pi8 ++FORCE_INLINE __m64 _mm_cvtps_pi8(__m128 a) ++{ ++ return vreinterpret_m64_s8(vqmovn_s16( ++ vcombine_s16(vreinterpret_s16_m64(_mm_cvtps_pi16(a)), vdup_n_s16(0)))); ++} ++ ++// Convert packed unsigned 16-bit integers in a to packed single-precision ++// (32-bit) floating-point elements, and store the results in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtpu16_ps ++FORCE_INLINE __m128 _mm_cvtpu16_ps(__m64 a) ++{ ++ return vreinterpretq_m128_f32( ++ vcvtq_f32_u32(vmovl_u16(vreinterpret_u16_m64(a)))); ++} ++ ++// Convert the lower packed unsigned 8-bit integers in a to packed ++// single-precision (32-bit) floating-point elements, and store the results in ++// dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtpu8_ps ++FORCE_INLINE __m128 _mm_cvtpu8_ps(__m64 a) ++{ ++ return vreinterpretq_m128_f32(vcvtq_f32_u32( ++ vmovl_u16(vget_low_u16(vmovl_u8(vreinterpret_u8_m64(a)))))); ++} ++ ++// Convert the signed 32-bit integer b to a single-precision (32-bit) ++// floating-point element, store the result in the lower element of dst, and ++// copy the upper 3 packed elements from a to the upper elements of dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtsi32_ss ++#define _mm_cvtsi32_ss(a, b) _mm_cvt_si2ss(a, b) ++ ++// Convert the signed 64-bit integer b to a single-precision (32-bit) ++// floating-point element, store the result in the lower element of dst, and ++// copy the upper 3 packed elements from a to the upper elements of dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtsi64_ss ++FORCE_INLINE __m128 _mm_cvtsi64_ss(__m128 a, int64_t b) ++{ ++ return vreinterpretq_m128_f32( ++ vsetq_lane_f32((float) b, vreinterpretq_f32_m128(a), 0)); ++} ++ ++// Copy the lower single-precision (32-bit) floating-point element of a to dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtss_f32 ++FORCE_INLINE float _mm_cvtss_f32(__m128 a) ++{ ++ return vgetq_lane_f32(vreinterpretq_f32_m128(a), 0); ++} ++ ++// Convert the lower single-precision (32-bit) floating-point element in a to a ++// 32-bit integer, and store the result in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtss_si32 ++#define _mm_cvtss_si32(a) _mm_cvt_ss2si(a) ++ ++// Convert the lower single-precision (32-bit) floating-point element in a to a ++// 64-bit integer, and store the result in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtss_si64 ++FORCE_INLINE int64_t _mm_cvtss_si64(__m128 a) ++{ ++#if (defined(__aarch64__) || defined(_M_ARM64)) || \ ++ defined(__ARM_FEATURE_DIRECTED_ROUNDING) ++ return (int64_t) vgetq_lane_f32(vrndiq_f32(vreinterpretq_f32_m128(a)), 0); ++#else ++ float32_t data = vgetq_lane_f32( ++ vreinterpretq_f32_m128(_mm_round_ps(a, _MM_FROUND_CUR_DIRECTION)), 0); ++ return (int64_t) data; ++#endif ++} ++ ++// Convert packed single-precision (32-bit) floating-point elements in a to ++// packed 32-bit integers with truncation, and store the results in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtt_ps2pi ++FORCE_INLINE __m64 _mm_cvtt_ps2pi(__m128 a) ++{ ++ return vreinterpret_m64_s32( ++ vget_low_s32(vcvtq_s32_f32(vreinterpretq_f32_m128(a)))); ++} ++ ++// Convert the lower single-precision (32-bit) floating-point element in a to a ++// 32-bit integer with truncation, and store the result in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtt_ss2si ++FORCE_INLINE int _mm_cvtt_ss2si(__m128 a) ++{ ++ return vgetq_lane_s32(vcvtq_s32_f32(vreinterpretq_f32_m128(a)), 0); ++} ++ ++// Convert packed single-precision (32-bit) floating-point elements in a to ++// packed 32-bit integers with truncation, and store the results in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvttps_pi32 ++#define _mm_cvttps_pi32(a) _mm_cvtt_ps2pi(a) ++ ++// Convert the lower single-precision (32-bit) floating-point element in a to a ++// 32-bit integer with truncation, and store the result in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvttss_si32 ++#define _mm_cvttss_si32(a) _mm_cvtt_ss2si(a) ++ ++// Convert the lower single-precision (32-bit) floating-point element in a to a ++// 64-bit integer with truncation, and store the result in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvttss_si64 ++FORCE_INLINE int64_t _mm_cvttss_si64(__m128 a) ++{ ++ return (int64_t) vgetq_lane_f32(vreinterpretq_f32_m128(a), 0); ++} ++ ++// Divide packed single-precision (32-bit) floating-point elements in a by ++// packed elements in b, and store the results in dst. ++// Due to ARMv7-A NEON's lack of a precise division intrinsic, we implement ++// division by multiplying a by b's reciprocal before using the Newton-Raphson ++// method to approximate the results. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_div_ps ++FORCE_INLINE __m128 _mm_div_ps(__m128 a, __m128 b) ++{ ++#if defined(__aarch64__) || defined(_M_ARM64) ++ return vreinterpretq_m128_f32( ++ vdivq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b))); ++#else ++ float32x4_t recip = vrecpeq_f32(vreinterpretq_f32_m128(b)); ++ recip = vmulq_f32(recip, vrecpsq_f32(recip, vreinterpretq_f32_m128(b))); ++ // Additional Netwon-Raphson iteration for accuracy ++ recip = vmulq_f32(recip, vrecpsq_f32(recip, vreinterpretq_f32_m128(b))); ++ return vreinterpretq_m128_f32(vmulq_f32(vreinterpretq_f32_m128(a), recip)); ++#endif ++} ++ ++// Divide the lower single-precision (32-bit) floating-point element in a by the ++// lower single-precision (32-bit) floating-point element in b, store the result ++// in the lower element of dst, and copy the upper 3 packed elements from a to ++// the upper elements of dst. ++// Warning: ARMv7-A does not produce the same result compared to Intel and not ++// IEEE-compliant. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_div_ss ++FORCE_INLINE __m128 _mm_div_ss(__m128 a, __m128 b) ++{ ++ float32_t value = ++ vgetq_lane_f32(vreinterpretq_f32_m128(_mm_div_ps(a, b)), 0); ++ return vreinterpretq_m128_f32( ++ vsetq_lane_f32(value, vreinterpretq_f32_m128(a), 0)); ++} ++ ++// Extract a 16-bit integer from a, selected with imm8, and store the result in ++// the lower element of dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_extract_pi16 ++#define _mm_extract_pi16(a, imm) \ ++ (int32_t) vget_lane_u16(vreinterpret_u16_m64(a), (imm)) ++ ++// Free aligned memory that was allocated with _mm_malloc. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_free ++#if !defined(SSE2NEON_ALLOC_DEFINED) ++FORCE_INLINE void _mm_free(void *addr) ++{ ++ free(addr); ++} ++#endif ++ ++FORCE_INLINE uint64_t _sse2neon_get_fpcr(void) ++{ ++ uint64_t value; ++#if defined(_MSC_VER) ++ value = _ReadStatusReg(ARM64_FPCR); ++#else ++ __asm__ __volatile__("mrs %0, FPCR" : "=r"(value)); /* read */ ++#endif ++ return value; ++} ++ ++FORCE_INLINE void _sse2neon_set_fpcr(uint64_t value) ++{ ++#if defined(_MSC_VER) ++ _WriteStatusReg(ARM64_FPCR, value); ++#else ++ __asm__ __volatile__("msr FPCR, %0" ::"r"(value)); /* write */ ++#endif ++} ++ ++// Macro: Get the flush zero bits from the MXCSR control and status register. ++// The flush zero may contain any of the following flags: _MM_FLUSH_ZERO_ON or ++// _MM_FLUSH_ZERO_OFF ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_MM_GET_FLUSH_ZERO_MODE ++FORCE_INLINE unsigned int _sse2neon_mm_get_flush_zero_mode(void) ++{ ++ union { ++ fpcr_bitfield field; ++#if defined(__aarch64__) || defined(_M_ARM64) ++ uint64_t value; ++#else ++ uint32_t value; ++#endif ++ } r; ++ ++#if defined(__aarch64__) || defined(_M_ARM64) ++ r.value = _sse2neon_get_fpcr(); ++#else ++ __asm__ __volatile__("vmrs %0, FPSCR" : "=r"(r.value)); /* read */ ++#endif ++ ++ return r.field.bit24 ? _MM_FLUSH_ZERO_ON : _MM_FLUSH_ZERO_OFF; ++} ++ ++// Macro: Get the rounding mode bits from the MXCSR control and status register. ++// The rounding mode may contain any of the following flags: _MM_ROUND_NEAREST, ++// _MM_ROUND_DOWN, _MM_ROUND_UP, _MM_ROUND_TOWARD_ZERO ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_MM_GET_ROUNDING_MODE ++FORCE_INLINE unsigned int _MM_GET_ROUNDING_MODE(void) ++{ ++ union { ++ fpcr_bitfield field; ++#if defined(__aarch64__) || defined(_M_ARM64) ++ uint64_t value; ++#else ++ uint32_t value; ++#endif ++ } r; ++ ++#if defined(__aarch64__) || defined(_M_ARM64) ++ r.value = _sse2neon_get_fpcr(); ++#else ++ __asm__ __volatile__("vmrs %0, FPSCR" : "=r"(r.value)); /* read */ ++#endif ++ ++ if (r.field.bit22) { ++ return r.field.bit23 ? _MM_ROUND_TOWARD_ZERO : _MM_ROUND_UP; ++ } else { ++ return r.field.bit23 ? _MM_ROUND_DOWN : _MM_ROUND_NEAREST; ++ } ++} ++ ++// Copy a to dst, and insert the 16-bit integer i into dst at the location ++// specified by imm8. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_insert_pi16 ++#define _mm_insert_pi16(a, b, imm) \ ++ vreinterpret_m64_s16(vset_lane_s16((b), vreinterpret_s16_m64(a), (imm))) ++ ++// Load 128-bits (composed of 4 packed single-precision (32-bit) floating-point ++// elements) from memory into dst. mem_addr must be aligned on a 16-byte ++// boundary or a general-protection exception may be generated. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_load_ps ++FORCE_INLINE __m128 _mm_load_ps(const float *p) ++{ ++ return vreinterpretq_m128_f32(vld1q_f32(p)); ++} ++ ++// Load a single-precision (32-bit) floating-point element from memory into all ++// elements of dst. ++// ++// dst[31:0] := MEM[mem_addr+31:mem_addr] ++// dst[63:32] := MEM[mem_addr+31:mem_addr] ++// dst[95:64] := MEM[mem_addr+31:mem_addr] ++// dst[127:96] := MEM[mem_addr+31:mem_addr] ++// ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_load_ps1 ++#define _mm_load_ps1 _mm_load1_ps ++ ++// Load a single-precision (32-bit) floating-point element from memory into the ++// lower of dst, and zero the upper 3 elements. mem_addr does not need to be ++// aligned on any particular boundary. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_load_ss ++FORCE_INLINE __m128 _mm_load_ss(const float *p) ++{ ++ return vreinterpretq_m128_f32(vsetq_lane_f32(*p, vdupq_n_f32(0), 0)); ++} ++ ++// Load a single-precision (32-bit) floating-point element from memory into all ++// elements of dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_load1_ps ++FORCE_INLINE __m128 _mm_load1_ps(const float *p) ++{ ++ return vreinterpretq_m128_f32(vld1q_dup_f32(p)); ++} ++ ++// Load 2 single-precision (32-bit) floating-point elements from memory into the ++// upper 2 elements of dst, and copy the lower 2 elements from a to dst. ++// mem_addr does not need to be aligned on any particular boundary. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_loadh_pi ++FORCE_INLINE __m128 _mm_loadh_pi(__m128 a, __m64 const *p) ++{ ++ return vreinterpretq_m128_f32( ++ vcombine_f32(vget_low_f32(a), vld1_f32((const float32_t *) p))); ++} ++ ++// Load 2 single-precision (32-bit) floating-point elements from memory into the ++// lower 2 elements of dst, and copy the upper 2 elements from a to dst. ++// mem_addr does not need to be aligned on any particular boundary. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_loadl_pi ++FORCE_INLINE __m128 _mm_loadl_pi(__m128 a, __m64 const *p) ++{ ++ return vreinterpretq_m128_f32( ++ vcombine_f32(vld1_f32((const float32_t *) p), vget_high_f32(a))); ++} ++ ++// Load 4 single-precision (32-bit) floating-point elements from memory into dst ++// in reverse order. mem_addr must be aligned on a 16-byte boundary or a ++// general-protection exception may be generated. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_loadr_ps ++FORCE_INLINE __m128 _mm_loadr_ps(const float *p) ++{ ++ float32x4_t v = vrev64q_f32(vld1q_f32(p)); ++ return vreinterpretq_m128_f32(vextq_f32(v, v, 2)); ++} ++ ++// Load 128-bits (composed of 4 packed single-precision (32-bit) floating-point ++// elements) from memory into dst. mem_addr does not need to be aligned on any ++// particular boundary. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_loadu_ps ++FORCE_INLINE __m128 _mm_loadu_ps(const float *p) ++{ ++ // for neon, alignment doesn't matter, so _mm_load_ps and _mm_loadu_ps are ++ // equivalent for neon ++ return vreinterpretq_m128_f32(vld1q_f32(p)); ++} ++ ++// Load unaligned 16-bit integer from memory into the first element of dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_loadu_si16 ++FORCE_INLINE __m128i _mm_loadu_si16(const void *p) ++{ ++ return vreinterpretq_m128i_s16( ++ vsetq_lane_s16(*(const unaligned_int16_t *) p, vdupq_n_s16(0), 0)); ++} ++ ++// Load unaligned 64-bit integer from memory into the first element of dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_loadu_si64 ++FORCE_INLINE __m128i _mm_loadu_si64(const void *p) ++{ ++ return vreinterpretq_m128i_s64( ++ vsetq_lane_s64(*(const unaligned_int64_t *) p, vdupq_n_s64(0), 0)); ++} ++ ++// Allocate size bytes of memory, aligned to the alignment specified in align, ++// and return a pointer to the allocated memory. _mm_free should be used to free ++// memory that is allocated with _mm_malloc. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_malloc ++#if !defined(SSE2NEON_ALLOC_DEFINED) ++FORCE_INLINE void *_mm_malloc(size_t size, size_t align) ++{ ++ void *ptr; ++ if (align == 1) ++ return malloc(size); ++ if (align == 2 || (sizeof(void *) == 8 && align == 4)) ++ align = sizeof(void *); ++ if (!posix_memalign(&ptr, align, size)) ++ return ptr; ++ return NULL; ++} ++#endif ++ ++// Conditionally store 8-bit integer elements from a into memory using mask ++// (elements are not stored when the highest bit is not set in the corresponding ++// element) and a non-temporal memory hint. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_maskmove_si64 ++FORCE_INLINE void _mm_maskmove_si64(__m64 a, __m64 mask, char *mem_addr) ++{ ++ int8x8_t shr_mask = vshr_n_s8(vreinterpret_s8_m64(mask), 7); ++ __m128 b = _mm_load_ps((const float *) mem_addr); ++ int8x8_t masked = ++ vbsl_s8(vreinterpret_u8_s8(shr_mask), vreinterpret_s8_m64(a), ++ vreinterpret_s8_u64(vget_low_u64(vreinterpretq_u64_m128(b)))); ++ vst1_s8((int8_t *) mem_addr, masked); ++} ++ ++// Conditionally store 8-bit integer elements from a into memory using mask ++// (elements are not stored when the highest bit is not set in the corresponding ++// element) and a non-temporal memory hint. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_m_maskmovq ++#define _m_maskmovq(a, mask, mem_addr) _mm_maskmove_si64(a, mask, mem_addr) ++ ++// Compare packed signed 16-bit integers in a and b, and store packed maximum ++// values in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_max_pi16 ++FORCE_INLINE __m64 _mm_max_pi16(__m64 a, __m64 b) ++{ ++ return vreinterpret_m64_s16( ++ vmax_s16(vreinterpret_s16_m64(a), vreinterpret_s16_m64(b))); ++} ++ ++// Compare packed single-precision (32-bit) floating-point elements in a and b, ++// and store packed maximum values in dst. dst does not follow the IEEE Standard ++// for Floating-Point Arithmetic (IEEE 754) maximum value when inputs are NaN or ++// signed-zero values. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_max_ps ++FORCE_INLINE __m128 _mm_max_ps(__m128 a, __m128 b) ++{ ++#if SSE2NEON_PRECISE_MINMAX ++ float32x4_t _a = vreinterpretq_f32_m128(a); ++ float32x4_t _b = vreinterpretq_f32_m128(b); ++ return vreinterpretq_m128_f32(vbslq_f32(vcgtq_f32(_a, _b), _a, _b)); ++#else ++ return vreinterpretq_m128_f32( ++ vmaxq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b))); ++#endif ++} ++ ++// Compare packed unsigned 8-bit integers in a and b, and store packed maximum ++// values in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_max_pu8 ++FORCE_INLINE __m64 _mm_max_pu8(__m64 a, __m64 b) ++{ ++ return vreinterpret_m64_u8( ++ vmax_u8(vreinterpret_u8_m64(a), vreinterpret_u8_m64(b))); ++} ++ ++// Compare the lower single-precision (32-bit) floating-point elements in a and ++// b, store the maximum value in the lower element of dst, and copy the upper 3 ++// packed elements from a to the upper element of dst. dst does not follow the ++// IEEE Standard for Floating-Point Arithmetic (IEEE 754) maximum value when ++// inputs are NaN or signed-zero values. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_max_ss ++FORCE_INLINE __m128 _mm_max_ss(__m128 a, __m128 b) ++{ ++ float32_t value = vgetq_lane_f32(_mm_max_ps(a, b), 0); ++ return vreinterpretq_m128_f32( ++ vsetq_lane_f32(value, vreinterpretq_f32_m128(a), 0)); ++} ++ ++// Compare packed signed 16-bit integers in a and b, and store packed minimum ++// values in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_min_pi16 ++FORCE_INLINE __m64 _mm_min_pi16(__m64 a, __m64 b) ++{ ++ return vreinterpret_m64_s16( ++ vmin_s16(vreinterpret_s16_m64(a), vreinterpret_s16_m64(b))); ++} ++ ++// Compare packed single-precision (32-bit) floating-point elements in a and b, ++// and store packed minimum values in dst. dst does not follow the IEEE Standard ++// for Floating-Point Arithmetic (IEEE 754) minimum value when inputs are NaN or ++// signed-zero values. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_min_ps ++FORCE_INLINE __m128 _mm_min_ps(__m128 a, __m128 b) ++{ ++#if SSE2NEON_PRECISE_MINMAX ++ float32x4_t _a = vreinterpretq_f32_m128(a); ++ float32x4_t _b = vreinterpretq_f32_m128(b); ++ return vreinterpretq_m128_f32(vbslq_f32(vcltq_f32(_a, _b), _a, _b)); ++#else ++ return vreinterpretq_m128_f32( ++ vminq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b))); ++#endif ++} ++ ++// Compare packed unsigned 8-bit integers in a and b, and store packed minimum ++// values in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_min_pu8 ++FORCE_INLINE __m64 _mm_min_pu8(__m64 a, __m64 b) ++{ ++ return vreinterpret_m64_u8( ++ vmin_u8(vreinterpret_u8_m64(a), vreinterpret_u8_m64(b))); ++} ++ ++// Compare the lower single-precision (32-bit) floating-point elements in a and ++// b, store the minimum value in the lower element of dst, and copy the upper 3 ++// packed elements from a to the upper element of dst. dst does not follow the ++// IEEE Standard for Floating-Point Arithmetic (IEEE 754) minimum value when ++// inputs are NaN or signed-zero values. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_min_ss ++FORCE_INLINE __m128 _mm_min_ss(__m128 a, __m128 b) ++{ ++ float32_t value = vgetq_lane_f32(_mm_min_ps(a, b), 0); ++ return vreinterpretq_m128_f32( ++ vsetq_lane_f32(value, vreinterpretq_f32_m128(a), 0)); ++} ++ ++// Move the lower single-precision (32-bit) floating-point element from b to the ++// lower element of dst, and copy the upper 3 packed elements from a to the ++// upper elements of dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_move_ss ++FORCE_INLINE __m128 _mm_move_ss(__m128 a, __m128 b) ++{ ++ return vreinterpretq_m128_f32( ++ vsetq_lane_f32(vgetq_lane_f32(vreinterpretq_f32_m128(b), 0), ++ vreinterpretq_f32_m128(a), 0)); ++} ++ ++// Move the upper 2 single-precision (32-bit) floating-point elements from b to ++// the lower 2 elements of dst, and copy the upper 2 elements from a to the ++// upper 2 elements of dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_movehl_ps ++FORCE_INLINE __m128 _mm_movehl_ps(__m128 a, __m128 b) ++{ ++#if defined(aarch64__) ++ return vreinterpretq_m128_u64( ++ vzip2q_u64(vreinterpretq_u64_m128(b), vreinterpretq_u64_m128(a))); ++#else ++ float32x2_t a32 = vget_high_f32(vreinterpretq_f32_m128(a)); ++ float32x2_t b32 = vget_high_f32(vreinterpretq_f32_m128(b)); ++ return vreinterpretq_m128_f32(vcombine_f32(b32, a32)); ++#endif ++} ++ ++// Move the lower 2 single-precision (32-bit) floating-point elements from b to ++// the upper 2 elements of dst, and copy the lower 2 elements from a to the ++// lower 2 elements of dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_movelh_ps ++FORCE_INLINE __m128 _mm_movelh_ps(__m128 __A, __m128 __B) ++{ ++ float32x2_t a10 = vget_low_f32(vreinterpretq_f32_m128(__A)); ++ float32x2_t b10 = vget_low_f32(vreinterpretq_f32_m128(__B)); ++ return vreinterpretq_m128_f32(vcombine_f32(a10, b10)); ++} ++ ++// Create mask from the most significant bit of each 8-bit element in a, and ++// store the result in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_movemask_pi8 ++FORCE_INLINE int _mm_movemask_pi8(__m64 a) ++{ ++ uint8x8_t input = vreinterpret_u8_m64(a); ++#if defined(__aarch64__) || defined(_M_ARM64) ++ static const int8_t shift[8] = {0, 1, 2, 3, 4, 5, 6, 7}; ++ uint8x8_t tmp = vshr_n_u8(input, 7); ++ return vaddv_u8(vshl_u8(tmp, vld1_s8(shift))); ++#else ++ // Refer the implementation of `_mm_movemask_epi8` ++ uint16x4_t high_bits = vreinterpret_u16_u8(vshr_n_u8(input, 7)); ++ uint32x2_t paired16 = ++ vreinterpret_u32_u16(vsra_n_u16(high_bits, high_bits, 7)); ++ uint8x8_t paired32 = ++ vreinterpret_u8_u32(vsra_n_u32(paired16, paired16, 14)); ++ return vget_lane_u8(paired32, 0) | ((int) vget_lane_u8(paired32, 4) << 4); ++#endif ++} ++ ++// Set each bit of mask dst based on the most significant bit of the ++// corresponding packed single-precision (32-bit) floating-point element in a. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_movemask_ps ++FORCE_INLINE int _mm_movemask_ps(__m128 a) ++{ ++ uint32x4_t input = vreinterpretq_u32_m128(a); ++#if defined(__aarch64__) || defined(_M_ARM64) ++ static const int32_t shift[4] = {0, 1, 2, 3}; ++ uint32x4_t tmp = vshrq_n_u32(input, 31); ++ return vaddvq_u32(vshlq_u32(tmp, vld1q_s32(shift))); ++#else ++ // Uses the exact same method as _mm_movemask_epi8, see that for details. ++ // Shift out everything but the sign bits with a 32-bit unsigned shift ++ // right. ++ uint64x2_t high_bits = vreinterpretq_u64_u32(vshrq_n_u32(input, 31)); ++ // Merge the two pairs together with a 64-bit unsigned shift right + add. ++ uint8x16_t paired = ++ vreinterpretq_u8_u64(vsraq_n_u64(high_bits, high_bits, 31)); ++ // Extract the result. ++ return vgetq_lane_u8(paired, 0) | (vgetq_lane_u8(paired, 8) << 2); ++#endif ++} ++ ++// Multiply packed single-precision (32-bit) floating-point elements in a and b, ++// and store the results in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_mul_ps ++FORCE_INLINE_OPTNONE __m128 _mm_mul_ps(__m128 a, __m128 b) ++{ ++ return vreinterpretq_m128_f32( ++ vmulq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b))); ++} ++ ++// Multiply the lower single-precision (32-bit) floating-point element in a and ++// b, store the result in the lower element of dst, and copy the upper 3 packed ++// elements from a to the upper elements of dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_mul_ss ++FORCE_INLINE __m128 _mm_mul_ss(__m128 a, __m128 b) ++{ ++ return _mm_move_ss(a, _mm_mul_ps(a, b)); ++} ++ ++// Multiply the packed unsigned 16-bit integers in a and b, producing ++// intermediate 32-bit integers, and store the high 16 bits of the intermediate ++// integers in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_mulhi_pu16 ++FORCE_INLINE __m64 _mm_mulhi_pu16(__m64 a, __m64 b) ++{ ++ return vreinterpret_m64_u16(vshrn_n_u32( ++ vmull_u16(vreinterpret_u16_m64(a), vreinterpret_u16_m64(b)), 16)); ++} ++ ++// Compute the bitwise OR of packed single-precision (32-bit) floating-point ++// elements in a and b, and store the results in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_or_ps ++FORCE_INLINE __m128 _mm_or_ps(__m128 a, __m128 b) ++{ ++ return vreinterpretq_m128_s32( ++ vorrq_s32(vreinterpretq_s32_m128(a), vreinterpretq_s32_m128(b))); ++} ++ ++// Average packed unsigned 8-bit integers in a and b, and store the results in ++// dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_m_pavgb ++#define _m_pavgb(a, b) _mm_avg_pu8(a, b) ++ ++// Average packed unsigned 16-bit integers in a and b, and store the results in ++// dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_m_pavgw ++#define _m_pavgw(a, b) _mm_avg_pu16(a, b) ++ ++// Extract a 16-bit integer from a, selected with imm8, and store the result in ++// the lower element of dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_m_pextrw ++#define _m_pextrw(a, imm) _mm_extract_pi16(a, imm) ++ ++// Copy a to dst, and insert the 16-bit integer i into dst at the location ++// specified by imm8. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=m_pinsrw ++#define _m_pinsrw(a, i, imm) _mm_insert_pi16(a, i, imm) ++ ++// Compare packed signed 16-bit integers in a and b, and store packed maximum ++// values in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_m_pmaxsw ++#define _m_pmaxsw(a, b) _mm_max_pi16(a, b) ++ ++// Compare packed unsigned 8-bit integers in a and b, and store packed maximum ++// values in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_m_pmaxub ++#define _m_pmaxub(a, b) _mm_max_pu8(a, b) ++ ++// Compare packed signed 16-bit integers in a and b, and store packed minimum ++// values in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_m_pminsw ++#define _m_pminsw(a, b) _mm_min_pi16(a, b) ++ ++// Compare packed unsigned 8-bit integers in a and b, and store packed minimum ++// values in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_m_pminub ++#define _m_pminub(a, b) _mm_min_pu8(a, b) ++ ++// Create mask from the most significant bit of each 8-bit element in a, and ++// store the result in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_m_pmovmskb ++#define _m_pmovmskb(a) _mm_movemask_pi8(a) ++ ++// Multiply the packed unsigned 16-bit integers in a and b, producing ++// intermediate 32-bit integers, and store the high 16 bits of the intermediate ++// integers in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_m_pmulhuw ++#define _m_pmulhuw(a, b) _mm_mulhi_pu16(a, b) ++ ++// Fetch the line of data from memory that contains address p to a location in ++// the cache hierarchy specified by the locality hint i. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_prefetch ++FORCE_INLINE void _mm_prefetch(char const *p, int i) ++{ ++ (void) i; ++#if defined(_MSC_VER) ++ switch (i) { ++ case _MM_HINT_NTA: ++ __prefetch2(p, 1); ++ break; ++ case _MM_HINT_T0: ++ __prefetch2(p, 0); ++ break; ++ case _MM_HINT_T1: ++ __prefetch2(p, 2); ++ break; ++ case _MM_HINT_T2: ++ __prefetch2(p, 4); ++ break; ++ } ++#else ++ switch (i) { ++ case _MM_HINT_NTA: ++ __builtin_prefetch(p, 0, 0); ++ break; ++ case _MM_HINT_T0: ++ __builtin_prefetch(p, 0, 3); ++ break; ++ case _MM_HINT_T1: ++ __builtin_prefetch(p, 0, 2); ++ break; ++ case _MM_HINT_T2: ++ __builtin_prefetch(p, 0, 1); ++ break; ++ } ++#endif ++} ++ ++// Compute the absolute differences of packed unsigned 8-bit integers in a and ++// b, then horizontally sum each consecutive 8 differences to produce four ++// unsigned 16-bit integers, and pack these unsigned 16-bit integers in the low ++// 16 bits of dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=m_psadbw ++#define _m_psadbw(a, b) _mm_sad_pu8(a, b) ++ ++// Shuffle 16-bit integers in a using the control in imm8, and store the results ++// in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_m_pshufw ++#define _m_pshufw(a, imm) _mm_shuffle_pi16(a, imm) ++ ++// Compute the approximate reciprocal of packed single-precision (32-bit) ++// floating-point elements in a, and store the results in dst. The maximum ++// relative error for this approximation is less than 1.5*2^-12. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_rcp_ps ++FORCE_INLINE __m128 _mm_rcp_ps(__m128 in) ++{ ++ float32x4_t recip = vrecpeq_f32(vreinterpretq_f32_m128(in)); ++ recip = vmulq_f32(recip, vrecpsq_f32(recip, vreinterpretq_f32_m128(in))); ++#if SSE2NEON_PRECISE_DIV ++ // Additional Netwon-Raphson iteration for accuracy ++ recip = vmulq_f32(recip, vrecpsq_f32(recip, vreinterpretq_f32_m128(in))); ++#endif ++ return vreinterpretq_m128_f32(recip); ++} ++ ++// Compute the approximate reciprocal of the lower single-precision (32-bit) ++// floating-point element in a, store the result in the lower element of dst, ++// and copy the upper 3 packed elements from a to the upper elements of dst. The ++// maximum relative error for this approximation is less than 1.5*2^-12. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_rcp_ss ++FORCE_INLINE __m128 _mm_rcp_ss(__m128 a) ++{ ++ return _mm_move_ss(a, _mm_rcp_ps(a)); ++} ++ ++// Compute the approximate reciprocal square root of packed single-precision ++// (32-bit) floating-point elements in a, and store the results in dst. The ++// maximum relative error for this approximation is less than 1.5*2^-12. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_rsqrt_ps ++FORCE_INLINE __m128 _mm_rsqrt_ps(__m128 in) ++{ ++ float32x4_t out = vrsqrteq_f32(vreinterpretq_f32_m128(in)); ++ ++ // Generate masks for detecting whether input has any 0.0f/-0.0f ++ // (which becomes positive/negative infinity by IEEE-754 arithmetic rules). ++ const uint32x4_t pos_inf = vdupq_n_u32(0x7F800000); ++ const uint32x4_t neg_inf = vdupq_n_u32(0xFF800000); ++ const uint32x4_t has_pos_zero = ++ vceqq_u32(pos_inf, vreinterpretq_u32_f32(out)); ++ const uint32x4_t has_neg_zero = ++ vceqq_u32(neg_inf, vreinterpretq_u32_f32(out)); ++ ++ out = vmulq_f32( ++ out, vrsqrtsq_f32(vmulq_f32(vreinterpretq_f32_m128(in), out), out)); ++#if SSE2NEON_PRECISE_SQRT ++ // Additional Netwon-Raphson iteration for accuracy ++ out = vmulq_f32( ++ out, vrsqrtsq_f32(vmulq_f32(vreinterpretq_f32_m128(in), out), out)); ++#endif ++ ++ // Set output vector element to infinity/negative-infinity if ++ // the corresponding input vector element is 0.0f/-0.0f. ++ out = vbslq_f32(has_pos_zero, (float32x4_t) pos_inf, out); ++ out = vbslq_f32(has_neg_zero, (float32x4_t) neg_inf, out); ++ ++ return vreinterpretq_m128_f32(out); ++} ++ ++// Compute the approximate reciprocal square root of the lower single-precision ++// (32-bit) floating-point element in a, store the result in the lower element ++// of dst, and copy the upper 3 packed elements from a to the upper elements of ++// dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_rsqrt_ss ++FORCE_INLINE __m128 _mm_rsqrt_ss(__m128 in) ++{ ++ return vsetq_lane_f32(vgetq_lane_f32(_mm_rsqrt_ps(in), 0), in, 0); ++} ++ ++// Compute the absolute differences of packed unsigned 8-bit integers in a and ++// b, then horizontally sum each consecutive 8 differences to produce four ++// unsigned 16-bit integers, and pack these unsigned 16-bit integers in the low ++// 16 bits of dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sad_pu8 ++FORCE_INLINE __m64 _mm_sad_pu8(__m64 a, __m64 b) ++{ ++ uint64x1_t t = vpaddl_u32(vpaddl_u16( ++ vpaddl_u8(vabd_u8(vreinterpret_u8_m64(a), vreinterpret_u8_m64(b))))); ++ return vreinterpret_m64_u16( ++ vset_lane_u16((int) vget_lane_u64(t, 0), vdup_n_u16(0), 0)); ++} ++ ++// Macro: Set the flush zero bits of the MXCSR control and status register to ++// the value in unsigned 32-bit integer a. The flush zero may contain any of the ++// following flags: _MM_FLUSH_ZERO_ON or _MM_FLUSH_ZERO_OFF ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_MM_SET_FLUSH_ZERO_MODE ++FORCE_INLINE void _sse2neon_mm_set_flush_zero_mode(unsigned int flag) ++{ ++ // AArch32 Advanced SIMD arithmetic always uses the Flush-to-zero setting, ++ // regardless of the value of the FZ bit. ++ union { ++ fpcr_bitfield field; ++#if defined(__aarch64__) || defined(_M_ARM64) ++ uint64_t value; ++#else ++ uint32_t value; ++#endif ++ } r; ++ ++#if defined(__aarch64__) || defined(_M_ARM64) ++ r.value = _sse2neon_get_fpcr(); ++#else ++ __asm__ __volatile__("vmrs %0, FPSCR" : "=r"(r.value)); /* read */ ++#endif ++ ++ r.field.bit24 = (flag & _MM_FLUSH_ZERO_MASK) == _MM_FLUSH_ZERO_ON; ++ ++#if defined(__aarch64__) || defined(_M_ARM64) ++ _sse2neon_set_fpcr(r.value); ++#else ++ __asm__ __volatile__("vmsr FPSCR, %0" ::"r"(r)); /* write */ ++#endif ++} ++ ++// Set packed single-precision (32-bit) floating-point elements in dst with the ++// supplied values. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_set_ps ++FORCE_INLINE __m128 _mm_set_ps(float w, float z, float y, float x) ++{ ++ float ALIGN_STRUCT(16) data[4] = {x, y, z, w}; ++ return vreinterpretq_m128_f32(vld1q_f32(data)); ++} ++ ++// Broadcast single-precision (32-bit) floating-point value a to all elements of ++// dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_set_ps1 ++FORCE_INLINE __m128 _mm_set_ps1(float _w) ++{ ++ return vreinterpretq_m128_f32(vdupq_n_f32(_w)); ++} ++ ++// Macro: Set the rounding mode bits of the MXCSR control and status register to ++// the value in unsigned 32-bit integer a. The rounding mode may contain any of ++// the following flags: _MM_ROUND_NEAREST, _MM_ROUND_DOWN, _MM_ROUND_UP, ++// _MM_ROUND_TOWARD_ZERO ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_MM_SET_ROUNDING_MODE ++FORCE_INLINE void _MM_SET_ROUNDING_MODE(int rounding) ++{ ++ union { ++ fpcr_bitfield field; ++#if defined(__aarch64__) || defined(_M_ARM64) ++ uint64_t value; ++#else ++ uint32_t value; ++#endif ++ } r; ++ ++#if defined(__aarch64__) || defined(_M_ARM64) ++ r.value = _sse2neon_get_fpcr(); ++#else ++ __asm__ __volatile__("vmrs %0, FPSCR" : "=r"(r.value)); /* read */ ++#endif ++ ++ switch (rounding) { ++ case _MM_ROUND_TOWARD_ZERO: ++ r.field.bit22 = 1; ++ r.field.bit23 = 1; ++ break; ++ case _MM_ROUND_DOWN: ++ r.field.bit22 = 0; ++ r.field.bit23 = 1; ++ break; ++ case _MM_ROUND_UP: ++ r.field.bit22 = 1; ++ r.field.bit23 = 0; ++ break; ++ default: //_MM_ROUND_NEAREST ++ r.field.bit22 = 0; ++ r.field.bit23 = 0; ++ } ++ ++#if defined(__aarch64__) || defined(_M_ARM64) ++ _sse2neon_set_fpcr(r.value); ++#else ++ __asm__ __volatile__("vmsr FPSCR, %0" ::"r"(r)); /* write */ ++#endif ++} ++ ++// Copy single-precision (32-bit) floating-point element a to the lower element ++// of dst, and zero the upper 3 elements. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_set_ss ++FORCE_INLINE __m128 _mm_set_ss(float a) ++{ ++ return vreinterpretq_m128_f32(vsetq_lane_f32(a, vdupq_n_f32(0), 0)); ++} ++ ++// Broadcast single-precision (32-bit) floating-point value a to all elements of ++// dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_set1_ps ++FORCE_INLINE __m128 _mm_set1_ps(float _w) ++{ ++ return vreinterpretq_m128_f32(vdupq_n_f32(_w)); ++} ++ ++// Set the MXCSR control and status register with the value in unsigned 32-bit ++// integer a. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_setcsr ++// FIXME: _mm_setcsr() implementation supports changing the rounding mode only. ++FORCE_INLINE void _mm_setcsr(unsigned int a) ++{ ++ _MM_SET_ROUNDING_MODE(a); ++} ++ ++// Get the unsigned 32-bit value of the MXCSR control and status register. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_getcsr ++// FIXME: _mm_getcsr() implementation supports reading the rounding mode only. ++FORCE_INLINE unsigned int _mm_getcsr(void) ++{ ++ return _MM_GET_ROUNDING_MODE(); ++} ++ ++// Set packed single-precision (32-bit) floating-point elements in dst with the ++// supplied values in reverse order. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_setr_ps ++FORCE_INLINE __m128 _mm_setr_ps(float w, float z, float y, float x) ++{ ++ float ALIGN_STRUCT(16) data[4] = {w, z, y, x}; ++ return vreinterpretq_m128_f32(vld1q_f32(data)); ++} ++ ++// Return vector of type __m128 with all elements set to zero. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_setzero_ps ++FORCE_INLINE __m128 _mm_setzero_ps(void) ++{ ++ return vreinterpretq_m128_f32(vdupq_n_f32(0)); ++} ++ ++// Shuffle 16-bit integers in a using the control in imm8, and store the results ++// in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_shuffle_pi16 ++#ifdef _sse2neon_shuffle ++#define _mm_shuffle_pi16(a, imm) \ ++ vreinterpret_m64_s16(vshuffle_s16( \ ++ vreinterpret_s16_m64(a), vreinterpret_s16_m64(a), (imm & 0x3), \ ++ ((imm >> 2) & 0x3), ((imm >> 4) & 0x3), ((imm >> 6) & 0x3))) ++#else ++#define _mm_shuffle_pi16(a, imm) \ ++ _sse2neon_define1( \ ++ __m64, a, int16x4_t ret; \ ++ ret = vmov_n_s16( \ ++ vget_lane_s16(vreinterpret_s16_m64(_a), (imm) & (0x3))); \ ++ ret = vset_lane_s16( \ ++ vget_lane_s16(vreinterpret_s16_m64(_a), ((imm) >> 2) & 0x3), ret, \ ++ 1); \ ++ ret = vset_lane_s16( \ ++ vget_lane_s16(vreinterpret_s16_m64(_a), ((imm) >> 4) & 0x3), ret, \ ++ 2); \ ++ ret = vset_lane_s16( \ ++ vget_lane_s16(vreinterpret_s16_m64(_a), ((imm) >> 6) & 0x3), ret, \ ++ 3); \ ++ _sse2neon_return(vreinterpret_m64_s16(ret));) ++#endif ++ ++// Perform a serializing operation on all store-to-memory instructions that were ++// issued prior to this instruction. Guarantees that every store instruction ++// that precedes, in program order, is globally visible before any store ++// instruction which follows the fence in program order. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sfence ++FORCE_INLINE void _mm_sfence(void) ++{ ++ _sse2neon_smp_mb(); ++} ++ ++// Perform a serializing operation on all load-from-memory and store-to-memory ++// instructions that were issued prior to this instruction. Guarantees that ++// every memory access that precedes, in program order, the memory fence ++// instruction is globally visible before any memory instruction which follows ++// the fence in program order. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_mfence ++FORCE_INLINE void _mm_mfence(void) ++{ ++ _sse2neon_smp_mb(); ++} ++ ++// Perform a serializing operation on all load-from-memory instructions that ++// were issued prior to this instruction. Guarantees that every load instruction ++// that precedes, in program order, is globally visible before any load ++// instruction which follows the fence in program order. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_lfence ++FORCE_INLINE void _mm_lfence(void) ++{ ++ _sse2neon_smp_mb(); ++} ++ ++// FORCE_INLINE __m128 _mm_shuffle_ps(__m128 a, __m128 b, __constrange(0,255) ++// int imm) ++#ifdef _sse2neon_shuffle ++#define _mm_shuffle_ps(a, b, imm) \ ++ __extension__({ \ ++ float32x4_t _input1 = vreinterpretq_f32_m128(a); \ ++ float32x4_t _input2 = vreinterpretq_f32_m128(b); \ ++ float32x4_t _shuf = \ ++ vshuffleq_s32(_input1, _input2, (imm) & (0x3), ((imm) >> 2) & 0x3, \ ++ (((imm) >> 4) & 0x3) + 4, (((imm) >> 6) & 0x3) + 4); \ ++ vreinterpretq_m128_f32(_shuf); \ ++ }) ++#else // generic ++#define _mm_shuffle_ps(a, b, imm) \ ++ _sse2neon_define2( \ ++ __m128, a, b, __m128 ret; switch (imm) { \ ++ case _MM_SHUFFLE(1, 0, 3, 2): \ ++ ret = _mm_shuffle_ps_1032(_a, _b); \ ++ break; \ ++ case _MM_SHUFFLE(2, 3, 0, 1): \ ++ ret = _mm_shuffle_ps_2301(_a, _b); \ ++ break; \ ++ case _MM_SHUFFLE(0, 3, 2, 1): \ ++ ret = _mm_shuffle_ps_0321(_a, _b); \ ++ break; \ ++ case _MM_SHUFFLE(2, 1, 0, 3): \ ++ ret = _mm_shuffle_ps_2103(_a, _b); \ ++ break; \ ++ case _MM_SHUFFLE(1, 0, 1, 0): \ ++ ret = _mm_movelh_ps(_a, _b); \ ++ break; \ ++ case _MM_SHUFFLE(1, 0, 0, 1): \ ++ ret = _mm_shuffle_ps_1001(_a, _b); \ ++ break; \ ++ case _MM_SHUFFLE(0, 1, 0, 1): \ ++ ret = _mm_shuffle_ps_0101(_a, _b); \ ++ break; \ ++ case _MM_SHUFFLE(3, 2, 1, 0): \ ++ ret = _mm_shuffle_ps_3210(_a, _b); \ ++ break; \ ++ case _MM_SHUFFLE(0, 0, 1, 1): \ ++ ret = _mm_shuffle_ps_0011(_a, _b); \ ++ break; \ ++ case _MM_SHUFFLE(0, 0, 2, 2): \ ++ ret = _mm_shuffle_ps_0022(_a, _b); \ ++ break; \ ++ case _MM_SHUFFLE(2, 2, 0, 0): \ ++ ret = _mm_shuffle_ps_2200(_a, _b); \ ++ break; \ ++ case _MM_SHUFFLE(3, 2, 0, 2): \ ++ ret = _mm_shuffle_ps_3202(_a, _b); \ ++ break; \ ++ case _MM_SHUFFLE(3, 2, 3, 2): \ ++ ret = _mm_movehl_ps(_b, _a); \ ++ break; \ ++ case _MM_SHUFFLE(1, 1, 3, 3): \ ++ ret = _mm_shuffle_ps_1133(_a, _b); \ ++ break; \ ++ case _MM_SHUFFLE(2, 0, 1, 0): \ ++ ret = _mm_shuffle_ps_2010(_a, _b); \ ++ break; \ ++ case _MM_SHUFFLE(2, 0, 0, 1): \ ++ ret = _mm_shuffle_ps_2001(_a, _b); \ ++ break; \ ++ case _MM_SHUFFLE(2, 0, 3, 2): \ ++ ret = _mm_shuffle_ps_2032(_a, _b); \ ++ break; \ ++ default: \ ++ ret = _mm_shuffle_ps_default(_a, _b, (imm)); \ ++ break; \ ++ } _sse2neon_return(ret);) ++#endif ++ ++// Compute the square root of packed single-precision (32-bit) floating-point ++// elements in a, and store the results in dst. ++// Due to ARMv7-A NEON's lack of a precise square root intrinsic, we implement ++// square root by multiplying input in with its reciprocal square root before ++// using the Newton-Raphson method to approximate the results. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sqrt_ps ++FORCE_INLINE __m128 _mm_sqrt_ps(__m128 in) ++{ ++#if (defined(__aarch64__) || defined(_M_ARM64)) && !SSE2NEON_PRECISE_SQRT ++ return vreinterpretq_m128_f32(vsqrtq_f32(vreinterpretq_f32_m128(in))); ++#else ++ float32x4_t recip = vrsqrteq_f32(vreinterpretq_f32_m128(in)); ++ ++ // Test for vrsqrteq_f32(0) -> positive infinity case. ++ // Change to zero, so that s * 1/sqrt(s) result is zero too. ++ const uint32x4_t pos_inf = vdupq_n_u32(0x7F800000); ++ const uint32x4_t div_by_zero = ++ vceqq_u32(pos_inf, vreinterpretq_u32_f32(recip)); ++ recip = vreinterpretq_f32_u32( ++ vandq_u32(vmvnq_u32(div_by_zero), vreinterpretq_u32_f32(recip))); ++ ++ recip = vmulq_f32( ++ vrsqrtsq_f32(vmulq_f32(recip, recip), vreinterpretq_f32_m128(in)), ++ recip); ++ // Additional Netwon-Raphson iteration for accuracy ++ recip = vmulq_f32( ++ vrsqrtsq_f32(vmulq_f32(recip, recip), vreinterpretq_f32_m128(in)), ++ recip); ++ ++ // sqrt(s) = s * 1/sqrt(s) ++ return vreinterpretq_m128_f32(vmulq_f32(vreinterpretq_f32_m128(in), recip)); ++#endif ++} ++ ++// Compute the square root of the lower single-precision (32-bit) floating-point ++// element in a, store the result in the lower element of dst, and copy the ++// upper 3 packed elements from a to the upper elements of dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sqrt_ss ++FORCE_INLINE __m128 _mm_sqrt_ss(__m128 in) ++{ ++ float32_t value = ++ vgetq_lane_f32(vreinterpretq_f32_m128(_mm_sqrt_ps(in)), 0); ++ return vreinterpretq_m128_f32( ++ vsetq_lane_f32(value, vreinterpretq_f32_m128(in), 0)); ++} ++ ++// Store 128-bits (composed of 4 packed single-precision (32-bit) floating-point ++// elements) from a into memory. mem_addr must be aligned on a 16-byte boundary ++// or a general-protection exception may be generated. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_store_ps ++FORCE_INLINE void _mm_store_ps(float *p, __m128 a) ++{ ++ vst1q_f32(p, vreinterpretq_f32_m128(a)); ++} ++ ++// Store the lower single-precision (32-bit) floating-point element from a into ++// 4 contiguous elements in memory. mem_addr must be aligned on a 16-byte ++// boundary or a general-protection exception may be generated. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_store_ps1 ++FORCE_INLINE void _mm_store_ps1(float *p, __m128 a) ++{ ++ float32_t a0 = vgetq_lane_f32(vreinterpretq_f32_m128(a), 0); ++ vst1q_f32(p, vdupq_n_f32(a0)); ++} ++ ++// Store the lower single-precision (32-bit) floating-point element from a into ++// memory. mem_addr does not need to be aligned on any particular boundary. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_store_ss ++FORCE_INLINE void _mm_store_ss(float *p, __m128 a) ++{ ++ vst1q_lane_f32(p, vreinterpretq_f32_m128(a), 0); ++} ++ ++// Store the lower single-precision (32-bit) floating-point element from a into ++// 4 contiguous elements in memory. mem_addr must be aligned on a 16-byte ++// boundary or a general-protection exception may be generated. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_store1_ps ++#define _mm_store1_ps _mm_store_ps1 ++ ++// Store the upper 2 single-precision (32-bit) floating-point elements from a ++// into memory. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_storeh_pi ++FORCE_INLINE void _mm_storeh_pi(__m64 *p, __m128 a) ++{ ++ *p = vreinterpret_m64_f32(vget_high_f32(a)); ++} ++ ++// Store the lower 2 single-precision (32-bit) floating-point elements from a ++// into memory. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_storel_pi ++FORCE_INLINE void _mm_storel_pi(__m64 *p, __m128 a) ++{ ++ *p = vreinterpret_m64_f32(vget_low_f32(a)); ++} ++ ++// Store 4 single-precision (32-bit) floating-point elements from a into memory ++// in reverse order. mem_addr must be aligned on a 16-byte boundary or a ++// general-protection exception may be generated. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_storer_ps ++FORCE_INLINE void _mm_storer_ps(float *p, __m128 a) ++{ ++ float32x4_t tmp = vrev64q_f32(vreinterpretq_f32_m128(a)); ++ float32x4_t rev = vextq_f32(tmp, tmp, 2); ++ vst1q_f32(p, rev); ++} ++ ++// Store 128-bits (composed of 4 packed single-precision (32-bit) floating-point ++// elements) from a into memory. mem_addr does not need to be aligned on any ++// particular boundary. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_storeu_ps ++FORCE_INLINE void _mm_storeu_ps(float *p, __m128 a) ++{ ++ vst1q_f32(p, vreinterpretq_f32_m128(a)); ++} ++ ++// Stores 16-bits of integer data a at the address p. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_storeu_si16 ++FORCE_INLINE void _mm_storeu_si16(void *p, __m128i a) ++{ ++ vst1q_lane_s16((int16_t *) p, vreinterpretq_s16_m128i(a), 0); ++} ++ ++// Stores 64-bits of integer data a at the address p. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_storeu_si64 ++FORCE_INLINE void _mm_storeu_si64(void *p, __m128i a) ++{ ++ vst1q_lane_s64((int64_t *) p, vreinterpretq_s64_m128i(a), 0); ++} ++ ++// Store 64-bits of integer data from a into memory using a non-temporal memory ++// hint. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_stream_pi ++FORCE_INLINE void _mm_stream_pi(__m64 *p, __m64 a) ++{ ++ vst1_s64((int64_t *) p, vreinterpret_s64_m64(a)); ++} ++ ++// Store 128-bits (composed of 4 packed single-precision (32-bit) floating- ++// point elements) from a into memory using a non-temporal memory hint. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_stream_ps ++FORCE_INLINE void _mm_stream_ps(float *p, __m128 a) ++{ ++#if __has_builtin(__builtin_nontemporal_store) ++ __builtin_nontemporal_store(a, (float32x4_t *) p); ++#else ++ vst1q_f32(p, vreinterpretq_f32_m128(a)); ++#endif ++} ++ ++// Subtract packed single-precision (32-bit) floating-point elements in b from ++// packed single-precision (32-bit) floating-point elements in a, and store the ++// results in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sub_ps ++FORCE_INLINE __m128 _mm_sub_ps(__m128 a, __m128 b) ++{ ++ return vreinterpretq_m128_f32( ++ vsubq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b))); ++} ++ ++// Subtract the lower single-precision (32-bit) floating-point element in b from ++// the lower single-precision (32-bit) floating-point element in a, store the ++// result in the lower element of dst, and copy the upper 3 packed elements from ++// a to the upper elements of dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sub_ss ++FORCE_INLINE __m128 _mm_sub_ss(__m128 a, __m128 b) ++{ ++ return _mm_move_ss(a, _mm_sub_ps(a, b)); ++} ++ ++// Macro: Transpose the 4x4 matrix formed by the 4 rows of single-precision ++// (32-bit) floating-point elements in row0, row1, row2, and row3, and store the ++// transposed matrix in these vectors (row0 now contains column 0, etc.). ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=MM_TRANSPOSE4_PS ++#define _MM_TRANSPOSE4_PS(row0, row1, row2, row3) \ ++ do { \ ++ float32x4x2_t ROW01 = vtrnq_f32(row0, row1); \ ++ float32x4x2_t ROW23 = vtrnq_f32(row2, row3); \ ++ row0 = vcombine_f32(vget_low_f32(ROW01.val[0]), \ ++ vget_low_f32(ROW23.val[0])); \ ++ row1 = vcombine_f32(vget_low_f32(ROW01.val[1]), \ ++ vget_low_f32(ROW23.val[1])); \ ++ row2 = vcombine_f32(vget_high_f32(ROW01.val[0]), \ ++ vget_high_f32(ROW23.val[0])); \ ++ row3 = vcombine_f32(vget_high_f32(ROW01.val[1]), \ ++ vget_high_f32(ROW23.val[1])); \ ++ } while (0) ++ ++// according to the documentation, these intrinsics behave the same as the ++// non-'u' versions. We'll just alias them here. ++#define _mm_ucomieq_ss _mm_comieq_ss ++#define _mm_ucomige_ss _mm_comige_ss ++#define _mm_ucomigt_ss _mm_comigt_ss ++#define _mm_ucomile_ss _mm_comile_ss ++#define _mm_ucomilt_ss _mm_comilt_ss ++#define _mm_ucomineq_ss _mm_comineq_ss ++ ++// Return vector of type __m128i with undefined elements. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=mm_undefined_si128 ++FORCE_INLINE __m128i _mm_undefined_si128(void) ++{ ++#if defined(__GNUC__) || defined(__clang__) ++#pragma GCC diagnostic push ++#pragma GCC diagnostic ignored "-Wuninitialized" ++#endif ++ __m128i a; ++#if defined(_MSC_VER) ++ a = _mm_setzero_si128(); ++#endif ++ return a; ++#if defined(__GNUC__) || defined(__clang__) ++#pragma GCC diagnostic pop ++#endif ++} ++ ++// Return vector of type __m128 with undefined elements. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_undefined_ps ++FORCE_INLINE __m128 _mm_undefined_ps(void) ++{ ++#if defined(__GNUC__) || defined(__clang__) ++#pragma GCC diagnostic push ++#pragma GCC diagnostic ignored "-Wuninitialized" ++#endif ++ __m128 a; ++#if defined(_MSC_VER) ++ a = _mm_setzero_ps(); ++#endif ++ return a; ++#if defined(__GNUC__) || defined(__clang__) ++#pragma GCC diagnostic pop ++#endif ++} ++ ++// Unpack and interleave single-precision (32-bit) floating-point elements from ++// the high half a and b, and store the results in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_unpackhi_ps ++FORCE_INLINE __m128 _mm_unpackhi_ps(__m128 a, __m128 b) ++{ ++#if defined(__aarch64__) || defined(_M_ARM64) ++ return vreinterpretq_m128_f32( ++ vzip2q_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b))); ++#else ++ float32x2_t a1 = vget_high_f32(vreinterpretq_f32_m128(a)); ++ float32x2_t b1 = vget_high_f32(vreinterpretq_f32_m128(b)); ++ float32x2x2_t result = vzip_f32(a1, b1); ++ return vreinterpretq_m128_f32(vcombine_f32(result.val[0], result.val[1])); ++#endif ++} ++ ++// Unpack and interleave single-precision (32-bit) floating-point elements from ++// the low half of a and b, and store the results in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_unpacklo_ps ++FORCE_INLINE __m128 _mm_unpacklo_ps(__m128 a, __m128 b) ++{ ++#if defined(__aarch64__) || defined(_M_ARM64) ++ return vreinterpretq_m128_f32( ++ vzip1q_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b))); ++#else ++ float32x2_t a1 = vget_low_f32(vreinterpretq_f32_m128(a)); ++ float32x2_t b1 = vget_low_f32(vreinterpretq_f32_m128(b)); ++ float32x2x2_t result = vzip_f32(a1, b1); ++ return vreinterpretq_m128_f32(vcombine_f32(result.val[0], result.val[1])); ++#endif ++} ++ ++// Compute the bitwise XOR of packed single-precision (32-bit) floating-point ++// elements in a and b, and store the results in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_xor_ps ++FORCE_INLINE __m128 _mm_xor_ps(__m128 a, __m128 b) ++{ ++ return vreinterpretq_m128_s32( ++ veorq_s32(vreinterpretq_s32_m128(a), vreinterpretq_s32_m128(b))); ++} ++ ++/* SSE2 */ ++ ++// Add packed 16-bit integers in a and b, and store the results in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_add_epi16 ++FORCE_INLINE __m128i _mm_add_epi16(__m128i a, __m128i b) ++{ ++ return vreinterpretq_m128i_s16( ++ vaddq_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b))); ++} ++ ++// Add packed 32-bit integers in a and b, and store the results in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_add_epi32 ++FORCE_INLINE __m128i _mm_add_epi32(__m128i a, __m128i b) ++{ ++ return vreinterpretq_m128i_s32( ++ vaddq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b))); ++} ++ ++// Add packed 64-bit integers in a and b, and store the results in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_add_epi64 ++FORCE_INLINE __m128i _mm_add_epi64(__m128i a, __m128i b) ++{ ++ return vreinterpretq_m128i_s64( ++ vaddq_s64(vreinterpretq_s64_m128i(a), vreinterpretq_s64_m128i(b))); ++} ++ ++// Add packed 8-bit integers in a and b, and store the results in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_add_epi8 ++FORCE_INLINE __m128i _mm_add_epi8(__m128i a, __m128i b) ++{ ++ return vreinterpretq_m128i_s8( ++ vaddq_s8(vreinterpretq_s8_m128i(a), vreinterpretq_s8_m128i(b))); ++} ++ ++// Add packed double-precision (64-bit) floating-point elements in a and b, and ++// store the results in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_add_pd ++FORCE_INLINE __m128d _mm_add_pd(__m128d a, __m128d b) ++{ ++#if defined(__aarch64__) || defined(_M_ARM64) ++ return vreinterpretq_m128d_f64( ++ vaddq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b))); ++#else ++ double *da = (double *) &a; ++ double *db = (double *) &b; ++ double c[2]; ++ c[0] = da[0] + db[0]; ++ c[1] = da[1] + db[1]; ++ return vld1q_f32((float32_t *) c); ++#endif ++} ++ ++// Add the lower double-precision (64-bit) floating-point element in a and b, ++// store the result in the lower element of dst, and copy the upper element from ++// a to the upper element of dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_add_sd ++FORCE_INLINE __m128d _mm_add_sd(__m128d a, __m128d b) ++{ ++#if defined(__aarch64__) || defined(_M_ARM64) ++ return _mm_move_sd(a, _mm_add_pd(a, b)); ++#else ++ double *da = (double *) &a; ++ double *db = (double *) &b; ++ double c[2]; ++ c[0] = da[0] + db[0]; ++ c[1] = da[1]; ++ return vld1q_f32((float32_t *) c); ++#endif ++} ++ ++// Add 64-bit integers a and b, and store the result in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_add_si64 ++FORCE_INLINE __m64 _mm_add_si64(__m64 a, __m64 b) ++{ ++ return vreinterpret_m64_s64( ++ vadd_s64(vreinterpret_s64_m64(a), vreinterpret_s64_m64(b))); ++} ++ ++// Add packed signed 16-bit integers in a and b using saturation, and store the ++// results in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_adds_epi16 ++FORCE_INLINE __m128i _mm_adds_epi16(__m128i a, __m128i b) ++{ ++ return vreinterpretq_m128i_s16( ++ vqaddq_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b))); ++} ++ ++// Add packed signed 8-bit integers in a and b using saturation, and store the ++// results in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_adds_epi8 ++FORCE_INLINE __m128i _mm_adds_epi8(__m128i a, __m128i b) ++{ ++ return vreinterpretq_m128i_s8( ++ vqaddq_s8(vreinterpretq_s8_m128i(a), vreinterpretq_s8_m128i(b))); ++} ++ ++// Add packed unsigned 16-bit integers in a and b using saturation, and store ++// the results in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_adds_epu16 ++FORCE_INLINE __m128i _mm_adds_epu16(__m128i a, __m128i b) ++{ ++ return vreinterpretq_m128i_u16( ++ vqaddq_u16(vreinterpretq_u16_m128i(a), vreinterpretq_u16_m128i(b))); ++} ++ ++// Add packed unsigned 8-bit integers in a and b using saturation, and store the ++// results in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_adds_epu8 ++FORCE_INLINE __m128i _mm_adds_epu8(__m128i a, __m128i b) ++{ ++ return vreinterpretq_m128i_u8( ++ vqaddq_u8(vreinterpretq_u8_m128i(a), vreinterpretq_u8_m128i(b))); ++} ++ ++// Compute the bitwise AND of packed double-precision (64-bit) floating-point ++// elements in a and b, and store the results in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_and_pd ++FORCE_INLINE __m128d _mm_and_pd(__m128d a, __m128d b) ++{ ++ return vreinterpretq_m128d_s64( ++ vandq_s64(vreinterpretq_s64_m128d(a), vreinterpretq_s64_m128d(b))); ++} ++ ++// Compute the bitwise AND of 128 bits (representing integer data) in a and b, ++// and store the result in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_and_si128 ++FORCE_INLINE __m128i _mm_and_si128(__m128i a, __m128i b) ++{ ++ return vreinterpretq_m128i_s32( ++ vandq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b))); ++} ++ ++// Compute the bitwise NOT of packed double-precision (64-bit) floating-point ++// elements in a and then AND with b, and store the results in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_andnot_pd ++FORCE_INLINE __m128d _mm_andnot_pd(__m128d a, __m128d b) ++{ ++ // *NOTE* argument swap ++ return vreinterpretq_m128d_s64( ++ vbicq_s64(vreinterpretq_s64_m128d(b), vreinterpretq_s64_m128d(a))); ++} ++ ++// Compute the bitwise NOT of 128 bits (representing integer data) in a and then ++// AND with b, and store the result in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_andnot_si128 ++FORCE_INLINE __m128i _mm_andnot_si128(__m128i a, __m128i b) ++{ ++ return vreinterpretq_m128i_s32( ++ vbicq_s32(vreinterpretq_s32_m128i(b), ++ vreinterpretq_s32_m128i(a))); // *NOTE* argument swap ++} ++ ++// Average packed unsigned 16-bit integers in a and b, and store the results in ++// dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_avg_epu16 ++FORCE_INLINE __m128i _mm_avg_epu16(__m128i a, __m128i b) ++{ ++ return (__m128i) vrhaddq_u16(vreinterpretq_u16_m128i(a), ++ vreinterpretq_u16_m128i(b)); ++} ++ ++// Average packed unsigned 8-bit integers in a and b, and store the results in ++// dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_avg_epu8 ++FORCE_INLINE __m128i _mm_avg_epu8(__m128i a, __m128i b) ++{ ++ return vreinterpretq_m128i_u8( ++ vrhaddq_u8(vreinterpretq_u8_m128i(a), vreinterpretq_u8_m128i(b))); ++} ++ ++// Shift a left by imm8 bytes while shifting in zeros, and store the results in ++// dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_bslli_si128 ++#define _mm_bslli_si128(a, imm) _mm_slli_si128(a, imm) ++ ++// Shift a right by imm8 bytes while shifting in zeros, and store the results in ++// dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_bsrli_si128 ++#define _mm_bsrli_si128(a, imm) _mm_srli_si128(a, imm) ++ ++// Cast vector of type __m128d to type __m128. This intrinsic is only used for ++// compilation and does not generate any instructions, thus it has zero latency. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_castpd_ps ++FORCE_INLINE __m128 _mm_castpd_ps(__m128d a) ++{ ++ return vreinterpretq_m128_s64(vreinterpretq_s64_m128d(a)); ++} ++ ++// Cast vector of type __m128d to type __m128i. This intrinsic is only used for ++// compilation and does not generate any instructions, thus it has zero latency. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_castpd_si128 ++FORCE_INLINE __m128i _mm_castpd_si128(__m128d a) ++{ ++ return vreinterpretq_m128i_s64(vreinterpretq_s64_m128d(a)); ++} ++ ++// Cast vector of type __m128 to type __m128d. This intrinsic is only used for ++// compilation and does not generate any instructions, thus it has zero latency. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_castps_pd ++FORCE_INLINE __m128d _mm_castps_pd(__m128 a) ++{ ++ return vreinterpretq_m128d_s32(vreinterpretq_s32_m128(a)); ++} ++ ++// Cast vector of type __m128 to type __m128i. This intrinsic is only used for ++// compilation and does not generate any instructions, thus it has zero latency. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_castps_si128 ++FORCE_INLINE __m128i _mm_castps_si128(__m128 a) ++{ ++ return vreinterpretq_m128i_s32(vreinterpretq_s32_m128(a)); ++} ++ ++// Cast vector of type __m128i to type __m128d. This intrinsic is only used for ++// compilation and does not generate any instructions, thus it has zero latency. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_castsi128_pd ++FORCE_INLINE __m128d _mm_castsi128_pd(__m128i a) ++{ ++#if defined(__aarch64__) || defined(_M_ARM64) ++ return vreinterpretq_m128d_f64(vreinterpretq_f64_m128i(a)); ++#else ++ return vreinterpretq_m128d_f32(vreinterpretq_f32_m128i(a)); ++#endif ++} ++ ++// Cast vector of type __m128i to type __m128. This intrinsic is only used for ++// compilation and does not generate any instructions, thus it has zero latency. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_castsi128_ps ++FORCE_INLINE __m128 _mm_castsi128_ps(__m128i a) ++{ ++ return vreinterpretq_m128_s32(vreinterpretq_s32_m128i(a)); ++} ++ ++// Invalidate and flush the cache line that contains p from all levels of the ++// cache hierarchy. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_clflush ++#if defined(__APPLE__) ++#include ++#endif ++FORCE_INLINE void _mm_clflush(void const *p) ++{ ++ (void) p; ++ ++ /* sys_icache_invalidate is supported since macOS 10.5. ++ * However, it does not work on non-jailbroken iOS devices, although the ++ * compilation is successful. ++ */ ++#if defined(__APPLE__) ++ sys_icache_invalidate((void *) (uintptr_t) p, SSE2NEON_CACHELINE_SIZE); ++#elif defined(__GNUC__) || defined(__clang__) ++ uintptr_t ptr = (uintptr_t) p; ++ __builtin___clear_cache((char *) ptr, ++ (char *) ptr + SSE2NEON_CACHELINE_SIZE); ++#elif (_MSC_VER) && SSE2NEON_INCLUDE_WINDOWS_H ++ FlushInstructionCache(GetCurrentProcess(), p, SSE2NEON_CACHELINE_SIZE); ++#endif ++} ++ ++// Compare packed 16-bit integers in a and b for equality, and store the results ++// in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpeq_epi16 ++FORCE_INLINE __m128i _mm_cmpeq_epi16(__m128i a, __m128i b) ++{ ++ return vreinterpretq_m128i_u16( ++ vceqq_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b))); ++} ++ ++// Compare packed 32-bit integers in a and b for equality, and store the results ++// in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpeq_epi32 ++FORCE_INLINE __m128i _mm_cmpeq_epi32(__m128i a, __m128i b) ++{ ++ return vreinterpretq_m128i_u32( ++ vceqq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b))); ++} ++ ++// Compare packed 8-bit integers in a and b for equality, and store the results ++// in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpeq_epi8 ++FORCE_INLINE __m128i _mm_cmpeq_epi8(__m128i a, __m128i b) ++{ ++ return vreinterpretq_m128i_u8( ++ vceqq_s8(vreinterpretq_s8_m128i(a), vreinterpretq_s8_m128i(b))); ++} ++ ++// Compare packed double-precision (64-bit) floating-point elements in a and b ++// for equality, and store the results in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpeq_pd ++FORCE_INLINE __m128d _mm_cmpeq_pd(__m128d a, __m128d b) ++{ ++#if defined(__aarch64__) || defined(_M_ARM64) ++ return vreinterpretq_m128d_u64( ++ vceqq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b))); ++#else ++ // (a == b) -> (a_lo == b_lo) && (a_hi == b_hi) ++ uint32x4_t cmp = ++ vceqq_u32(vreinterpretq_u32_m128d(a), vreinterpretq_u32_m128d(b)); ++ uint32x4_t swapped = vrev64q_u32(cmp); ++ return vreinterpretq_m128d_u32(vandq_u32(cmp, swapped)); ++#endif ++} ++ ++// Compare the lower double-precision (64-bit) floating-point elements in a and ++// b for equality, store the result in the lower element of dst, and copy the ++// upper element from a to the upper element of dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpeq_sd ++FORCE_INLINE __m128d _mm_cmpeq_sd(__m128d a, __m128d b) ++{ ++ return _mm_move_sd(a, _mm_cmpeq_pd(a, b)); ++} ++ ++// Compare packed double-precision (64-bit) floating-point elements in a and b ++// for greater-than-or-equal, and store the results in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpge_pd ++FORCE_INLINE __m128d _mm_cmpge_pd(__m128d a, __m128d b) ++{ ++#if defined(__aarch64__) || defined(_M_ARM64) ++ return vreinterpretq_m128d_u64( ++ vcgeq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b))); ++#else ++ uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a)); ++ uint64_t a1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(a)); ++ uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b)); ++ uint64_t b1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(b)); ++ uint64_t d[2]; ++ d[0] = (*(double *) &a0) >= (*(double *) &b0) ? ~UINT64_C(0) : UINT64_C(0); ++ d[1] = (*(double *) &a1) >= (*(double *) &b1) ? ~UINT64_C(0) : UINT64_C(0); ++ ++ return vreinterpretq_m128d_u64(vld1q_u64(d)); ++#endif ++} ++ ++// Compare the lower double-precision (64-bit) floating-point elements in a and ++// b for greater-than-or-equal, store the result in the lower element of dst, ++// and copy the upper element from a to the upper element of dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpge_sd ++FORCE_INLINE __m128d _mm_cmpge_sd(__m128d a, __m128d b) ++{ ++#if defined(__aarch64__) || defined(_M_ARM64) ++ return _mm_move_sd(a, _mm_cmpge_pd(a, b)); ++#else ++ // expand "_mm_cmpge_pd()" to reduce unnecessary operations ++ uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a)); ++ uint64_t a1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(a)); ++ uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b)); ++ uint64_t d[2]; ++ d[0] = (*(double *) &a0) >= (*(double *) &b0) ? ~UINT64_C(0) : UINT64_C(0); ++ d[1] = a1; ++ ++ return vreinterpretq_m128d_u64(vld1q_u64(d)); ++#endif ++} ++ ++// Compare packed signed 16-bit integers in a and b for greater-than, and store ++// the results in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpgt_epi16 ++FORCE_INLINE __m128i _mm_cmpgt_epi16(__m128i a, __m128i b) ++{ ++ return vreinterpretq_m128i_u16( ++ vcgtq_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b))); ++} ++ ++// Compare packed signed 32-bit integers in a and b for greater-than, and store ++// the results in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpgt_epi32 ++FORCE_INLINE __m128i _mm_cmpgt_epi32(__m128i a, __m128i b) ++{ ++ return vreinterpretq_m128i_u32( ++ vcgtq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b))); ++} ++ ++// Compare packed signed 8-bit integers in a and b for greater-than, and store ++// the results in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpgt_epi8 ++FORCE_INLINE __m128i _mm_cmpgt_epi8(__m128i a, __m128i b) ++{ ++ return vreinterpretq_m128i_u8( ++ vcgtq_s8(vreinterpretq_s8_m128i(a), vreinterpretq_s8_m128i(b))); ++} ++ ++// Compare packed double-precision (64-bit) floating-point elements in a and b ++// for greater-than, and store the results in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpgt_pd ++FORCE_INLINE __m128d _mm_cmpgt_pd(__m128d a, __m128d b) ++{ ++#if defined(__aarch64__) || defined(_M_ARM64) ++ return vreinterpretq_m128d_u64( ++ vcgtq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b))); ++#else ++ uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a)); ++ uint64_t a1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(a)); ++ uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b)); ++ uint64_t b1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(b)); ++ uint64_t d[2]; ++ d[0] = (*(double *) &a0) > (*(double *) &b0) ? ~UINT64_C(0) : UINT64_C(0); ++ d[1] = (*(double *) &a1) > (*(double *) &b1) ? ~UINT64_C(0) : UINT64_C(0); ++ ++ return vreinterpretq_m128d_u64(vld1q_u64(d)); ++#endif ++} ++ ++// Compare the lower double-precision (64-bit) floating-point elements in a and ++// b for greater-than, store the result in the lower element of dst, and copy ++// the upper element from a to the upper element of dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpgt_sd ++FORCE_INLINE __m128d _mm_cmpgt_sd(__m128d a, __m128d b) ++{ ++#if defined(__aarch64__) || defined(_M_ARM64) ++ return _mm_move_sd(a, _mm_cmpgt_pd(a, b)); ++#else ++ // expand "_mm_cmpge_pd()" to reduce unnecessary operations ++ uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a)); ++ uint64_t a1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(a)); ++ uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b)); ++ uint64_t d[2]; ++ d[0] = (*(double *) &a0) > (*(double *) &b0) ? ~UINT64_C(0) : UINT64_C(0); ++ d[1] = a1; ++ ++ return vreinterpretq_m128d_u64(vld1q_u64(d)); ++#endif ++} ++ ++// Compare packed double-precision (64-bit) floating-point elements in a and b ++// for less-than-or-equal, and store the results in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmple_pd ++FORCE_INLINE __m128d _mm_cmple_pd(__m128d a, __m128d b) ++{ ++#if defined(__aarch64__) || defined(_M_ARM64) ++ return vreinterpretq_m128d_u64( ++ vcleq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b))); ++#else ++ uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a)); ++ uint64_t a1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(a)); ++ uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b)); ++ uint64_t b1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(b)); ++ uint64_t d[2]; ++ d[0] = (*(double *) &a0) <= (*(double *) &b0) ? ~UINT64_C(0) : UINT64_C(0); ++ d[1] = (*(double *) &a1) <= (*(double *) &b1) ? ~UINT64_C(0) : UINT64_C(0); ++ ++ return vreinterpretq_m128d_u64(vld1q_u64(d)); ++#endif ++} ++ ++// Compare the lower double-precision (64-bit) floating-point elements in a and ++// b for less-than-or-equal, store the result in the lower element of dst, and ++// copy the upper element from a to the upper element of dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmple_sd ++FORCE_INLINE __m128d _mm_cmple_sd(__m128d a, __m128d b) ++{ ++#if defined(__aarch64__) || defined(_M_ARM64) ++ return _mm_move_sd(a, _mm_cmple_pd(a, b)); ++#else ++ // expand "_mm_cmpge_pd()" to reduce unnecessary operations ++ uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a)); ++ uint64_t a1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(a)); ++ uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b)); ++ uint64_t d[2]; ++ d[0] = (*(double *) &a0) <= (*(double *) &b0) ? ~UINT64_C(0) : UINT64_C(0); ++ d[1] = a1; ++ ++ return vreinterpretq_m128d_u64(vld1q_u64(d)); ++#endif ++} ++ ++// Compare packed signed 16-bit integers in a and b for less-than, and store the ++// results in dst. Note: This intrinsic emits the pcmpgtw instruction with the ++// order of the operands switched. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmplt_epi16 ++FORCE_INLINE __m128i _mm_cmplt_epi16(__m128i a, __m128i b) ++{ ++ return vreinterpretq_m128i_u16( ++ vcltq_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b))); ++} ++ ++// Compare packed signed 32-bit integers in a and b for less-than, and store the ++// results in dst. Note: This intrinsic emits the pcmpgtd instruction with the ++// order of the operands switched. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmplt_epi32 ++FORCE_INLINE __m128i _mm_cmplt_epi32(__m128i a, __m128i b) ++{ ++ return vreinterpretq_m128i_u32( ++ vcltq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b))); ++} ++ ++// Compare packed signed 8-bit integers in a and b for less-than, and store the ++// results in dst. Note: This intrinsic emits the pcmpgtb instruction with the ++// order of the operands switched. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmplt_epi8 ++FORCE_INLINE __m128i _mm_cmplt_epi8(__m128i a, __m128i b) ++{ ++ return vreinterpretq_m128i_u8( ++ vcltq_s8(vreinterpretq_s8_m128i(a), vreinterpretq_s8_m128i(b))); ++} ++ ++// Compare packed double-precision (64-bit) floating-point elements in a and b ++// for less-than, and store the results in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmplt_pd ++FORCE_INLINE __m128d _mm_cmplt_pd(__m128d a, __m128d b) ++{ ++#if defined(__aarch64__) || defined(_M_ARM64) ++ return vreinterpretq_m128d_u64( ++ vcltq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b))); ++#else ++ uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a)); ++ uint64_t a1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(a)); ++ uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b)); ++ uint64_t b1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(b)); ++ uint64_t d[2]; ++ d[0] = (*(double *) &a0) < (*(double *) &b0) ? ~UINT64_C(0) : UINT64_C(0); ++ d[1] = (*(double *) &a1) < (*(double *) &b1) ? ~UINT64_C(0) : UINT64_C(0); ++ ++ return vreinterpretq_m128d_u64(vld1q_u64(d)); ++#endif ++} ++ ++// Compare the lower double-precision (64-bit) floating-point elements in a and ++// b for less-than, store the result in the lower element of dst, and copy the ++// upper element from a to the upper element of dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmplt_sd ++FORCE_INLINE __m128d _mm_cmplt_sd(__m128d a, __m128d b) ++{ ++#if defined(__aarch64__) || defined(_M_ARM64) ++ return _mm_move_sd(a, _mm_cmplt_pd(a, b)); ++#else ++ uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a)); ++ uint64_t a1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(a)); ++ uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b)); ++ uint64_t d[2]; ++ d[0] = (*(double *) &a0) < (*(double *) &b0) ? ~UINT64_C(0) : UINT64_C(0); ++ d[1] = a1; ++ ++ return vreinterpretq_m128d_u64(vld1q_u64(d)); ++#endif ++} ++ ++// Compare packed double-precision (64-bit) floating-point elements in a and b ++// for not-equal, and store the results in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpneq_pd ++FORCE_INLINE __m128d _mm_cmpneq_pd(__m128d a, __m128d b) ++{ ++#if defined(__aarch64__) || defined(_M_ARM64) ++ return vreinterpretq_m128d_s32(vmvnq_s32(vreinterpretq_s32_u64( ++ vceqq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b))))); ++#else ++ // (a == b) -> (a_lo == b_lo) && (a_hi == b_hi) ++ uint32x4_t cmp = ++ vceqq_u32(vreinterpretq_u32_m128d(a), vreinterpretq_u32_m128d(b)); ++ uint32x4_t swapped = vrev64q_u32(cmp); ++ return vreinterpretq_m128d_u32(vmvnq_u32(vandq_u32(cmp, swapped))); ++#endif ++} ++ ++// Compare the lower double-precision (64-bit) floating-point elements in a and ++// b for not-equal, store the result in the lower element of dst, and copy the ++// upper element from a to the upper element of dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpneq_sd ++FORCE_INLINE __m128d _mm_cmpneq_sd(__m128d a, __m128d b) ++{ ++ return _mm_move_sd(a, _mm_cmpneq_pd(a, b)); ++} ++ ++// Compare packed double-precision (64-bit) floating-point elements in a and b ++// for not-greater-than-or-equal, and store the results in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpnge_pd ++FORCE_INLINE __m128d _mm_cmpnge_pd(__m128d a, __m128d b) ++{ ++#if defined(__aarch64__) || defined(_M_ARM64) ++ return vreinterpretq_m128d_u64(veorq_u64( ++ vcgeq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b)), ++ vdupq_n_u64(UINT64_MAX))); ++#else ++ uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a)); ++ uint64_t a1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(a)); ++ uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b)); ++ uint64_t b1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(b)); ++ uint64_t d[2]; ++ d[0] = ++ !((*(double *) &a0) >= (*(double *) &b0)) ? ~UINT64_C(0) : UINT64_C(0); ++ d[1] = ++ !((*(double *) &a1) >= (*(double *) &b1)) ? ~UINT64_C(0) : UINT64_C(0); ++ ++ return vreinterpretq_m128d_u64(vld1q_u64(d)); ++#endif ++} ++ ++// Compare the lower double-precision (64-bit) floating-point elements in a and ++// b for not-greater-than-or-equal, store the result in the lower element of ++// dst, and copy the upper element from a to the upper element of dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpnge_sd ++FORCE_INLINE __m128d _mm_cmpnge_sd(__m128d a, __m128d b) ++{ ++ return _mm_move_sd(a, _mm_cmpnge_pd(a, b)); ++} ++ ++// Compare packed double-precision (64-bit) floating-point elements in a and b ++// for not-greater-than, and store the results in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_cmpngt_pd ++FORCE_INLINE __m128d _mm_cmpngt_pd(__m128d a, __m128d b) ++{ ++#if defined(__aarch64__) || defined(_M_ARM64) ++ return vreinterpretq_m128d_u64(veorq_u64( ++ vcgtq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b)), ++ vdupq_n_u64(UINT64_MAX))); ++#else ++ uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a)); ++ uint64_t a1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(a)); ++ uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b)); ++ uint64_t b1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(b)); ++ uint64_t d[2]; ++ d[0] = ++ !((*(double *) &a0) > (*(double *) &b0)) ? ~UINT64_C(0) : UINT64_C(0); ++ d[1] = ++ !((*(double *) &a1) > (*(double *) &b1)) ? ~UINT64_C(0) : UINT64_C(0); ++ ++ return vreinterpretq_m128d_u64(vld1q_u64(d)); ++#endif ++} ++ ++// Compare the lower double-precision (64-bit) floating-point elements in a and ++// b for not-greater-than, store the result in the lower element of dst, and ++// copy the upper element from a to the upper element of dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpngt_sd ++FORCE_INLINE __m128d _mm_cmpngt_sd(__m128d a, __m128d b) ++{ ++ return _mm_move_sd(a, _mm_cmpngt_pd(a, b)); ++} ++ ++// Compare packed double-precision (64-bit) floating-point elements in a and b ++// for not-less-than-or-equal, and store the results in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpnle_pd ++FORCE_INLINE __m128d _mm_cmpnle_pd(__m128d a, __m128d b) ++{ ++#if defined(__aarch64__) || defined(_M_ARM64) ++ return vreinterpretq_m128d_u64(veorq_u64( ++ vcleq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b)), ++ vdupq_n_u64(UINT64_MAX))); ++#else ++ uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a)); ++ uint64_t a1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(a)); ++ uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b)); ++ uint64_t b1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(b)); ++ uint64_t d[2]; ++ d[0] = ++ !((*(double *) &a0) <= (*(double *) &b0)) ? ~UINT64_C(0) : UINT64_C(0); ++ d[1] = ++ !((*(double *) &a1) <= (*(double *) &b1)) ? ~UINT64_C(0) : UINT64_C(0); ++ ++ return vreinterpretq_m128d_u64(vld1q_u64(d)); ++#endif ++} ++ ++// Compare the lower double-precision (64-bit) floating-point elements in a and ++// b for not-less-than-or-equal, store the result in the lower element of dst, ++// and copy the upper element from a to the upper element of dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpnle_sd ++FORCE_INLINE __m128d _mm_cmpnle_sd(__m128d a, __m128d b) ++{ ++ return _mm_move_sd(a, _mm_cmpnle_pd(a, b)); ++} ++ ++// Compare packed double-precision (64-bit) floating-point elements in a and b ++// for not-less-than, and store the results in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpnlt_pd ++FORCE_INLINE __m128d _mm_cmpnlt_pd(__m128d a, __m128d b) ++{ ++#if defined(__aarch64__) || defined(_M_ARM64) ++ return vreinterpretq_m128d_u64(veorq_u64( ++ vcltq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b)), ++ vdupq_n_u64(UINT64_MAX))); ++#else ++ uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a)); ++ uint64_t a1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(a)); ++ uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b)); ++ uint64_t b1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(b)); ++ uint64_t d[2]; ++ d[0] = ++ !((*(double *) &a0) < (*(double *) &b0)) ? ~UINT64_C(0) : UINT64_C(0); ++ d[1] = ++ !((*(double *) &a1) < (*(double *) &b1)) ? ~UINT64_C(0) : UINT64_C(0); ++ ++ return vreinterpretq_m128d_u64(vld1q_u64(d)); ++#endif ++} ++ ++// Compare the lower double-precision (64-bit) floating-point elements in a and ++// b for not-less-than, store the result in the lower element of dst, and copy ++// the upper element from a to the upper element of dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpnlt_sd ++FORCE_INLINE __m128d _mm_cmpnlt_sd(__m128d a, __m128d b) ++{ ++ return _mm_move_sd(a, _mm_cmpnlt_pd(a, b)); ++} ++ ++// Compare packed double-precision (64-bit) floating-point elements in a and b ++// to see if neither is NaN, and store the results in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpord_pd ++FORCE_INLINE __m128d _mm_cmpord_pd(__m128d a, __m128d b) ++{ ++#if defined(__aarch64__) || defined(_M_ARM64) ++ // Excluding NaNs, any two floating point numbers can be compared. ++ uint64x2_t not_nan_a = ++ vceqq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(a)); ++ uint64x2_t not_nan_b = ++ vceqq_f64(vreinterpretq_f64_m128d(b), vreinterpretq_f64_m128d(b)); ++ return vreinterpretq_m128d_u64(vandq_u64(not_nan_a, not_nan_b)); ++#else ++ uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a)); ++ uint64_t a1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(a)); ++ uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b)); ++ uint64_t b1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(b)); ++ uint64_t d[2]; ++ d[0] = ((*(double *) &a0) == (*(double *) &a0) && ++ (*(double *) &b0) == (*(double *) &b0)) ++ ? ~UINT64_C(0) ++ : UINT64_C(0); ++ d[1] = ((*(double *) &a1) == (*(double *) &a1) && ++ (*(double *) &b1) == (*(double *) &b1)) ++ ? ~UINT64_C(0) ++ : UINT64_C(0); ++ ++ return vreinterpretq_m128d_u64(vld1q_u64(d)); ++#endif ++} ++ ++// Compare the lower double-precision (64-bit) floating-point elements in a and ++// b to see if neither is NaN, store the result in the lower element of dst, and ++// copy the upper element from a to the upper element of dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpord_sd ++FORCE_INLINE __m128d _mm_cmpord_sd(__m128d a, __m128d b) ++{ ++#if defined(__aarch64__) || defined(_M_ARM64) ++ return _mm_move_sd(a, _mm_cmpord_pd(a, b)); ++#else ++ uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a)); ++ uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b)); ++ uint64_t a1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(a)); ++ uint64_t d[2]; ++ d[0] = ((*(double *) &a0) == (*(double *) &a0) && ++ (*(double *) &b0) == (*(double *) &b0)) ++ ? ~UINT64_C(0) ++ : UINT64_C(0); ++ d[1] = a1; ++ ++ return vreinterpretq_m128d_u64(vld1q_u64(d)); ++#endif ++} ++ ++// Compare packed double-precision (64-bit) floating-point elements in a and b ++// to see if either is NaN, and store the results in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpunord_pd ++FORCE_INLINE __m128d _mm_cmpunord_pd(__m128d a, __m128d b) ++{ ++#if defined(__aarch64__) || defined(_M_ARM64) ++ // Two NaNs are not equal in comparison operation. ++ uint64x2_t not_nan_a = ++ vceqq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(a)); ++ uint64x2_t not_nan_b = ++ vceqq_f64(vreinterpretq_f64_m128d(b), vreinterpretq_f64_m128d(b)); ++ return vreinterpretq_m128d_s32( ++ vmvnq_s32(vreinterpretq_s32_u64(vandq_u64(not_nan_a, not_nan_b)))); ++#else ++ uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a)); ++ uint64_t a1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(a)); ++ uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b)); ++ uint64_t b1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(b)); ++ uint64_t d[2]; ++ d[0] = ((*(double *) &a0) == (*(double *) &a0) && ++ (*(double *) &b0) == (*(double *) &b0)) ++ ? UINT64_C(0) ++ : ~UINT64_C(0); ++ d[1] = ((*(double *) &a1) == (*(double *) &a1) && ++ (*(double *) &b1) == (*(double *) &b1)) ++ ? UINT64_C(0) ++ : ~UINT64_C(0); ++ ++ return vreinterpretq_m128d_u64(vld1q_u64(d)); ++#endif ++} ++ ++// Compare the lower double-precision (64-bit) floating-point elements in a and ++// b to see if either is NaN, store the result in the lower element of dst, and ++// copy the upper element from a to the upper element of dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpunord_sd ++FORCE_INLINE __m128d _mm_cmpunord_sd(__m128d a, __m128d b) ++{ ++#if defined(__aarch64__) || defined(_M_ARM64) ++ return _mm_move_sd(a, _mm_cmpunord_pd(a, b)); ++#else ++ uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a)); ++ uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b)); ++ uint64_t a1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(a)); ++ uint64_t d[2]; ++ d[0] = ((*(double *) &a0) == (*(double *) &a0) && ++ (*(double *) &b0) == (*(double *) &b0)) ++ ? UINT64_C(0) ++ : ~UINT64_C(0); ++ d[1] = a1; ++ ++ return vreinterpretq_m128d_u64(vld1q_u64(d)); ++#endif ++} ++ ++// Compare the lower double-precision (64-bit) floating-point element in a and b ++// for greater-than-or-equal, and return the boolean result (0 or 1). ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_comige_sd ++FORCE_INLINE int _mm_comige_sd(__m128d a, __m128d b) ++{ ++#if defined(__aarch64__) || defined(_M_ARM64) ++ return vgetq_lane_u64(vcgeq_f64(a, b), 0) & 0x1; ++#else ++ uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a)); ++ uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b)); ++ ++ return (*(double *) &a0 >= *(double *) &b0); ++#endif ++} ++ ++// Compare the lower double-precision (64-bit) floating-point element in a and b ++// for greater-than, and return the boolean result (0 or 1). ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_comigt_sd ++FORCE_INLINE int _mm_comigt_sd(__m128d a, __m128d b) ++{ ++#if defined(__aarch64__) || defined(_M_ARM64) ++ return vgetq_lane_u64(vcgtq_f64(a, b), 0) & 0x1; ++#else ++ uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a)); ++ uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b)); ++ ++ return (*(double *) &a0 > *(double *) &b0); ++#endif ++} ++ ++// Compare the lower double-precision (64-bit) floating-point element in a and b ++// for less-than-or-equal, and return the boolean result (0 or 1). ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_comile_sd ++FORCE_INLINE int _mm_comile_sd(__m128d a, __m128d b) ++{ ++#if defined(__aarch64__) || defined(_M_ARM64) ++ return vgetq_lane_u64(vcleq_f64(a, b), 0) & 0x1; ++#else ++ uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a)); ++ uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b)); ++ ++ return (*(double *) &a0 <= *(double *) &b0); ++#endif ++} ++ ++// Compare the lower double-precision (64-bit) floating-point element in a and b ++// for less-than, and return the boolean result (0 or 1). ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_comilt_sd ++FORCE_INLINE int _mm_comilt_sd(__m128d a, __m128d b) ++{ ++#if defined(__aarch64__) || defined(_M_ARM64) ++ return vgetq_lane_u64(vcltq_f64(a, b), 0) & 0x1; ++#else ++ uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a)); ++ uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b)); ++ ++ return (*(double *) &a0 < *(double *) &b0); ++#endif ++} ++ ++// Compare the lower double-precision (64-bit) floating-point element in a and b ++// for equality, and return the boolean result (0 or 1). ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_comieq_sd ++FORCE_INLINE int _mm_comieq_sd(__m128d a, __m128d b) ++{ ++#if defined(__aarch64__) || defined(_M_ARM64) ++ return vgetq_lane_u64(vceqq_f64(a, b), 0) & 0x1; ++#else ++ uint32x4_t a_not_nan = ++ vceqq_u32(vreinterpretq_u32_m128d(a), vreinterpretq_u32_m128d(a)); ++ uint32x4_t b_not_nan = ++ vceqq_u32(vreinterpretq_u32_m128d(b), vreinterpretq_u32_m128d(b)); ++ uint32x4_t a_and_b_not_nan = vandq_u32(a_not_nan, b_not_nan); ++ uint32x4_t a_eq_b = ++ vceqq_u32(vreinterpretq_u32_m128d(a), vreinterpretq_u32_m128d(b)); ++ uint64x2_t and_results = vandq_u64(vreinterpretq_u64_u32(a_and_b_not_nan), ++ vreinterpretq_u64_u32(a_eq_b)); ++ return vgetq_lane_u64(and_results, 0) & 0x1; ++#endif ++} ++ ++// Compare the lower double-precision (64-bit) floating-point element in a and b ++// for not-equal, and return the boolean result (0 or 1). ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_comineq_sd ++FORCE_INLINE int _mm_comineq_sd(__m128d a, __m128d b) ++{ ++ return !_mm_comieq_sd(a, b); ++} ++ ++// Convert packed signed 32-bit integers in a to packed double-precision ++// (64-bit) floating-point elements, and store the results in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtepi32_pd ++FORCE_INLINE __m128d _mm_cvtepi32_pd(__m128i a) ++{ ++#if defined(__aarch64__) || defined(_M_ARM64) ++ return vreinterpretq_m128d_f64( ++ vcvtq_f64_s64(vmovl_s32(vget_low_s32(vreinterpretq_s32_m128i(a))))); ++#else ++ double a0 = (double) vgetq_lane_s32(vreinterpretq_s32_m128i(a), 0); ++ double a1 = (double) vgetq_lane_s32(vreinterpretq_s32_m128i(a), 1); ++ return _mm_set_pd(a1, a0); ++#endif ++} ++ ++// Convert packed signed 32-bit integers in a to packed single-precision ++// (32-bit) floating-point elements, and store the results in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtepi32_ps ++FORCE_INLINE __m128 _mm_cvtepi32_ps(__m128i a) ++{ ++ return vreinterpretq_m128_f32(vcvtq_f32_s32(vreinterpretq_s32_m128i(a))); ++} ++ ++// Convert packed double-precision (64-bit) floating-point elements in a to ++// packed 32-bit integers, and store the results in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtpd_epi32 ++FORCE_INLINE_OPTNONE __m128i _mm_cvtpd_epi32(__m128d a) ++{ ++// vrnd32xq_f64 not supported on clang ++#if defined(__ARM_FEATURE_FRINT) && !defined(__clang__) ++ float64x2_t rounded = vrnd32xq_f64(vreinterpretq_f64_m128d(a)); ++ int64x2_t integers = vcvtq_s64_f64(rounded); ++ return vreinterpretq_m128i_s32( ++ vcombine_s32(vmovn_s64(integers), vdup_n_s32(0))); ++#else ++ __m128d rnd = _mm_round_pd(a, _MM_FROUND_CUR_DIRECTION); ++ double d0 = ((double *) &rnd)[0]; ++ double d1 = ((double *) &rnd)[1]; ++ return _mm_set_epi32(0, 0, (int32_t) d1, (int32_t) d0); ++#endif ++} ++ ++// Convert packed double-precision (64-bit) floating-point elements in a to ++// packed 32-bit integers, and store the results in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtpd_pi32 ++FORCE_INLINE_OPTNONE __m64 _mm_cvtpd_pi32(__m128d a) ++{ ++ __m128d rnd = _mm_round_pd(a, _MM_FROUND_CUR_DIRECTION); ++ double d0 = ((double *) &rnd)[0]; ++ double d1 = ((double *) &rnd)[1]; ++ int32_t ALIGN_STRUCT(16) data[2] = {(int32_t) d0, (int32_t) d1}; ++ return vreinterpret_m64_s32(vld1_s32(data)); ++} ++ ++// Convert packed double-precision (64-bit) floating-point elements in a to ++// packed single-precision (32-bit) floating-point elements, and store the ++// results in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtpd_ps ++FORCE_INLINE __m128 _mm_cvtpd_ps(__m128d a) ++{ ++#if defined(__aarch64__) || defined(_M_ARM64) ++ float32x2_t tmp = vcvt_f32_f64(vreinterpretq_f64_m128d(a)); ++ return vreinterpretq_m128_f32(vcombine_f32(tmp, vdup_n_f32(0))); ++#else ++ float a0 = (float) ((double *) &a)[0]; ++ float a1 = (float) ((double *) &a)[1]; ++ return _mm_set_ps(0, 0, a1, a0); ++#endif ++} ++ ++// Convert packed signed 32-bit integers in a to packed double-precision ++// (64-bit) floating-point elements, and store the results in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtpi32_pd ++FORCE_INLINE __m128d _mm_cvtpi32_pd(__m64 a) ++{ ++#if defined(__aarch64__) || defined(_M_ARM64) ++ return vreinterpretq_m128d_f64( ++ vcvtq_f64_s64(vmovl_s32(vreinterpret_s32_m64(a)))); ++#else ++ double a0 = (double) vget_lane_s32(vreinterpret_s32_m64(a), 0); ++ double a1 = (double) vget_lane_s32(vreinterpret_s32_m64(a), 1); ++ return _mm_set_pd(a1, a0); ++#endif ++} ++ ++// Convert packed single-precision (32-bit) floating-point elements in a to ++// packed 32-bit integers, and store the results in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtps_epi32 ++// *NOTE*. The default rounding mode on SSE is 'round to even', which ARMv7-A ++// does not support! It is supported on ARMv8-A however. ++FORCE_INLINE __m128i _mm_cvtps_epi32(__m128 a) ++{ ++#if defined(__ARM_FEATURE_FRINT) ++ return vreinterpretq_m128i_s32(vcvtq_s32_f32(vrnd32xq_f32(a))); ++#elif (defined(__aarch64__) || defined(_M_ARM64)) || \ ++ defined(__ARM_FEATURE_DIRECTED_ROUNDING) ++ switch (_MM_GET_ROUNDING_MODE()) { ++ case _MM_ROUND_NEAREST: ++ return vreinterpretq_m128i_s32(vcvtnq_s32_f32(a)); ++ case _MM_ROUND_DOWN: ++ return vreinterpretq_m128i_s32(vcvtmq_s32_f32(a)); ++ case _MM_ROUND_UP: ++ return vreinterpretq_m128i_s32(vcvtpq_s32_f32(a)); ++ default: // _MM_ROUND_TOWARD_ZERO ++ return vreinterpretq_m128i_s32(vcvtq_s32_f32(a)); ++ } ++#else ++ float *f = (float *) &a; ++ switch (_MM_GET_ROUNDING_MODE()) { ++ case _MM_ROUND_NEAREST: { ++ uint32x4_t signmask = vdupq_n_u32(0x80000000); ++ float32x4_t half = vbslq_f32(signmask, vreinterpretq_f32_m128(a), ++ vdupq_n_f32(0.5f)); /* +/- 0.5 */ ++ int32x4_t r_normal = vcvtq_s32_f32(vaddq_f32( ++ vreinterpretq_f32_m128(a), half)); /* round to integer: [a + 0.5]*/ ++ int32x4_t r_trunc = vcvtq_s32_f32( ++ vreinterpretq_f32_m128(a)); /* truncate to integer: [a] */ ++ int32x4_t plusone = vreinterpretq_s32_u32(vshrq_n_u32( ++ vreinterpretq_u32_s32(vnegq_s32(r_trunc)), 31)); /* 1 or 0 */ ++ int32x4_t r_even = vbicq_s32(vaddq_s32(r_trunc, plusone), ++ vdupq_n_s32(1)); /* ([a] + {0,1}) & ~1 */ ++ float32x4_t delta = vsubq_f32( ++ vreinterpretq_f32_m128(a), ++ vcvtq_f32_s32(r_trunc)); /* compute delta: delta = (a - [a]) */ ++ uint32x4_t is_delta_half = ++ vceqq_f32(delta, half); /* delta == +/- 0.5 */ ++ return vreinterpretq_m128i_s32( ++ vbslq_s32(is_delta_half, r_even, r_normal)); ++ } ++ case _MM_ROUND_DOWN: ++ return _mm_set_epi32(floorf(f[3]), floorf(f[2]), floorf(f[1]), ++ floorf(f[0])); ++ case _MM_ROUND_UP: ++ return _mm_set_epi32(ceilf(f[3]), ceilf(f[2]), ceilf(f[1]), ++ ceilf(f[0])); ++ default: // _MM_ROUND_TOWARD_ZERO ++ return _mm_set_epi32((int32_t) f[3], (int32_t) f[2], (int32_t) f[1], ++ (int32_t) f[0]); ++ } ++#endif ++} ++ ++// Convert packed single-precision (32-bit) floating-point elements in a to ++// packed double-precision (64-bit) floating-point elements, and store the ++// results in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtps_pd ++FORCE_INLINE __m128d _mm_cvtps_pd(__m128 a) ++{ ++#if defined(__aarch64__) || defined(_M_ARM64) ++ return vreinterpretq_m128d_f64( ++ vcvt_f64_f32(vget_low_f32(vreinterpretq_f32_m128(a)))); ++#else ++ double a0 = (double) vgetq_lane_f32(vreinterpretq_f32_m128(a), 0); ++ double a1 = (double) vgetq_lane_f32(vreinterpretq_f32_m128(a), 1); ++ return _mm_set_pd(a1, a0); ++#endif ++} ++ ++// Copy the lower double-precision (64-bit) floating-point element of a to dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtsd_f64 ++FORCE_INLINE double _mm_cvtsd_f64(__m128d a) ++{ ++#if defined(__aarch64__) || defined(_M_ARM64) ++ return (double) vgetq_lane_f64(vreinterpretq_f64_m128d(a), 0); ++#else ++ return ((double *) &a)[0]; ++#endif ++} ++ ++// Convert the lower double-precision (64-bit) floating-point element in a to a ++// 32-bit integer, and store the result in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtsd_si32 ++FORCE_INLINE int32_t _mm_cvtsd_si32(__m128d a) ++{ ++#if defined(__aarch64__) || defined(_M_ARM64) ++ return (int32_t) vgetq_lane_f64(vrndiq_f64(vreinterpretq_f64_m128d(a)), 0); ++#else ++ __m128d rnd = _mm_round_pd(a, _MM_FROUND_CUR_DIRECTION); ++ double ret = ((double *) &rnd)[0]; ++ return (int32_t) ret; ++#endif ++} ++ ++// Convert the lower double-precision (64-bit) floating-point element in a to a ++// 64-bit integer, and store the result in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtsd_si64 ++FORCE_INLINE int64_t _mm_cvtsd_si64(__m128d a) ++{ ++#if defined(__aarch64__) || defined(_M_ARM64) ++ return (int64_t) vgetq_lane_f64(vrndiq_f64(vreinterpretq_f64_m128d(a)), 0); ++#else ++ __m128d rnd = _mm_round_pd(a, _MM_FROUND_CUR_DIRECTION); ++ double ret = ((double *) &rnd)[0]; ++ return (int64_t) ret; ++#endif ++} ++ ++// Convert the lower double-precision (64-bit) floating-point element in a to a ++// 64-bit integer, and store the result in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtsd_si64x ++#define _mm_cvtsd_si64x _mm_cvtsd_si64 ++ ++// Convert the lower double-precision (64-bit) floating-point element in b to a ++// single-precision (32-bit) floating-point element, store the result in the ++// lower element of dst, and copy the upper 3 packed elements from a to the ++// upper elements of dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtsd_ss ++FORCE_INLINE __m128 _mm_cvtsd_ss(__m128 a, __m128d b) ++{ ++#if defined(__aarch64__) || defined(_M_ARM64) ++ return vreinterpretq_m128_f32(vsetq_lane_f32( ++ vget_lane_f32(vcvt_f32_f64(vreinterpretq_f64_m128d(b)), 0), ++ vreinterpretq_f32_m128(a), 0)); ++#else ++ return vreinterpretq_m128_f32(vsetq_lane_f32((float) ((double *) &b)[0], ++ vreinterpretq_f32_m128(a), 0)); ++#endif ++} ++ ++// Copy the lower 32-bit integer in a to dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtsi128_si32 ++FORCE_INLINE int _mm_cvtsi128_si32(__m128i a) ++{ ++ return vgetq_lane_s32(vreinterpretq_s32_m128i(a), 0); ++} ++ ++// Copy the lower 64-bit integer in a to dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtsi128_si64 ++FORCE_INLINE int64_t _mm_cvtsi128_si64(__m128i a) ++{ ++ return vgetq_lane_s64(vreinterpretq_s64_m128i(a), 0); ++} ++ ++// Copy the lower 64-bit integer in a to dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtsi128_si64x ++#define _mm_cvtsi128_si64x(a) _mm_cvtsi128_si64(a) ++ ++// Convert the signed 32-bit integer b to a double-precision (64-bit) ++// floating-point element, store the result in the lower element of dst, and ++// copy the upper element from a to the upper element of dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtsi32_sd ++FORCE_INLINE __m128d _mm_cvtsi32_sd(__m128d a, int32_t b) ++{ ++#if defined(__aarch64__) || defined(_M_ARM64) ++ return vreinterpretq_m128d_f64( ++ vsetq_lane_f64((double) b, vreinterpretq_f64_m128d(a), 0)); ++#else ++ double bf = (double) b; ++ return vreinterpretq_m128d_s64( ++ vsetq_lane_s64(*(int64_t *) &bf, vreinterpretq_s64_m128d(a), 0)); ++#endif ++} ++ ++// Copy the lower 64-bit integer in a to dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtsi128_si64x ++#define _mm_cvtsi128_si64x(a) _mm_cvtsi128_si64(a) ++ ++// Copy 32-bit integer a to the lower elements of dst, and zero the upper ++// elements of dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtsi32_si128 ++FORCE_INLINE __m128i _mm_cvtsi32_si128(int a) ++{ ++ return vreinterpretq_m128i_s32(vsetq_lane_s32(a, vdupq_n_s32(0), 0)); ++} ++ ++// Convert the signed 64-bit integer b to a double-precision (64-bit) ++// floating-point element, store the result in the lower element of dst, and ++// copy the upper element from a to the upper element of dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtsi64_sd ++FORCE_INLINE __m128d _mm_cvtsi64_sd(__m128d a, int64_t b) ++{ ++#if defined(__aarch64__) || defined(_M_ARM64) ++ return vreinterpretq_m128d_f64( ++ vsetq_lane_f64((double) b, vreinterpretq_f64_m128d(a), 0)); ++#else ++ double bf = (double) b; ++ return vreinterpretq_m128d_s64( ++ vsetq_lane_s64(*(int64_t *) &bf, vreinterpretq_s64_m128d(a), 0)); ++#endif ++} ++ ++// Copy 64-bit integer a to the lower element of dst, and zero the upper ++// element. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtsi64_si128 ++FORCE_INLINE __m128i _mm_cvtsi64_si128(int64_t a) ++{ ++ return vreinterpretq_m128i_s64(vsetq_lane_s64(a, vdupq_n_s64(0), 0)); ++} ++ ++// Copy 64-bit integer a to the lower element of dst, and zero the upper ++// element. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtsi64x_si128 ++#define _mm_cvtsi64x_si128(a) _mm_cvtsi64_si128(a) ++ ++// Convert the signed 64-bit integer b to a double-precision (64-bit) ++// floating-point element, store the result in the lower element of dst, and ++// copy the upper element from a to the upper element of dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtsi64x_sd ++#define _mm_cvtsi64x_sd(a, b) _mm_cvtsi64_sd(a, b) ++ ++// Convert the lower single-precision (32-bit) floating-point element in b to a ++// double-precision (64-bit) floating-point element, store the result in the ++// lower element of dst, and copy the upper element from a to the upper element ++// of dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtss_sd ++FORCE_INLINE __m128d _mm_cvtss_sd(__m128d a, __m128 b) ++{ ++ double d = (double) vgetq_lane_f32(vreinterpretq_f32_m128(b), 0); ++#if defined(__aarch64__) || defined(_M_ARM64) ++ return vreinterpretq_m128d_f64( ++ vsetq_lane_f64(d, vreinterpretq_f64_m128d(a), 0)); ++#else ++ return vreinterpretq_m128d_s64( ++ vsetq_lane_s64(*(int64_t *) &d, vreinterpretq_s64_m128d(a), 0)); ++#endif ++} ++ ++// Convert packed double-precision (64-bit) floating-point elements in a to ++// packed 32-bit integers with truncation, and store the results in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvttpd_epi32 ++FORCE_INLINE __m128i _mm_cvttpd_epi32(__m128d a) ++{ ++ double a0 = ((double *) &a)[0]; ++ double a1 = ((double *) &a)[1]; ++ return _mm_set_epi32(0, 0, (int32_t) a1, (int32_t) a0); ++} ++ ++// Convert packed double-precision (64-bit) floating-point elements in a to ++// packed 32-bit integers with truncation, and store the results in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvttpd_pi32 ++FORCE_INLINE __m64 _mm_cvttpd_pi32(__m128d a) ++{ ++ double a0 = ((double *) &a)[0]; ++ double a1 = ((double *) &a)[1]; ++ int32_t ALIGN_STRUCT(16) data[2] = {(int32_t) a0, (int32_t) a1}; ++ return vreinterpret_m64_s32(vld1_s32(data)); ++} ++ ++// Convert packed single-precision (32-bit) floating-point elements in a to ++// packed 32-bit integers with truncation, and store the results in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvttps_epi32 ++FORCE_INLINE __m128i _mm_cvttps_epi32(__m128 a) ++{ ++ return vreinterpretq_m128i_s32(vcvtq_s32_f32(vreinterpretq_f32_m128(a))); ++} ++ ++// Convert the lower double-precision (64-bit) floating-point element in a to a ++// 32-bit integer with truncation, and store the result in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvttsd_si32 ++FORCE_INLINE int32_t _mm_cvttsd_si32(__m128d a) ++{ ++ double ret = *((double *) &a); ++ return (int32_t) ret; ++} ++ ++// Convert the lower double-precision (64-bit) floating-point element in a to a ++// 64-bit integer with truncation, and store the result in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvttsd_si64 ++FORCE_INLINE int64_t _mm_cvttsd_si64(__m128d a) ++{ ++#if defined(__aarch64__) || defined(_M_ARM64) ++ return vgetq_lane_s64(vcvtq_s64_f64(vreinterpretq_f64_m128d(a)), 0); ++#else ++ double ret = *((double *) &a); ++ return (int64_t) ret; ++#endif ++} ++ ++// Convert the lower double-precision (64-bit) floating-point element in a to a ++// 64-bit integer with truncation, and store the result in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvttsd_si64x ++#define _mm_cvttsd_si64x(a) _mm_cvttsd_si64(a) ++ ++// Divide packed double-precision (64-bit) floating-point elements in a by ++// packed elements in b, and store the results in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_div_pd ++FORCE_INLINE __m128d _mm_div_pd(__m128d a, __m128d b) ++{ ++#if defined(__aarch64__) || defined(_M_ARM64) ++ return vreinterpretq_m128d_f64( ++ vdivq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b))); ++#else ++ double *da = (double *) &a; ++ double *db = (double *) &b; ++ double c[2]; ++ c[0] = da[0] / db[0]; ++ c[1] = da[1] / db[1]; ++ return vld1q_f32((float32_t *) c); ++#endif ++} ++ ++// Divide the lower double-precision (64-bit) floating-point element in a by the ++// lower double-precision (64-bit) floating-point element in b, store the result ++// in the lower element of dst, and copy the upper element from a to the upper ++// element of dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_div_sd ++FORCE_INLINE __m128d _mm_div_sd(__m128d a, __m128d b) ++{ ++#if defined(__aarch64__) || defined(_M_ARM64) ++ float64x2_t tmp = ++ vdivq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b)); ++ return vreinterpretq_m128d_f64( ++ vsetq_lane_f64(vgetq_lane_f64(vreinterpretq_f64_m128d(a), 1), tmp, 1)); ++#else ++ return _mm_move_sd(a, _mm_div_pd(a, b)); ++#endif ++} ++ ++// Extract a 16-bit integer from a, selected with imm8, and store the result in ++// the lower element of dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_extract_epi16 ++// FORCE_INLINE int _mm_extract_epi16(__m128i a, __constrange(0,8) int imm) ++#define _mm_extract_epi16(a, imm) \ ++ vgetq_lane_u16(vreinterpretq_u16_m128i(a), (imm)) ++ ++// Copy a to dst, and insert the 16-bit integer i into dst at the location ++// specified by imm8. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_insert_epi16 ++// FORCE_INLINE __m128i _mm_insert_epi16(__m128i a, int b, ++// __constrange(0,8) int imm) ++#define _mm_insert_epi16(a, b, imm) \ ++ vreinterpretq_m128i_s16( \ ++ vsetq_lane_s16((b), vreinterpretq_s16_m128i(a), (imm))) ++ ++// Load 128-bits (composed of 2 packed double-precision (64-bit) floating-point ++// elements) from memory into dst. mem_addr must be aligned on a 16-byte ++// boundary or a general-protection exception may be generated. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_load_pd ++FORCE_INLINE __m128d _mm_load_pd(const double *p) ++{ ++#if defined(__aarch64__) || defined(_M_ARM64) ++ return vreinterpretq_m128d_f64(vld1q_f64(p)); ++#else ++ const float *fp = (const float *) p; ++ float ALIGN_STRUCT(16) data[4] = {fp[0], fp[1], fp[2], fp[3]}; ++ return vreinterpretq_m128d_f32(vld1q_f32(data)); ++#endif ++} ++ ++// Load a double-precision (64-bit) floating-point element from memory into both ++// elements of dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_load_pd1 ++#define _mm_load_pd1 _mm_load1_pd ++ ++// Load a double-precision (64-bit) floating-point element from memory into the ++// lower of dst, and zero the upper element. mem_addr does not need to be ++// aligned on any particular boundary. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_load_sd ++FORCE_INLINE __m128d _mm_load_sd(const double *p) ++{ ++#if defined(__aarch64__) || defined(_M_ARM64) ++ return vreinterpretq_m128d_f64(vsetq_lane_f64(*p, vdupq_n_f64(0), 0)); ++#else ++ const float *fp = (const float *) p; ++ float ALIGN_STRUCT(16) data[4] = {fp[0], fp[1], 0, 0}; ++ return vreinterpretq_m128d_f32(vld1q_f32(data)); ++#endif ++} ++ ++// Load 128-bits of integer data from memory into dst. mem_addr must be aligned ++// on a 16-byte boundary or a general-protection exception may be generated. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_load_si128 ++FORCE_INLINE __m128i _mm_load_si128(const __m128i *p) ++{ ++ return vreinterpretq_m128i_s32(vld1q_s32((const int32_t *) p)); ++} ++ ++// Load a double-precision (64-bit) floating-point element from memory into both ++// elements of dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_load1_pd ++FORCE_INLINE __m128d _mm_load1_pd(const double *p) ++{ ++#if defined(__aarch64__) || defined(_M_ARM64) ++ return vreinterpretq_m128d_f64(vld1q_dup_f64(p)); ++#else ++ return vreinterpretq_m128d_s64(vdupq_n_s64(*(const int64_t *) p)); ++#endif ++} ++ ++// Load a double-precision (64-bit) floating-point element from memory into the ++// upper element of dst, and copy the lower element from a to dst. mem_addr does ++// not need to be aligned on any particular boundary. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_loadh_pd ++FORCE_INLINE __m128d _mm_loadh_pd(__m128d a, const double *p) ++{ ++#if defined(__aarch64__) || defined(_M_ARM64) ++ return vreinterpretq_m128d_f64( ++ vcombine_f64(vget_low_f64(vreinterpretq_f64_m128d(a)), vld1_f64(p))); ++#else ++ return vreinterpretq_m128d_f32(vcombine_f32( ++ vget_low_f32(vreinterpretq_f32_m128d(a)), vld1_f32((const float *) p))); ++#endif ++} ++ ++// Load 64-bit integer from memory into the first element of dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_loadl_epi64 ++FORCE_INLINE __m128i _mm_loadl_epi64(__m128i const *p) ++{ ++ /* Load the lower 64 bits of the value pointed to by p into the ++ * lower 64 bits of the result, zeroing the upper 64 bits of the result. ++ */ ++ return vreinterpretq_m128i_s32( ++ vcombine_s32(vld1_s32((int32_t const *) p), vcreate_s32(0))); ++} ++ ++// Load a double-precision (64-bit) floating-point element from memory into the ++// lower element of dst, and copy the upper element from a to dst. mem_addr does ++// not need to be aligned on any particular boundary. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_loadl_pd ++FORCE_INLINE __m128d _mm_loadl_pd(__m128d a, const double *p) ++{ ++#if defined(__aarch64__) || defined(_M_ARM64) ++ return vreinterpretq_m128d_f64( ++ vcombine_f64(vld1_f64(p), vget_high_f64(vreinterpretq_f64_m128d(a)))); ++#else ++ return vreinterpretq_m128d_f32( ++ vcombine_f32(vld1_f32((const float *) p), ++ vget_high_f32(vreinterpretq_f32_m128d(a)))); ++#endif ++} ++ ++// Load 2 double-precision (64-bit) floating-point elements from memory into dst ++// in reverse order. mem_addr must be aligned on a 16-byte boundary or a ++// general-protection exception may be generated. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_loadr_pd ++FORCE_INLINE __m128d _mm_loadr_pd(const double *p) ++{ ++#if defined(__aarch64__) || defined(_M_ARM64) ++ float64x2_t v = vld1q_f64(p); ++ return vreinterpretq_m128d_f64(vextq_f64(v, v, 1)); ++#else ++ int64x2_t v = vld1q_s64((const int64_t *) p); ++ return vreinterpretq_m128d_s64(vextq_s64(v, v, 1)); ++#endif ++} ++ ++// Loads two double-precision from unaligned memory, floating-point values. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_loadu_pd ++FORCE_INLINE __m128d _mm_loadu_pd(const double *p) ++{ ++ return _mm_load_pd(p); ++} ++ ++// Load 128-bits of integer data from memory into dst. mem_addr does not need to ++// be aligned on any particular boundary. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_loadu_si128 ++FORCE_INLINE __m128i _mm_loadu_si128(const __m128i *p) ++{ ++ return vreinterpretq_m128i_s32(vld1q_s32((const unaligned_int32_t *) p)); ++} ++ ++// Load unaligned 32-bit integer from memory into the first element of dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_loadu_si32 ++FORCE_INLINE __m128i _mm_loadu_si32(const void *p) ++{ ++ return vreinterpretq_m128i_s32( ++ vsetq_lane_s32(*(const unaligned_int32_t *) p, vdupq_n_s32(0), 0)); ++} ++ ++// Multiply packed signed 16-bit integers in a and b, producing intermediate ++// signed 32-bit integers. Horizontally add adjacent pairs of intermediate ++// 32-bit integers, and pack the results in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_madd_epi16 ++FORCE_INLINE __m128i _mm_madd_epi16(__m128i a, __m128i b) ++{ ++ int32x4_t low = vmull_s16(vget_low_s16(vreinterpretq_s16_m128i(a)), ++ vget_low_s16(vreinterpretq_s16_m128i(b))); ++#if defined(__aarch64__) || defined(_M_ARM64) ++ int32x4_t high = ++ vmull_high_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b)); ++ ++ return vreinterpretq_m128i_s32(vpaddq_s32(low, high)); ++#else ++ int32x4_t high = vmull_s16(vget_high_s16(vreinterpretq_s16_m128i(a)), ++ vget_high_s16(vreinterpretq_s16_m128i(b))); ++ ++ int32x2_t low_sum = vpadd_s32(vget_low_s32(low), vget_high_s32(low)); ++ int32x2_t high_sum = vpadd_s32(vget_low_s32(high), vget_high_s32(high)); ++ ++ return vreinterpretq_m128i_s32(vcombine_s32(low_sum, high_sum)); ++#endif ++} ++ ++// Conditionally store 8-bit integer elements from a into memory using mask ++// (elements are not stored when the highest bit is not set in the corresponding ++// element) and a non-temporal memory hint. mem_addr does not need to be aligned ++// on any particular boundary. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_maskmoveu_si128 ++FORCE_INLINE void _mm_maskmoveu_si128(__m128i a, __m128i mask, char *mem_addr) ++{ ++ int8x16_t shr_mask = vshrq_n_s8(vreinterpretq_s8_m128i(mask), 7); ++ __m128 b = _mm_load_ps((const float *) mem_addr); ++ int8x16_t masked = ++ vbslq_s8(vreinterpretq_u8_s8(shr_mask), vreinterpretq_s8_m128i(a), ++ vreinterpretq_s8_m128(b)); ++ vst1q_s8((int8_t *) mem_addr, masked); ++} ++ ++// Compare packed signed 16-bit integers in a and b, and store packed maximum ++// values in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_max_epi16 ++FORCE_INLINE __m128i _mm_max_epi16(__m128i a, __m128i b) ++{ ++ return vreinterpretq_m128i_s16( ++ vmaxq_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b))); ++} ++ ++// Compare packed unsigned 8-bit integers in a and b, and store packed maximum ++// values in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_max_epu8 ++FORCE_INLINE __m128i _mm_max_epu8(__m128i a, __m128i b) ++{ ++ return vreinterpretq_m128i_u8( ++ vmaxq_u8(vreinterpretq_u8_m128i(a), vreinterpretq_u8_m128i(b))); ++} ++ ++// Compare packed double-precision (64-bit) floating-point elements in a and b, ++// and store packed maximum values in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_max_pd ++FORCE_INLINE __m128d _mm_max_pd(__m128d a, __m128d b) ++{ ++#if defined(__aarch64__) || defined(_M_ARM64) ++#if SSE2NEON_PRECISE_MINMAX ++ float64x2_t _a = vreinterpretq_f64_m128d(a); ++ float64x2_t _b = vreinterpretq_f64_m128d(b); ++ return vreinterpretq_m128d_f64(vbslq_f64(vcgtq_f64(_a, _b), _a, _b)); ++#else ++ return vreinterpretq_m128d_f64( ++ vmaxq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b))); ++#endif ++#else ++ uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a)); ++ uint64_t a1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(a)); ++ uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b)); ++ uint64_t b1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(b)); ++ uint64_t d[2]; ++ d[0] = (*(double *) &a0) > (*(double *) &b0) ? a0 : b0; ++ d[1] = (*(double *) &a1) > (*(double *) &b1) ? a1 : b1; ++ ++ return vreinterpretq_m128d_u64(vld1q_u64(d)); ++#endif ++} ++ ++// Compare the lower double-precision (64-bit) floating-point elements in a and ++// b, store the maximum value in the lower element of dst, and copy the upper ++// element from a to the upper element of dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_max_sd ++FORCE_INLINE __m128d _mm_max_sd(__m128d a, __m128d b) ++{ ++#if defined(__aarch64__) || defined(_M_ARM64) ++ return _mm_move_sd(a, _mm_max_pd(a, b)); ++#else ++ double *da = (double *) &a; ++ double *db = (double *) &b; ++ double c[2] = {da[0] > db[0] ? da[0] : db[0], da[1]}; ++ return vreinterpretq_m128d_f32(vld1q_f32((float32_t *) c)); ++#endif ++} ++ ++// Compare packed signed 16-bit integers in a and b, and store packed minimum ++// values in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_min_epi16 ++FORCE_INLINE __m128i _mm_min_epi16(__m128i a, __m128i b) ++{ ++ return vreinterpretq_m128i_s16( ++ vminq_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b))); ++} ++ ++// Compare packed unsigned 8-bit integers in a and b, and store packed minimum ++// values in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_min_epu8 ++FORCE_INLINE __m128i _mm_min_epu8(__m128i a, __m128i b) ++{ ++ return vreinterpretq_m128i_u8( ++ vminq_u8(vreinterpretq_u8_m128i(a), vreinterpretq_u8_m128i(b))); ++} ++ ++// Compare packed double-precision (64-bit) floating-point elements in a and b, ++// and store packed minimum values in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_min_pd ++FORCE_INLINE __m128d _mm_min_pd(__m128d a, __m128d b) ++{ ++#if defined(__aarch64__) || defined(_M_ARM64) ++#if SSE2NEON_PRECISE_MINMAX ++ float64x2_t _a = vreinterpretq_f64_m128d(a); ++ float64x2_t _b = vreinterpretq_f64_m128d(b); ++ return vreinterpretq_m128d_f64(vbslq_f64(vcltq_f64(_a, _b), _a, _b)); ++#else ++ return vreinterpretq_m128d_f64( ++ vminq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b))); ++#endif ++#else ++ uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a)); ++ uint64_t a1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(a)); ++ uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b)); ++ uint64_t b1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(b)); ++ uint64_t d[2]; ++ d[0] = (*(double *) &a0) < (*(double *) &b0) ? a0 : b0; ++ d[1] = (*(double *) &a1) < (*(double *) &b1) ? a1 : b1; ++ return vreinterpretq_m128d_u64(vld1q_u64(d)); ++#endif ++} ++ ++// Compare the lower double-precision (64-bit) floating-point elements in a and ++// b, store the minimum value in the lower element of dst, and copy the upper ++// element from a to the upper element of dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_min_sd ++FORCE_INLINE __m128d _mm_min_sd(__m128d a, __m128d b) ++{ ++#if defined(__aarch64__) || defined(_M_ARM64) ++ return _mm_move_sd(a, _mm_min_pd(a, b)); ++#else ++ double *da = (double *) &a; ++ double *db = (double *) &b; ++ double c[2] = {da[0] < db[0] ? da[0] : db[0], da[1]}; ++ return vreinterpretq_m128d_f32(vld1q_f32((float32_t *) c)); ++#endif ++} ++ ++// Copy the lower 64-bit integer in a to the lower element of dst, and zero the ++// upper element. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_move_epi64 ++FORCE_INLINE __m128i _mm_move_epi64(__m128i a) ++{ ++ return vreinterpretq_m128i_s64( ++ vsetq_lane_s64(0, vreinterpretq_s64_m128i(a), 1)); ++} ++ ++// Move the lower double-precision (64-bit) floating-point element from b to the ++// lower element of dst, and copy the upper element from a to the upper element ++// of dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_move_sd ++FORCE_INLINE __m128d _mm_move_sd(__m128d a, __m128d b) ++{ ++ return vreinterpretq_m128d_f32( ++ vcombine_f32(vget_low_f32(vreinterpretq_f32_m128d(b)), ++ vget_high_f32(vreinterpretq_f32_m128d(a)))); ++} ++ ++// Create mask from the most significant bit of each 8-bit element in a, and ++// store the result in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_movemask_epi8 ++FORCE_INLINE int _mm_movemask_epi8(__m128i a) ++{ ++ // Use increasingly wide shifts+adds to collect the sign bits ++ // together. ++ // Since the widening shifts would be rather confusing to follow in little ++ // endian, everything will be illustrated in big endian order instead. This ++ // has a different result - the bits would actually be reversed on a big ++ // endian machine. ++ ++ // Starting input (only half the elements are shown): ++ // 89 ff 1d c0 00 10 99 33 ++ uint8x16_t input = vreinterpretq_u8_m128i(a); ++ ++ // Shift out everything but the sign bits with an unsigned shift right. ++ // ++ // Bytes of the vector:: ++ // 89 ff 1d c0 00 10 99 33 ++ // \ \ \ \ \ \ \ \ high_bits = (uint16x4_t)(input >> 7) ++ // | | | | | | | | ++ // 01 01 00 01 00 00 01 00 ++ // ++ // Bits of first important lane(s): ++ // 10001001 (89) ++ // \______ ++ // | ++ // 00000001 (01) ++ uint16x8_t high_bits = vreinterpretq_u16_u8(vshrq_n_u8(input, 7)); ++ ++ // Merge the even lanes together with a 16-bit unsigned shift right + add. ++ // 'xx' represents garbage data which will be ignored in the final result. ++ // In the important bytes, the add functions like a binary OR. ++ // ++ // 01 01 00 01 00 00 01 00 ++ // \_ | \_ | \_ | \_ | paired16 = (uint32x4_t)(input + (input >> 7)) ++ // \| \| \| \| ++ // xx 03 xx 01 xx 00 xx 02 ++ // ++ // 00000001 00000001 (01 01) ++ // \_______ | ++ // \| ++ // xxxxxxxx xxxxxx11 (xx 03) ++ uint32x4_t paired16 = ++ vreinterpretq_u32_u16(vsraq_n_u16(high_bits, high_bits, 7)); ++ ++ // Repeat with a wider 32-bit shift + add. ++ // xx 03 xx 01 xx 00 xx 02 ++ // \____ | \____ | paired32 = (uint64x1_t)(paired16 + (paired16 >> ++ // 14)) ++ // \| \| ++ // xx xx xx 0d xx xx xx 02 ++ // ++ // 00000011 00000001 (03 01) ++ // \\_____ || ++ // '----.\|| ++ // xxxxxxxx xxxx1101 (xx 0d) ++ uint64x2_t paired32 = ++ vreinterpretq_u64_u32(vsraq_n_u32(paired16, paired16, 14)); ++ ++ // Last, an even wider 64-bit shift + add to get our result in the low 8 bit ++ // lanes. xx xx xx 0d xx xx xx 02 ++ // \_________ | paired64 = (uint8x8_t)(paired32 + (paired32 >> ++ // 28)) ++ // \| ++ // xx xx xx xx xx xx xx d2 ++ // ++ // 00001101 00000010 (0d 02) ++ // \ \___ | | ++ // '---. \| | ++ // xxxxxxxx 11010010 (xx d2) ++ uint8x16_t paired64 = ++ vreinterpretq_u8_u64(vsraq_n_u64(paired32, paired32, 28)); ++ ++ // Extract the low 8 bits from each 64-bit lane with 2 8-bit extracts. ++ // xx xx xx xx xx xx xx d2 ++ // || return paired64[0] ++ // d2 ++ // Note: Little endian would return the correct value 4b (01001011) instead. ++ return vgetq_lane_u8(paired64, 0) | ((int) vgetq_lane_u8(paired64, 8) << 8); ++} ++ ++// Set each bit of mask dst based on the most significant bit of the ++// corresponding packed double-precision (64-bit) floating-point element in a. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_movemask_pd ++FORCE_INLINE int _mm_movemask_pd(__m128d a) ++{ ++ uint64x2_t input = vreinterpretq_u64_m128d(a); ++ uint64x2_t high_bits = vshrq_n_u64(input, 63); ++ return (int) (vgetq_lane_u64(high_bits, 0) | ++ (vgetq_lane_u64(high_bits, 1) << 1)); ++} ++ ++// Copy the lower 64-bit integer in a to dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_movepi64_pi64 ++FORCE_INLINE __m64 _mm_movepi64_pi64(__m128i a) ++{ ++ return vreinterpret_m64_s64(vget_low_s64(vreinterpretq_s64_m128i(a))); ++} ++ ++// Copy the 64-bit integer a to the lower element of dst, and zero the upper ++// element. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_movpi64_epi64 ++FORCE_INLINE __m128i _mm_movpi64_epi64(__m64 a) ++{ ++ return vreinterpretq_m128i_s64( ++ vcombine_s64(vreinterpret_s64_m64(a), vdup_n_s64(0))); ++} ++ ++// Multiply the low unsigned 32-bit integers from each packed 64-bit element in ++// a and b, and store the unsigned 64-bit results in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_mul_epu32 ++FORCE_INLINE __m128i _mm_mul_epu32(__m128i a, __m128i b) ++{ ++ // vmull_u32 upcasts instead of masking, so we downcast. ++ uint32x2_t a_lo = vmovn_u64(vreinterpretq_u64_m128i(a)); ++ uint32x2_t b_lo = vmovn_u64(vreinterpretq_u64_m128i(b)); ++ return vreinterpretq_m128i_u64(vmull_u32(a_lo, b_lo)); ++} ++ ++// Multiply packed double-precision (64-bit) floating-point elements in a and b, ++// and store the results in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_mul_pd ++FORCE_INLINE __m128d _mm_mul_pd(__m128d a, __m128d b) ++{ ++#if defined(__aarch64__) || defined(_M_ARM64) ++ return vreinterpretq_m128d_f64( ++ vmulq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b))); ++#else ++ double *da = (double *) &a; ++ double *db = (double *) &b; ++ double c[2]; ++ c[0] = da[0] * db[0]; ++ c[1] = da[1] * db[1]; ++ return vld1q_f32((float32_t *) c); ++#endif ++} ++ ++// Multiply the lower double-precision (64-bit) floating-point element in a and ++// b, store the result in the lower element of dst, and copy the upper element ++// from a to the upper element of dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=mm_mul_sd ++FORCE_INLINE __m128d _mm_mul_sd(__m128d a, __m128d b) ++{ ++ return _mm_move_sd(a, _mm_mul_pd(a, b)); ++} ++ ++// Multiply the low unsigned 32-bit integers from a and b, and store the ++// unsigned 64-bit result in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_mul_su32 ++FORCE_INLINE __m64 _mm_mul_su32(__m64 a, __m64 b) ++{ ++ return vreinterpret_m64_u64(vget_low_u64( ++ vmull_u32(vreinterpret_u32_m64(a), vreinterpret_u32_m64(b)))); ++} ++ ++// Multiply the packed signed 16-bit integers in a and b, producing intermediate ++// 32-bit integers, and store the high 16 bits of the intermediate integers in ++// dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_mulhi_epi16 ++FORCE_INLINE __m128i _mm_mulhi_epi16(__m128i a, __m128i b) ++{ ++ /* FIXME: issue with large values because of result saturation */ ++ // int16x8_t ret = vqdmulhq_s16(vreinterpretq_s16_m128i(a), ++ // vreinterpretq_s16_m128i(b)); /* =2*a*b */ return ++ // vreinterpretq_m128i_s16(vshrq_n_s16(ret, 1)); ++ int16x4_t a3210 = vget_low_s16(vreinterpretq_s16_m128i(a)); ++ int16x4_t b3210 = vget_low_s16(vreinterpretq_s16_m128i(b)); ++ int32x4_t ab3210 = vmull_s16(a3210, b3210); /* 3333222211110000 */ ++ int16x4_t a7654 = vget_high_s16(vreinterpretq_s16_m128i(a)); ++ int16x4_t b7654 = vget_high_s16(vreinterpretq_s16_m128i(b)); ++ int32x4_t ab7654 = vmull_s16(a7654, b7654); /* 7777666655554444 */ ++ uint16x8x2_t r = ++ vuzpq_u16(vreinterpretq_u16_s32(ab3210), vreinterpretq_u16_s32(ab7654)); ++ return vreinterpretq_m128i_u16(r.val[1]); ++} ++ ++// Multiply the packed unsigned 16-bit integers in a and b, producing ++// intermediate 32-bit integers, and store the high 16 bits of the intermediate ++// integers in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_mulhi_epu16 ++FORCE_INLINE __m128i _mm_mulhi_epu16(__m128i a, __m128i b) ++{ ++ uint16x4_t a3210 = vget_low_u16(vreinterpretq_u16_m128i(a)); ++ uint16x4_t b3210 = vget_low_u16(vreinterpretq_u16_m128i(b)); ++ uint32x4_t ab3210 = vmull_u16(a3210, b3210); ++#if defined(__aarch64__) || defined(_M_ARM64) ++ uint32x4_t ab7654 = ++ vmull_high_u16(vreinterpretq_u16_m128i(a), vreinterpretq_u16_m128i(b)); ++ uint16x8_t r = vuzp2q_u16(vreinterpretq_u16_u32(ab3210), ++ vreinterpretq_u16_u32(ab7654)); ++ return vreinterpretq_m128i_u16(r); ++#else ++ uint16x4_t a7654 = vget_high_u16(vreinterpretq_u16_m128i(a)); ++ uint16x4_t b7654 = vget_high_u16(vreinterpretq_u16_m128i(b)); ++ uint32x4_t ab7654 = vmull_u16(a7654, b7654); ++ uint16x8x2_t r = ++ vuzpq_u16(vreinterpretq_u16_u32(ab3210), vreinterpretq_u16_u32(ab7654)); ++ return vreinterpretq_m128i_u16(r.val[1]); ++#endif ++} ++ ++// Multiply the packed 16-bit integers in a and b, producing intermediate 32-bit ++// integers, and store the low 16 bits of the intermediate integers in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_mullo_epi16 ++FORCE_INLINE __m128i _mm_mullo_epi16(__m128i a, __m128i b) ++{ ++ return vreinterpretq_m128i_s16( ++ vmulq_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b))); ++} ++ ++// Compute the bitwise OR of packed double-precision (64-bit) floating-point ++// elements in a and b, and store the results in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=mm_or_pd ++FORCE_INLINE __m128d _mm_or_pd(__m128d a, __m128d b) ++{ ++ return vreinterpretq_m128d_s64( ++ vorrq_s64(vreinterpretq_s64_m128d(a), vreinterpretq_s64_m128d(b))); ++} ++ ++// Compute the bitwise OR of 128 bits (representing integer data) in a and b, ++// and store the result in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_or_si128 ++FORCE_INLINE __m128i _mm_or_si128(__m128i a, __m128i b) ++{ ++ return vreinterpretq_m128i_s32( ++ vorrq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b))); ++} ++ ++// Convert packed signed 16-bit integers from a and b to packed 8-bit integers ++// using signed saturation, and store the results in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_packs_epi16 ++FORCE_INLINE __m128i _mm_packs_epi16(__m128i a, __m128i b) ++{ ++ return vreinterpretq_m128i_s8( ++ vcombine_s8(vqmovn_s16(vreinterpretq_s16_m128i(a)), ++ vqmovn_s16(vreinterpretq_s16_m128i(b)))); ++} ++ ++// Convert packed signed 32-bit integers from a and b to packed 16-bit integers ++// using signed saturation, and store the results in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_packs_epi32 ++FORCE_INLINE __m128i _mm_packs_epi32(__m128i a, __m128i b) ++{ ++ return vreinterpretq_m128i_s16( ++ vcombine_s16(vqmovn_s32(vreinterpretq_s32_m128i(a)), ++ vqmovn_s32(vreinterpretq_s32_m128i(b)))); ++} ++ ++// Convert packed signed 16-bit integers from a and b to packed 8-bit integers ++// using unsigned saturation, and store the results in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_packus_epi16 ++FORCE_INLINE __m128i _mm_packus_epi16(const __m128i a, const __m128i b) ++{ ++ return vreinterpretq_m128i_u8( ++ vcombine_u8(vqmovun_s16(vreinterpretq_s16_m128i(a)), ++ vqmovun_s16(vreinterpretq_s16_m128i(b)))); ++} ++ ++// Pause the processor. This is typically used in spin-wait loops and depending ++// on the x86 processor typical values are in the 40-100 cycle range. The ++// 'yield' instruction isn't a good fit because it's effectively a nop on most ++// Arm cores. Experience with several databases has shown has shown an 'isb' is ++// a reasonable approximation. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_pause ++FORCE_INLINE void _mm_pause(void) ++{ ++#if defined(_MSC_VER) ++ __isb(_ARM64_BARRIER_SY); ++#else ++ __asm__ __volatile__("isb\n"); ++#endif ++} ++ ++// Compute the absolute differences of packed unsigned 8-bit integers in a and ++// b, then horizontally sum each consecutive 8 differences to produce two ++// unsigned 16-bit integers, and pack these unsigned 16-bit integers in the low ++// 16 bits of 64-bit elements in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sad_epu8 ++FORCE_INLINE __m128i _mm_sad_epu8(__m128i a, __m128i b) ++{ ++ uint16x8_t t = vpaddlq_u8(vabdq_u8((uint8x16_t) a, (uint8x16_t) b)); ++ return vreinterpretq_m128i_u64(vpaddlq_u32(vpaddlq_u16(t))); ++} ++ ++// Set packed 16-bit integers in dst with the supplied values. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_set_epi16 ++FORCE_INLINE __m128i _mm_set_epi16(short i7, ++ short i6, ++ short i5, ++ short i4, ++ short i3, ++ short i2, ++ short i1, ++ short i0) ++{ ++ int16_t ALIGN_STRUCT(16) data[8] = {i0, i1, i2, i3, i4, i5, i6, i7}; ++ return vreinterpretq_m128i_s16(vld1q_s16(data)); ++} ++ ++// Set packed 32-bit integers in dst with the supplied values. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_set_epi32 ++FORCE_INLINE __m128i _mm_set_epi32(int i3, int i2, int i1, int i0) ++{ ++ int32_t ALIGN_STRUCT(16) data[4] = {i0, i1, i2, i3}; ++ return vreinterpretq_m128i_s32(vld1q_s32(data)); ++} ++ ++// Set packed 64-bit integers in dst with the supplied values. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_set_epi64 ++FORCE_INLINE __m128i _mm_set_epi64(__m64 i1, __m64 i2) ++{ ++ return _mm_set_epi64x(vget_lane_s64(i1, 0), vget_lane_s64(i2, 0)); ++} ++ ++// Set packed 64-bit integers in dst with the supplied values. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_set_epi64x ++FORCE_INLINE __m128i _mm_set_epi64x(int64_t i1, int64_t i2) ++{ ++ return vreinterpretq_m128i_s64( ++ vcombine_s64(vcreate_s64(i2), vcreate_s64(i1))); ++} ++ ++// Set packed 8-bit integers in dst with the supplied values. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_set_epi8 ++FORCE_INLINE __m128i _mm_set_epi8(signed char b15, ++ signed char b14, ++ signed char b13, ++ signed char b12, ++ signed char b11, ++ signed char b10, ++ signed char b9, ++ signed char b8, ++ signed char b7, ++ signed char b6, ++ signed char b5, ++ signed char b4, ++ signed char b3, ++ signed char b2, ++ signed char b1, ++ signed char b0) ++{ ++ int8_t ALIGN_STRUCT(16) ++ data[16] = {(int8_t) b0, (int8_t) b1, (int8_t) b2, (int8_t) b3, ++ (int8_t) b4, (int8_t) b5, (int8_t) b6, (int8_t) b7, ++ (int8_t) b8, (int8_t) b9, (int8_t) b10, (int8_t) b11, ++ (int8_t) b12, (int8_t) b13, (int8_t) b14, (int8_t) b15}; ++ return (__m128i) vld1q_s8(data); ++} ++ ++// Set packed double-precision (64-bit) floating-point elements in dst with the ++// supplied values. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_set_pd ++FORCE_INLINE __m128d _mm_set_pd(double e1, double e0) ++{ ++ double ALIGN_STRUCT(16) data[2] = {e0, e1}; ++#if defined(__aarch64__) || defined(_M_ARM64) ++ return vreinterpretq_m128d_f64(vld1q_f64((float64_t *) data)); ++#else ++ return vreinterpretq_m128d_f32(vld1q_f32((float32_t *) data)); ++#endif ++} ++ ++// Broadcast double-precision (64-bit) floating-point value a to all elements of ++// dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_set_pd1 ++#define _mm_set_pd1 _mm_set1_pd ++ ++// Copy double-precision (64-bit) floating-point element a to the lower element ++// of dst, and zero the upper element. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_set_sd ++FORCE_INLINE __m128d _mm_set_sd(double a) ++{ ++#if defined(__aarch64__) || defined(_M_ARM64) ++ return vreinterpretq_m128d_f64(vsetq_lane_f64(a, vdupq_n_f64(0), 0)); ++#else ++ return _mm_set_pd(0, a); ++#endif ++} ++ ++// Broadcast 16-bit integer a to all elements of dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_set1_epi16 ++FORCE_INLINE __m128i _mm_set1_epi16(short w) ++{ ++ return vreinterpretq_m128i_s16(vdupq_n_s16(w)); ++} ++ ++// Broadcast 32-bit integer a to all elements of dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_set1_epi32 ++FORCE_INLINE __m128i _mm_set1_epi32(int _i) ++{ ++ return vreinterpretq_m128i_s32(vdupq_n_s32(_i)); ++} ++ ++// Broadcast 64-bit integer a to all elements of dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_set1_epi64 ++FORCE_INLINE __m128i _mm_set1_epi64(__m64 _i) ++{ ++ return vreinterpretq_m128i_s64(vdupq_lane_s64(_i, 0)); ++} ++ ++// Broadcast 64-bit integer a to all elements of dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_set1_epi64x ++FORCE_INLINE __m128i _mm_set1_epi64x(int64_t _i) ++{ ++ return vreinterpretq_m128i_s64(vdupq_n_s64(_i)); ++} ++ ++// Broadcast 8-bit integer a to all elements of dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_set1_epi8 ++FORCE_INLINE __m128i _mm_set1_epi8(signed char w) ++{ ++ return vreinterpretq_m128i_s8(vdupq_n_s8(w)); ++} ++ ++// Broadcast double-precision (64-bit) floating-point value a to all elements of ++// dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_set1_pd ++FORCE_INLINE __m128d _mm_set1_pd(double d) ++{ ++#if defined(__aarch64__) || defined(_M_ARM64) ++ return vreinterpretq_m128d_f64(vdupq_n_f64(d)); ++#else ++ return vreinterpretq_m128d_s64(vdupq_n_s64(*(int64_t *) &d)); ++#endif ++} ++ ++// Set packed 16-bit integers in dst with the supplied values in reverse order. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_setr_epi16 ++FORCE_INLINE __m128i _mm_setr_epi16(short w0, ++ short w1, ++ short w2, ++ short w3, ++ short w4, ++ short w5, ++ short w6, ++ short w7) ++{ ++ int16_t ALIGN_STRUCT(16) data[8] = {w0, w1, w2, w3, w4, w5, w6, w7}; ++ return vreinterpretq_m128i_s16(vld1q_s16((int16_t *) data)); ++} ++ ++// Set packed 32-bit integers in dst with the supplied values in reverse order. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_setr_epi32 ++FORCE_INLINE __m128i _mm_setr_epi32(int i3, int i2, int i1, int i0) ++{ ++ int32_t ALIGN_STRUCT(16) data[4] = {i3, i2, i1, i0}; ++ return vreinterpretq_m128i_s32(vld1q_s32(data)); ++} ++ ++// Set packed 64-bit integers in dst with the supplied values in reverse order. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_setr_epi64 ++FORCE_INLINE __m128i _mm_setr_epi64(__m64 e1, __m64 e0) ++{ ++ return vreinterpretq_m128i_s64(vcombine_s64(e1, e0)); ++} ++ ++// Set packed 8-bit integers in dst with the supplied values in reverse order. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_setr_epi8 ++FORCE_INLINE __m128i _mm_setr_epi8(signed char b0, ++ signed char b1, ++ signed char b2, ++ signed char b3, ++ signed char b4, ++ signed char b5, ++ signed char b6, ++ signed char b7, ++ signed char b8, ++ signed char b9, ++ signed char b10, ++ signed char b11, ++ signed char b12, ++ signed char b13, ++ signed char b14, ++ signed char b15) ++{ ++ int8_t ALIGN_STRUCT(16) ++ data[16] = {(int8_t) b0, (int8_t) b1, (int8_t) b2, (int8_t) b3, ++ (int8_t) b4, (int8_t) b5, (int8_t) b6, (int8_t) b7, ++ (int8_t) b8, (int8_t) b9, (int8_t) b10, (int8_t) b11, ++ (int8_t) b12, (int8_t) b13, (int8_t) b14, (int8_t) b15}; ++ return (__m128i) vld1q_s8(data); ++} ++ ++// Set packed double-precision (64-bit) floating-point elements in dst with the ++// supplied values in reverse order. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_setr_pd ++FORCE_INLINE __m128d _mm_setr_pd(double e1, double e0) ++{ ++ return _mm_set_pd(e0, e1); ++} ++ ++// Return vector of type __m128d with all elements set to zero. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_setzero_pd ++FORCE_INLINE __m128d _mm_setzero_pd(void) ++{ ++#if defined(__aarch64__) || defined(_M_ARM64) ++ return vreinterpretq_m128d_f64(vdupq_n_f64(0)); ++#else ++ return vreinterpretq_m128d_f32(vdupq_n_f32(0)); ++#endif ++} ++ ++// Return vector of type __m128i with all elements set to zero. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_setzero_si128 ++FORCE_INLINE __m128i _mm_setzero_si128(void) ++{ ++ return vreinterpretq_m128i_s32(vdupq_n_s32(0)); ++} ++ ++// Shuffle 32-bit integers in a using the control in imm8, and store the results ++// in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_shuffle_epi32 ++// FORCE_INLINE __m128i _mm_shuffle_epi32(__m128i a, ++// __constrange(0,255) int imm) ++#if defined(_sse2neon_shuffle) ++#define _mm_shuffle_epi32(a, imm) \ ++ __extension__({ \ ++ int32x4_t _input = vreinterpretq_s32_m128i(a); \ ++ int32x4_t _shuf = \ ++ vshuffleq_s32(_input, _input, (imm) & (0x3), ((imm) >> 2) & 0x3, \ ++ ((imm) >> 4) & 0x3, ((imm) >> 6) & 0x3); \ ++ vreinterpretq_m128i_s32(_shuf); \ ++ }) ++#else // generic ++#define _mm_shuffle_epi32(a, imm) \ ++ _sse2neon_define1( \ ++ __m128i, a, __m128i ret; switch (imm) { \ ++ case _MM_SHUFFLE(1, 0, 3, 2): \ ++ ret = _mm_shuffle_epi_1032(_a); \ ++ break; \ ++ case _MM_SHUFFLE(2, 3, 0, 1): \ ++ ret = _mm_shuffle_epi_2301(_a); \ ++ break; \ ++ case _MM_SHUFFLE(0, 3, 2, 1): \ ++ ret = _mm_shuffle_epi_0321(_a); \ ++ break; \ ++ case _MM_SHUFFLE(2, 1, 0, 3): \ ++ ret = _mm_shuffle_epi_2103(_a); \ ++ break; \ ++ case _MM_SHUFFLE(1, 0, 1, 0): \ ++ ret = _mm_shuffle_epi_1010(_a); \ ++ break; \ ++ case _MM_SHUFFLE(1, 0, 0, 1): \ ++ ret = _mm_shuffle_epi_1001(_a); \ ++ break; \ ++ case _MM_SHUFFLE(0, 1, 0, 1): \ ++ ret = _mm_shuffle_epi_0101(_a); \ ++ break; \ ++ case _MM_SHUFFLE(2, 2, 1, 1): \ ++ ret = _mm_shuffle_epi_2211(_a); \ ++ break; \ ++ case _MM_SHUFFLE(0, 1, 2, 2): \ ++ ret = _mm_shuffle_epi_0122(_a); \ ++ break; \ ++ case _MM_SHUFFLE(3, 3, 3, 2): \ ++ ret = _mm_shuffle_epi_3332(_a); \ ++ break; \ ++ case _MM_SHUFFLE(0, 0, 0, 0): \ ++ ret = _mm_shuffle_epi32_splat(_a, 0); \ ++ break; \ ++ case _MM_SHUFFLE(1, 1, 1, 1): \ ++ ret = _mm_shuffle_epi32_splat(_a, 1); \ ++ break; \ ++ case _MM_SHUFFLE(2, 2, 2, 2): \ ++ ret = _mm_shuffle_epi32_splat(_a, 2); \ ++ break; \ ++ case _MM_SHUFFLE(3, 3, 3, 3): \ ++ ret = _mm_shuffle_epi32_splat(_a, 3); \ ++ break; \ ++ default: \ ++ ret = _mm_shuffle_epi32_default(_a, (imm)); \ ++ break; \ ++ } _sse2neon_return(ret);) ++#endif ++ ++// Shuffle double-precision (64-bit) floating-point elements using the control ++// in imm8, and store the results in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_shuffle_pd ++#ifdef _sse2neon_shuffle ++#define _mm_shuffle_pd(a, b, imm8) \ ++ vreinterpretq_m128d_s64( \ ++ vshuffleq_s64(vreinterpretq_s64_m128d(a), vreinterpretq_s64_m128d(b), \ ++ imm8 & 0x1, ((imm8 & 0x2) >> 1) + 2)) ++#else ++#define _mm_shuffle_pd(a, b, imm8) \ ++ _mm_castsi128_pd(_mm_set_epi64x( \ ++ vgetq_lane_s64(vreinterpretq_s64_m128d(b), (imm8 & 0x2) >> 1), \ ++ vgetq_lane_s64(vreinterpretq_s64_m128d(a), imm8 & 0x1))) ++#endif ++ ++// FORCE_INLINE __m128i _mm_shufflehi_epi16(__m128i a, ++// __constrange(0,255) int imm) ++#if defined(_sse2neon_shuffle) ++#define _mm_shufflehi_epi16(a, imm) \ ++ __extension__({ \ ++ int16x8_t _input = vreinterpretq_s16_m128i(a); \ ++ int16x8_t _shuf = \ ++ vshuffleq_s16(_input, _input, 0, 1, 2, 3, ((imm) & (0x3)) + 4, \ ++ (((imm) >> 2) & 0x3) + 4, (((imm) >> 4) & 0x3) + 4, \ ++ (((imm) >> 6) & 0x3) + 4); \ ++ vreinterpretq_m128i_s16(_shuf); \ ++ }) ++#else // generic ++#define _mm_shufflehi_epi16(a, imm) _mm_shufflehi_epi16_function((a), (imm)) ++#endif ++ ++// FORCE_INLINE __m128i _mm_shufflelo_epi16(__m128i a, ++// __constrange(0,255) int imm) ++#if defined(_sse2neon_shuffle) ++#define _mm_shufflelo_epi16(a, imm) \ ++ __extension__({ \ ++ int16x8_t _input = vreinterpretq_s16_m128i(a); \ ++ int16x8_t _shuf = vshuffleq_s16( \ ++ _input, _input, ((imm) & (0x3)), (((imm) >> 2) & 0x3), \ ++ (((imm) >> 4) & 0x3), (((imm) >> 6) & 0x3), 4, 5, 6, 7); \ ++ vreinterpretq_m128i_s16(_shuf); \ ++ }) ++#else // generic ++#define _mm_shufflelo_epi16(a, imm) _mm_shufflelo_epi16_function((a), (imm)) ++#endif ++ ++// Shift packed 16-bit integers in a left by count while shifting in zeros, and ++// store the results in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sll_epi16 ++FORCE_INLINE __m128i _mm_sll_epi16(__m128i a, __m128i count) ++{ ++ uint64_t c = vreinterpretq_nth_u64_m128i(count, 0); ++ if (_sse2neon_unlikely(c & ~15)) ++ return _mm_setzero_si128(); ++ ++ int16x8_t vc = vdupq_n_s16((int16_t) c); ++ return vreinterpretq_m128i_s16(vshlq_s16(vreinterpretq_s16_m128i(a), vc)); ++} ++ ++// Shift packed 32-bit integers in a left by count while shifting in zeros, and ++// store the results in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sll_epi32 ++FORCE_INLINE __m128i _mm_sll_epi32(__m128i a, __m128i count) ++{ ++ uint64_t c = vreinterpretq_nth_u64_m128i(count, 0); ++ if (_sse2neon_unlikely(c & ~31)) ++ return _mm_setzero_si128(); ++ ++ int32x4_t vc = vdupq_n_s32((int32_t) c); ++ return vreinterpretq_m128i_s32(vshlq_s32(vreinterpretq_s32_m128i(a), vc)); ++} ++ ++// Shift packed 64-bit integers in a left by count while shifting in zeros, and ++// store the results in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sll_epi64 ++FORCE_INLINE __m128i _mm_sll_epi64(__m128i a, __m128i count) ++{ ++ uint64_t c = vreinterpretq_nth_u64_m128i(count, 0); ++ if (_sse2neon_unlikely(c & ~63)) ++ return _mm_setzero_si128(); ++ ++ int64x2_t vc = vdupq_n_s64((int64_t) c); ++ return vreinterpretq_m128i_s64(vshlq_s64(vreinterpretq_s64_m128i(a), vc)); ++} ++ ++// Shift packed 16-bit integers in a left by imm8 while shifting in zeros, and ++// store the results in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_slli_epi16 ++FORCE_INLINE __m128i _mm_slli_epi16(__m128i a, int imm) ++{ ++ if (_sse2neon_unlikely(imm & ~15)) ++ return _mm_setzero_si128(); ++ return vreinterpretq_m128i_s16( ++ vshlq_s16(vreinterpretq_s16_m128i(a), vdupq_n_s16(imm))); ++} ++ ++// Shift packed 32-bit integers in a left by imm8 while shifting in zeros, and ++// store the results in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_slli_epi32 ++FORCE_INLINE __m128i _mm_slli_epi32(__m128i a, int imm) ++{ ++ if (_sse2neon_unlikely(imm & ~31)) ++ return _mm_setzero_si128(); ++ return vreinterpretq_m128i_s32( ++ vshlq_s32(vreinterpretq_s32_m128i(a), vdupq_n_s32(imm))); ++} ++ ++// Shift packed 64-bit integers in a left by imm8 while shifting in zeros, and ++// store the results in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_slli_epi64 ++FORCE_INLINE __m128i _mm_slli_epi64(__m128i a, int imm) ++{ ++ if (_sse2neon_unlikely(imm & ~63)) ++ return _mm_setzero_si128(); ++ return vreinterpretq_m128i_s64( ++ vshlq_s64(vreinterpretq_s64_m128i(a), vdupq_n_s64(imm))); ++} ++ ++// Shift a left by imm8 bytes while shifting in zeros, and store the results in ++// dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_slli_si128 ++#define _mm_slli_si128(a, imm) \ ++ _sse2neon_define1( \ ++ __m128i, a, int8x16_t ret; \ ++ if (_sse2neon_unlikely(imm == 0)) ret = vreinterpretq_s8_m128i(_a); \ ++ else if (_sse2neon_unlikely((imm) & ~15)) ret = vdupq_n_s8(0); \ ++ else ret = vextq_s8(vdupq_n_s8(0), vreinterpretq_s8_m128i(_a), \ ++ ((imm <= 0 || imm > 15) ? 0 : (16 - imm))); \ ++ _sse2neon_return(vreinterpretq_m128i_s8(ret));) ++ ++// Compute the square root of packed double-precision (64-bit) floating-point ++// elements in a, and store the results in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sqrt_pd ++FORCE_INLINE __m128d _mm_sqrt_pd(__m128d a) ++{ ++#if defined(__aarch64__) || defined(_M_ARM64) ++ return vreinterpretq_m128d_f64(vsqrtq_f64(vreinterpretq_f64_m128d(a))); ++#else ++ double a0 = sqrt(((double *) &a)[0]); ++ double a1 = sqrt(((double *) &a)[1]); ++ return _mm_set_pd(a1, a0); ++#endif ++} ++ ++// Compute the square root of the lower double-precision (64-bit) floating-point ++// element in b, store the result in the lower element of dst, and copy the ++// upper element from a to the upper element of dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sqrt_sd ++FORCE_INLINE __m128d _mm_sqrt_sd(__m128d a, __m128d b) ++{ ++#if defined(__aarch64__) || defined(_M_ARM64) ++ return _mm_move_sd(a, _mm_sqrt_pd(b)); ++#else ++ return _mm_set_pd(((double *) &a)[1], sqrt(((double *) &b)[0])); ++#endif ++} ++ ++// Shift packed 16-bit integers in a right by count while shifting in sign bits, ++// and store the results in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sra_epi16 ++FORCE_INLINE __m128i _mm_sra_epi16(__m128i a, __m128i count) ++{ ++ int64_t c = vgetq_lane_s64(count, 0); ++ if (_sse2neon_unlikely(c & ~15)) ++ return _mm_cmplt_epi16(a, _mm_setzero_si128()); ++ return vreinterpretq_m128i_s16( ++ vshlq_s16((int16x8_t) a, vdupq_n_s16((int) -c))); ++} ++ ++// Shift packed 32-bit integers in a right by count while shifting in sign bits, ++// and store the results in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sra_epi32 ++FORCE_INLINE __m128i _mm_sra_epi32(__m128i a, __m128i count) ++{ ++ int64_t c = vgetq_lane_s64(count, 0); ++ if (_sse2neon_unlikely(c & ~31)) ++ return _mm_cmplt_epi32(a, _mm_setzero_si128()); ++ return vreinterpretq_m128i_s32( ++ vshlq_s32((int32x4_t) a, vdupq_n_s32((int) -c))); ++} ++ ++// Shift packed 16-bit integers in a right by imm8 while shifting in sign ++// bits, and store the results in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_srai_epi16 ++FORCE_INLINE __m128i _mm_srai_epi16(__m128i a, int imm) ++{ ++ const int count = (imm & ~15) ? 15 : imm; ++ return (__m128i) vshlq_s16((int16x8_t) a, vdupq_n_s16(-count)); ++} ++ ++// Shift packed 32-bit integers in a right by imm8 while shifting in sign bits, ++// and store the results in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_srai_epi32 ++// FORCE_INLINE __m128i _mm_srai_epi32(__m128i a, __constrange(0,255) int imm) ++#define _mm_srai_epi32(a, imm) \ ++ _sse2neon_define0( \ ++ __m128i, a, __m128i ret; if (_sse2neon_unlikely((imm) == 0)) { \ ++ ret = _a; \ ++ } else if (_sse2neon_likely(0 < (imm) && (imm) < 32)) { \ ++ ret = vreinterpretq_m128i_s32( \ ++ vshlq_s32(vreinterpretq_s32_m128i(_a), vdupq_n_s32(-(imm)))); \ ++ } else { \ ++ ret = vreinterpretq_m128i_s32( \ ++ vshrq_n_s32(vreinterpretq_s32_m128i(_a), 31)); \ ++ } _sse2neon_return(ret);) ++ ++// Shift packed 16-bit integers in a right by count while shifting in zeros, and ++// store the results in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_srl_epi16 ++FORCE_INLINE __m128i _mm_srl_epi16(__m128i a, __m128i count) ++{ ++ uint64_t c = vreinterpretq_nth_u64_m128i(count, 0); ++ if (_sse2neon_unlikely(c & ~15)) ++ return _mm_setzero_si128(); ++ ++ int16x8_t vc = vdupq_n_s16(-(int16_t) c); ++ return vreinterpretq_m128i_u16(vshlq_u16(vreinterpretq_u16_m128i(a), vc)); ++} ++ ++// Shift packed 32-bit integers in a right by count while shifting in zeros, and ++// store the results in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_srl_epi32 ++FORCE_INLINE __m128i _mm_srl_epi32(__m128i a, __m128i count) ++{ ++ uint64_t c = vreinterpretq_nth_u64_m128i(count, 0); ++ if (_sse2neon_unlikely(c & ~31)) ++ return _mm_setzero_si128(); ++ ++ int32x4_t vc = vdupq_n_s32(-(int32_t) c); ++ return vreinterpretq_m128i_u32(vshlq_u32(vreinterpretq_u32_m128i(a), vc)); ++} ++ ++// Shift packed 64-bit integers in a right by count while shifting in zeros, and ++// store the results in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_srl_epi64 ++FORCE_INLINE __m128i _mm_srl_epi64(__m128i a, __m128i count) ++{ ++ uint64_t c = vreinterpretq_nth_u64_m128i(count, 0); ++ if (_sse2neon_unlikely(c & ~63)) ++ return _mm_setzero_si128(); ++ ++ int64x2_t vc = vdupq_n_s64(-(int64_t) c); ++ return vreinterpretq_m128i_u64(vshlq_u64(vreinterpretq_u64_m128i(a), vc)); ++} ++ ++// Shift packed 16-bit integers in a right by imm8 while shifting in zeros, and ++// store the results in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_srli_epi16 ++#define _mm_srli_epi16(a, imm) \ ++ _sse2neon_define0( \ ++ __m128i, a, __m128i ret; if (_sse2neon_unlikely((imm) & ~15)) { \ ++ ret = _mm_setzero_si128(); \ ++ } else { \ ++ ret = vreinterpretq_m128i_u16( \ ++ vshlq_u16(vreinterpretq_u16_m128i(_a), vdupq_n_s16(-(imm)))); \ ++ } _sse2neon_return(ret);) ++ ++// Shift packed 32-bit integers in a right by imm8 while shifting in zeros, and ++// store the results in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_srli_epi32 ++// FORCE_INLINE __m128i _mm_srli_epi32(__m128i a, __constrange(0,255) int imm) ++#define _mm_srli_epi32(a, imm) \ ++ _sse2neon_define0( \ ++ __m128i, a, __m128i ret; if (_sse2neon_unlikely((imm) & ~31)) { \ ++ ret = _mm_setzero_si128(); \ ++ } else { \ ++ ret = vreinterpretq_m128i_u32( \ ++ vshlq_u32(vreinterpretq_u32_m128i(_a), vdupq_n_s32(-(imm)))); \ ++ } _sse2neon_return(ret);) ++ ++// Shift packed 64-bit integers in a right by imm8 while shifting in zeros, and ++// store the results in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_srli_epi64 ++#define _mm_srli_epi64(a, imm) \ ++ _sse2neon_define0( \ ++ __m128i, a, __m128i ret; if (_sse2neon_unlikely((imm) & ~63)) { \ ++ ret = _mm_setzero_si128(); \ ++ } else { \ ++ ret = vreinterpretq_m128i_u64( \ ++ vshlq_u64(vreinterpretq_u64_m128i(_a), vdupq_n_s64(-(imm)))); \ ++ } _sse2neon_return(ret);) ++ ++// Shift a right by imm8 bytes while shifting in zeros, and store the results in ++// dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_srli_si128 ++#define _mm_srli_si128(a, imm) \ ++ _sse2neon_define1( \ ++ __m128i, a, int8x16_t ret; \ ++ if (_sse2neon_unlikely((imm) & ~15)) ret = vdupq_n_s8(0); \ ++ else ret = vextq_s8(vreinterpretq_s8_m128i(_a), vdupq_n_s8(0), \ ++ (imm > 15 ? 0 : imm)); \ ++ _sse2neon_return(vreinterpretq_m128i_s8(ret));) ++ ++// Store 128-bits (composed of 2 packed double-precision (64-bit) floating-point ++// elements) from a into memory. mem_addr must be aligned on a 16-byte boundary ++// or a general-protection exception may be generated. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_store_pd ++FORCE_INLINE void _mm_store_pd(double *mem_addr, __m128d a) ++{ ++#if defined(__aarch64__) || defined(_M_ARM64) ++ vst1q_f64((float64_t *) mem_addr, vreinterpretq_f64_m128d(a)); ++#else ++ vst1q_f32((float32_t *) mem_addr, vreinterpretq_f32_m128d(a)); ++#endif ++} ++ ++// Store the lower double-precision (64-bit) floating-point element from a into ++// 2 contiguous elements in memory. mem_addr must be aligned on a 16-byte ++// boundary or a general-protection exception may be generated. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_store_pd1 ++FORCE_INLINE void _mm_store_pd1(double *mem_addr, __m128d a) ++{ ++#if defined(__aarch64__) || defined(_M_ARM64) ++ float64x1_t a_low = vget_low_f64(vreinterpretq_f64_m128d(a)); ++ vst1q_f64((float64_t *) mem_addr, ++ vreinterpretq_f64_m128d(vcombine_f64(a_low, a_low))); ++#else ++ float32x2_t a_low = vget_low_f32(vreinterpretq_f32_m128d(a)); ++ vst1q_f32((float32_t *) mem_addr, ++ vreinterpretq_f32_m128d(vcombine_f32(a_low, a_low))); ++#endif ++} ++ ++// Store the lower double-precision (64-bit) floating-point element from a into ++// memory. mem_addr does not need to be aligned on any particular boundary. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=mm_store_sd ++FORCE_INLINE void _mm_store_sd(double *mem_addr, __m128d a) ++{ ++#if defined(__aarch64__) || defined(_M_ARM64) ++ vst1_f64((float64_t *) mem_addr, vget_low_f64(vreinterpretq_f64_m128d(a))); ++#else ++ vst1_u64((uint64_t *) mem_addr, vget_low_u64(vreinterpretq_u64_m128d(a))); ++#endif ++} ++ ++// Store 128-bits of integer data from a into memory. mem_addr must be aligned ++// on a 16-byte boundary or a general-protection exception may be generated. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_store_si128 ++FORCE_INLINE void _mm_store_si128(__m128i *p, __m128i a) ++{ ++ vst1q_s32((int32_t *) p, vreinterpretq_s32_m128i(a)); ++} ++ ++// Store the lower double-precision (64-bit) floating-point element from a into ++// 2 contiguous elements in memory. mem_addr must be aligned on a 16-byte ++// boundary or a general-protection exception may be generated. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#expand=9,526,5601&text=_mm_store1_pd ++#define _mm_store1_pd _mm_store_pd1 ++ ++// Store the upper double-precision (64-bit) floating-point element from a into ++// memory. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_storeh_pd ++FORCE_INLINE void _mm_storeh_pd(double *mem_addr, __m128d a) ++{ ++#if defined(__aarch64__) || defined(_M_ARM64) ++ vst1_f64((float64_t *) mem_addr, vget_high_f64(vreinterpretq_f64_m128d(a))); ++#else ++ vst1_f32((float32_t *) mem_addr, vget_high_f32(vreinterpretq_f32_m128d(a))); ++#endif ++} ++ ++// Store 64-bit integer from the first element of a into memory. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_storel_epi64 ++FORCE_INLINE void _mm_storel_epi64(__m128i *a, __m128i b) ++{ ++ vst1_u64((uint64_t *) a, vget_low_u64(vreinterpretq_u64_m128i(b))); ++} ++ ++// Store the lower double-precision (64-bit) floating-point element from a into ++// memory. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_storel_pd ++FORCE_INLINE void _mm_storel_pd(double *mem_addr, __m128d a) ++{ ++#if defined(__aarch64__) || defined(_M_ARM64) ++ vst1_f64((float64_t *) mem_addr, vget_low_f64(vreinterpretq_f64_m128d(a))); ++#else ++ vst1_f32((float32_t *) mem_addr, vget_low_f32(vreinterpretq_f32_m128d(a))); ++#endif ++} ++ ++// Store 2 double-precision (64-bit) floating-point elements from a into memory ++// in reverse order. mem_addr must be aligned on a 16-byte boundary or a ++// general-protection exception may be generated. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_storer_pd ++FORCE_INLINE void _mm_storer_pd(double *mem_addr, __m128d a) ++{ ++ float32x4_t f = vreinterpretq_f32_m128d(a); ++ _mm_store_pd(mem_addr, vreinterpretq_m128d_f32(vextq_f32(f, f, 2))); ++} ++ ++// Store 128-bits (composed of 2 packed double-precision (64-bit) floating-point ++// elements) from a into memory. mem_addr does not need to be aligned on any ++// particular boundary. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_storeu_pd ++FORCE_INLINE void _mm_storeu_pd(double *mem_addr, __m128d a) ++{ ++ _mm_store_pd(mem_addr, a); ++} ++ ++// Store 128-bits of integer data from a into memory. mem_addr does not need to ++// be aligned on any particular boundary. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_storeu_si128 ++FORCE_INLINE void _mm_storeu_si128(__m128i *p, __m128i a) ++{ ++ vst1q_s32((int32_t *) p, vreinterpretq_s32_m128i(a)); ++} ++ ++// Store 32-bit integer from the first element of a into memory. mem_addr does ++// not need to be aligned on any particular boundary. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_storeu_si32 ++FORCE_INLINE void _mm_storeu_si32(void *p, __m128i a) ++{ ++ vst1q_lane_s32((int32_t *) p, vreinterpretq_s32_m128i(a), 0); ++} ++ ++// Store 128-bits (composed of 2 packed double-precision (64-bit) floating-point ++// elements) from a into memory using a non-temporal memory hint. mem_addr must ++// be aligned on a 16-byte boundary or a general-protection exception may be ++// generated. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_stream_pd ++FORCE_INLINE void _mm_stream_pd(double *p, __m128d a) ++{ ++#if __has_builtin(__builtin_nontemporal_store) ++ __builtin_nontemporal_store(a, (__m128d *) p); ++#elif defined(__aarch64__) || defined(_M_ARM64) ++ vst1q_f64(p, vreinterpretq_f64_m128d(a)); ++#else ++ vst1q_s64((int64_t *) p, vreinterpretq_s64_m128d(a)); ++#endif ++} ++ ++// Store 128-bits of integer data from a into memory using a non-temporal memory ++// hint. mem_addr must be aligned on a 16-byte boundary or a general-protection ++// exception may be generated. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_stream_si128 ++FORCE_INLINE void _mm_stream_si128(__m128i *p, __m128i a) ++{ ++#if __has_builtin(__builtin_nontemporal_store) ++ __builtin_nontemporal_store(a, p); ++#else ++ vst1q_s64((int64_t *) p, vreinterpretq_s64_m128i(a)); ++#endif ++} ++ ++// Store 32-bit integer a into memory using a non-temporal hint to minimize ++// cache pollution. If the cache line containing address mem_addr is already in ++// the cache, the cache will be updated. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_stream_si32 ++FORCE_INLINE void _mm_stream_si32(int *p, int a) ++{ ++ vst1q_lane_s32((int32_t *) p, vdupq_n_s32(a), 0); ++} ++ ++// Store 64-bit integer a into memory using a non-temporal hint to minimize ++// cache pollution. If the cache line containing address mem_addr is already in ++// the cache, the cache will be updated. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_stream_si64 ++FORCE_INLINE void _mm_stream_si64(__int64 *p, __int64 a) ++{ ++ vst1_s64((int64_t *) p, vdup_n_s64((int64_t) a)); ++} ++ ++// Subtract packed 16-bit integers in b from packed 16-bit integers in a, and ++// store the results in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sub_epi16 ++FORCE_INLINE __m128i _mm_sub_epi16(__m128i a, __m128i b) ++{ ++ return vreinterpretq_m128i_s16( ++ vsubq_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b))); ++} ++ ++// Subtract packed 32-bit integers in b from packed 32-bit integers in a, and ++// store the results in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sub_epi32 ++FORCE_INLINE __m128i _mm_sub_epi32(__m128i a, __m128i b) ++{ ++ return vreinterpretq_m128i_s32( ++ vsubq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b))); ++} ++ ++// Subtract packed 64-bit integers in b from packed 64-bit integers in a, and ++// store the results in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sub_epi64 ++FORCE_INLINE __m128i _mm_sub_epi64(__m128i a, __m128i b) ++{ ++ return vreinterpretq_m128i_s64( ++ vsubq_s64(vreinterpretq_s64_m128i(a), vreinterpretq_s64_m128i(b))); ++} ++ ++// Subtract packed 8-bit integers in b from packed 8-bit integers in a, and ++// store the results in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sub_epi8 ++FORCE_INLINE __m128i _mm_sub_epi8(__m128i a, __m128i b) ++{ ++ return vreinterpretq_m128i_s8( ++ vsubq_s8(vreinterpretq_s8_m128i(a), vreinterpretq_s8_m128i(b))); ++} ++ ++// Subtract packed double-precision (64-bit) floating-point elements in b from ++// packed double-precision (64-bit) floating-point elements in a, and store the ++// results in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=mm_sub_pd ++FORCE_INLINE __m128d _mm_sub_pd(__m128d a, __m128d b) ++{ ++#if defined(__aarch64__) || defined(_M_ARM64) ++ return vreinterpretq_m128d_f64( ++ vsubq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b))); ++#else ++ double *da = (double *) &a; ++ double *db = (double *) &b; ++ double c[2]; ++ c[0] = da[0] - db[0]; ++ c[1] = da[1] - db[1]; ++ return vld1q_f32((float32_t *) c); ++#endif ++} ++ ++// Subtract the lower double-precision (64-bit) floating-point element in b from ++// the lower double-precision (64-bit) floating-point element in a, store the ++// result in the lower element of dst, and copy the upper element from a to the ++// upper element of dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sub_sd ++FORCE_INLINE __m128d _mm_sub_sd(__m128d a, __m128d b) ++{ ++ return _mm_move_sd(a, _mm_sub_pd(a, b)); ++} ++ ++// Subtract 64-bit integer b from 64-bit integer a, and store the result in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sub_si64 ++FORCE_INLINE __m64 _mm_sub_si64(__m64 a, __m64 b) ++{ ++ return vreinterpret_m64_s64( ++ vsub_s64(vreinterpret_s64_m64(a), vreinterpret_s64_m64(b))); ++} ++ ++// Subtract packed signed 16-bit integers in b from packed 16-bit integers in a ++// using saturation, and store the results in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_subs_epi16 ++FORCE_INLINE __m128i _mm_subs_epi16(__m128i a, __m128i b) ++{ ++ return vreinterpretq_m128i_s16( ++ vqsubq_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b))); ++} ++ ++// Subtract packed signed 8-bit integers in b from packed 8-bit integers in a ++// using saturation, and store the results in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_subs_epi8 ++FORCE_INLINE __m128i _mm_subs_epi8(__m128i a, __m128i b) ++{ ++ return vreinterpretq_m128i_s8( ++ vqsubq_s8(vreinterpretq_s8_m128i(a), vreinterpretq_s8_m128i(b))); ++} ++ ++// Subtract packed unsigned 16-bit integers in b from packed unsigned 16-bit ++// integers in a using saturation, and store the results in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_subs_epu16 ++FORCE_INLINE __m128i _mm_subs_epu16(__m128i a, __m128i b) ++{ ++ return vreinterpretq_m128i_u16( ++ vqsubq_u16(vreinterpretq_u16_m128i(a), vreinterpretq_u16_m128i(b))); ++} ++ ++// Subtract packed unsigned 8-bit integers in b from packed unsigned 8-bit ++// integers in a using saturation, and store the results in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_subs_epu8 ++FORCE_INLINE __m128i _mm_subs_epu8(__m128i a, __m128i b) ++{ ++ return vreinterpretq_m128i_u8( ++ vqsubq_u8(vreinterpretq_u8_m128i(a), vreinterpretq_u8_m128i(b))); ++} ++ ++#define _mm_ucomieq_sd _mm_comieq_sd ++#define _mm_ucomige_sd _mm_comige_sd ++#define _mm_ucomigt_sd _mm_comigt_sd ++#define _mm_ucomile_sd _mm_comile_sd ++#define _mm_ucomilt_sd _mm_comilt_sd ++#define _mm_ucomineq_sd _mm_comineq_sd ++ ++// Return vector of type __m128d with undefined elements. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_undefined_pd ++FORCE_INLINE __m128d _mm_undefined_pd(void) ++{ ++#if defined(__GNUC__) || defined(__clang__) ++#pragma GCC diagnostic push ++#pragma GCC diagnostic ignored "-Wuninitialized" ++#endif ++ __m128d a; ++#if defined(_MSC_VER) ++ a = _mm_setzero_pd(); ++#endif ++ return a; ++#if defined(__GNUC__) || defined(__clang__) ++#pragma GCC diagnostic pop ++#endif ++} ++ ++// Unpack and interleave 16-bit integers from the high half of a and b, and ++// store the results in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_unpackhi_epi16 ++FORCE_INLINE __m128i _mm_unpackhi_epi16(__m128i a, __m128i b) ++{ ++#if defined(__aarch64__) || defined(_M_ARM64) ++ return vreinterpretq_m128i_s16( ++ vzip2q_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b))); ++#else ++ int16x4_t a1 = vget_high_s16(vreinterpretq_s16_m128i(a)); ++ int16x4_t b1 = vget_high_s16(vreinterpretq_s16_m128i(b)); ++ int16x4x2_t result = vzip_s16(a1, b1); ++ return vreinterpretq_m128i_s16(vcombine_s16(result.val[0], result.val[1])); ++#endif ++} ++ ++// Unpack and interleave 32-bit integers from the high half of a and b, and ++// store the results in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_unpackhi_epi32 ++FORCE_INLINE __m128i _mm_unpackhi_epi32(__m128i a, __m128i b) ++{ ++#if defined(__aarch64__) || defined(_M_ARM64) ++ return vreinterpretq_m128i_s32( ++ vzip2q_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b))); ++#else ++ int32x2_t a1 = vget_high_s32(vreinterpretq_s32_m128i(a)); ++ int32x2_t b1 = vget_high_s32(vreinterpretq_s32_m128i(b)); ++ int32x2x2_t result = vzip_s32(a1, b1); ++ return vreinterpretq_m128i_s32(vcombine_s32(result.val[0], result.val[1])); ++#endif ++} ++ ++// Unpack and interleave 64-bit integers from the high half of a and b, and ++// store the results in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_unpackhi_epi64 ++FORCE_INLINE __m128i _mm_unpackhi_epi64(__m128i a, __m128i b) ++{ ++#if defined(__aarch64__) || defined(_M_ARM64) ++ return vreinterpretq_m128i_s64( ++ vzip2q_s64(vreinterpretq_s64_m128i(a), vreinterpretq_s64_m128i(b))); ++#else ++ int64x1_t a_h = vget_high_s64(vreinterpretq_s64_m128i(a)); ++ int64x1_t b_h = vget_high_s64(vreinterpretq_s64_m128i(b)); ++ return vreinterpretq_m128i_s64(vcombine_s64(a_h, b_h)); ++#endif ++} ++ ++// Unpack and interleave 8-bit integers from the high half of a and b, and store ++// the results in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_unpackhi_epi8 ++FORCE_INLINE __m128i _mm_unpackhi_epi8(__m128i a, __m128i b) ++{ ++#if defined(__aarch64__) || defined(_M_ARM64) ++ return vreinterpretq_m128i_s8( ++ vzip2q_s8(vreinterpretq_s8_m128i(a), vreinterpretq_s8_m128i(b))); ++#else ++ int8x8_t a1 = ++ vreinterpret_s8_s16(vget_high_s16(vreinterpretq_s16_m128i(a))); ++ int8x8_t b1 = ++ vreinterpret_s8_s16(vget_high_s16(vreinterpretq_s16_m128i(b))); ++ int8x8x2_t result = vzip_s8(a1, b1); ++ return vreinterpretq_m128i_s8(vcombine_s8(result.val[0], result.val[1])); ++#endif ++} ++ ++// Unpack and interleave double-precision (64-bit) floating-point elements from ++// the high half of a and b, and store the results in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_unpackhi_pd ++FORCE_INLINE __m128d _mm_unpackhi_pd(__m128d a, __m128d b) ++{ ++#if defined(__aarch64__) || defined(_M_ARM64) ++ return vreinterpretq_m128d_f64( ++ vzip2q_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b))); ++#else ++ return vreinterpretq_m128d_s64( ++ vcombine_s64(vget_high_s64(vreinterpretq_s64_m128d(a)), ++ vget_high_s64(vreinterpretq_s64_m128d(b)))); ++#endif ++} ++ ++// Unpack and interleave 16-bit integers from the low half of a and b, and store ++// the results in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_unpacklo_epi16 ++FORCE_INLINE __m128i _mm_unpacklo_epi16(__m128i a, __m128i b) ++{ ++#if defined(__aarch64__) || defined(_M_ARM64) ++ return vreinterpretq_m128i_s16( ++ vzip1q_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b))); ++#else ++ int16x4_t a1 = vget_low_s16(vreinterpretq_s16_m128i(a)); ++ int16x4_t b1 = vget_low_s16(vreinterpretq_s16_m128i(b)); ++ int16x4x2_t result = vzip_s16(a1, b1); ++ return vreinterpretq_m128i_s16(vcombine_s16(result.val[0], result.val[1])); ++#endif ++} ++ ++// Unpack and interleave 32-bit integers from the low half of a and b, and store ++// the results in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_unpacklo_epi32 ++FORCE_INLINE __m128i _mm_unpacklo_epi32(__m128i a, __m128i b) ++{ ++#if defined(__aarch64__) || defined(_M_ARM64) ++ return vreinterpretq_m128i_s32( ++ vzip1q_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b))); ++#else ++ int32x2_t a1 = vget_low_s32(vreinterpretq_s32_m128i(a)); ++ int32x2_t b1 = vget_low_s32(vreinterpretq_s32_m128i(b)); ++ int32x2x2_t result = vzip_s32(a1, b1); ++ return vreinterpretq_m128i_s32(vcombine_s32(result.val[0], result.val[1])); ++#endif ++} ++ ++// Unpack and interleave 64-bit integers from the low half of a and b, and store ++// the results in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_unpacklo_epi64 ++FORCE_INLINE __m128i _mm_unpacklo_epi64(__m128i a, __m128i b) ++{ ++#if defined(__aarch64__) || defined(_M_ARM64) ++ return vreinterpretq_m128i_s64( ++ vzip1q_s64(vreinterpretq_s64_m128i(a), vreinterpretq_s64_m128i(b))); ++#else ++ int64x1_t a_l = vget_low_s64(vreinterpretq_s64_m128i(a)); ++ int64x1_t b_l = vget_low_s64(vreinterpretq_s64_m128i(b)); ++ return vreinterpretq_m128i_s64(vcombine_s64(a_l, b_l)); ++#endif ++} ++ ++// Unpack and interleave 8-bit integers from the low half of a and b, and store ++// the results in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_unpacklo_epi8 ++FORCE_INLINE __m128i _mm_unpacklo_epi8(__m128i a, __m128i b) ++{ ++#if defined(__aarch64__) || defined(_M_ARM64) ++ return vreinterpretq_m128i_s8( ++ vzip1q_s8(vreinterpretq_s8_m128i(a), vreinterpretq_s8_m128i(b))); ++#else ++ int8x8_t a1 = vreinterpret_s8_s16(vget_low_s16(vreinterpretq_s16_m128i(a))); ++ int8x8_t b1 = vreinterpret_s8_s16(vget_low_s16(vreinterpretq_s16_m128i(b))); ++ int8x8x2_t result = vzip_s8(a1, b1); ++ return vreinterpretq_m128i_s8(vcombine_s8(result.val[0], result.val[1])); ++#endif ++} ++ ++// Unpack and interleave double-precision (64-bit) floating-point elements from ++// the low half of a and b, and store the results in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_unpacklo_pd ++FORCE_INLINE __m128d _mm_unpacklo_pd(__m128d a, __m128d b) ++{ ++#if defined(__aarch64__) || defined(_M_ARM64) ++ return vreinterpretq_m128d_f64( ++ vzip1q_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b))); ++#else ++ return vreinterpretq_m128d_s64( ++ vcombine_s64(vget_low_s64(vreinterpretq_s64_m128d(a)), ++ vget_low_s64(vreinterpretq_s64_m128d(b)))); ++#endif ++} ++ ++// Compute the bitwise XOR of packed double-precision (64-bit) floating-point ++// elements in a and b, and store the results in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_xor_pd ++FORCE_INLINE __m128d _mm_xor_pd(__m128d a, __m128d b) ++{ ++ return vreinterpretq_m128d_s64( ++ veorq_s64(vreinterpretq_s64_m128d(a), vreinterpretq_s64_m128d(b))); ++} ++ ++// Compute the bitwise XOR of 128 bits (representing integer data) in a and b, ++// and store the result in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_xor_si128 ++FORCE_INLINE __m128i _mm_xor_si128(__m128i a, __m128i b) ++{ ++ return vreinterpretq_m128i_s32( ++ veorq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b))); ++} ++ ++/* SSE3 */ ++ ++// Alternatively add and subtract packed double-precision (64-bit) ++// floating-point elements in a to/from packed elements in b, and store the ++// results in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_addsub_pd ++FORCE_INLINE __m128d _mm_addsub_pd(__m128d a, __m128d b) ++{ ++ _sse2neon_const __m128d mask = _mm_set_pd(1.0f, -1.0f); ++#if defined(__aarch64__) || defined(_M_ARM64) ++ return vreinterpretq_m128d_f64(vfmaq_f64(vreinterpretq_f64_m128d(a), ++ vreinterpretq_f64_m128d(b), ++ vreinterpretq_f64_m128d(mask))); ++#else ++ return _mm_add_pd(_mm_mul_pd(b, mask), a); ++#endif ++} ++ ++// Alternatively add and subtract packed single-precision (32-bit) ++// floating-point elements in a to/from packed elements in b, and store the ++// results in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=addsub_ps ++FORCE_INLINE __m128 _mm_addsub_ps(__m128 a, __m128 b) ++{ ++ _sse2neon_const __m128 mask = _mm_setr_ps(-1.0f, 1.0f, -1.0f, 1.0f); ++#if (defined(__aarch64__) || defined(_M_ARM64)) || \ ++ defined(__ARM_FEATURE_FMA) /* VFPv4+ */ ++ return vreinterpretq_m128_f32(vfmaq_f32(vreinterpretq_f32_m128(a), ++ vreinterpretq_f32_m128(mask), ++ vreinterpretq_f32_m128(b))); ++#else ++ return _mm_add_ps(_mm_mul_ps(b, mask), a); ++#endif ++} ++ ++// Horizontally add adjacent pairs of double-precision (64-bit) floating-point ++// elements in a and b, and pack the results in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_hadd_pd ++FORCE_INLINE __m128d _mm_hadd_pd(__m128d a, __m128d b) ++{ ++#if defined(__aarch64__) || defined(_M_ARM64) ++ return vreinterpretq_m128d_f64( ++ vpaddq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b))); ++#else ++ double *da = (double *) &a; ++ double *db = (double *) &b; ++ double c[] = {da[0] + da[1], db[0] + db[1]}; ++ return vreinterpretq_m128d_u64(vld1q_u64((uint64_t *) c)); ++#endif ++} ++ ++// Horizontally add adjacent pairs of single-precision (32-bit) floating-point ++// elements in a and b, and pack the results in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_hadd_ps ++FORCE_INLINE __m128 _mm_hadd_ps(__m128 a, __m128 b) ++{ ++#if defined(__aarch64__) || defined(_M_ARM64) ++ return vreinterpretq_m128_f32( ++ vpaddq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b))); ++#else ++ float32x2_t a10 = vget_low_f32(vreinterpretq_f32_m128(a)); ++ float32x2_t a32 = vget_high_f32(vreinterpretq_f32_m128(a)); ++ float32x2_t b10 = vget_low_f32(vreinterpretq_f32_m128(b)); ++ float32x2_t b32 = vget_high_f32(vreinterpretq_f32_m128(b)); ++ return vreinterpretq_m128_f32( ++ vcombine_f32(vpadd_f32(a10, a32), vpadd_f32(b10, b32))); ++#endif ++} ++ ++// Horizontally subtract adjacent pairs of double-precision (64-bit) ++// floating-point elements in a and b, and pack the results in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_hsub_pd ++FORCE_INLINE __m128d _mm_hsub_pd(__m128d _a, __m128d _b) ++{ ++#if defined(__aarch64__) || defined(_M_ARM64) ++ float64x2_t a = vreinterpretq_f64_m128d(_a); ++ float64x2_t b = vreinterpretq_f64_m128d(_b); ++ return vreinterpretq_m128d_f64( ++ vsubq_f64(vuzp1q_f64(a, b), vuzp2q_f64(a, b))); ++#else ++ double *da = (double *) &_a; ++ double *db = (double *) &_b; ++ double c[] = {da[0] - da[1], db[0] - db[1]}; ++ return vreinterpretq_m128d_u64(vld1q_u64((uint64_t *) c)); ++#endif ++} ++ ++// Horizontally subtract adjacent pairs of single-precision (32-bit) ++// floating-point elements in a and b, and pack the results in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_hsub_ps ++FORCE_INLINE __m128 _mm_hsub_ps(__m128 _a, __m128 _b) ++{ ++ float32x4_t a = vreinterpretq_f32_m128(_a); ++ float32x4_t b = vreinterpretq_f32_m128(_b); ++#if defined(__aarch64__) || defined(_M_ARM64) ++ return vreinterpretq_m128_f32( ++ vsubq_f32(vuzp1q_f32(a, b), vuzp2q_f32(a, b))); ++#else ++ float32x4x2_t c = vuzpq_f32(a, b); ++ return vreinterpretq_m128_f32(vsubq_f32(c.val[0], c.val[1])); ++#endif ++} ++ ++// Load 128-bits of integer data from unaligned memory into dst. This intrinsic ++// may perform better than _mm_loadu_si128 when the data crosses a cache line ++// boundary. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_lddqu_si128 ++#define _mm_lddqu_si128 _mm_loadu_si128 ++ ++// Load a double-precision (64-bit) floating-point element from memory into both ++// elements of dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_loaddup_pd ++#define _mm_loaddup_pd _mm_load1_pd ++ ++// Duplicate the low double-precision (64-bit) floating-point element from a, ++// and store the results in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_movedup_pd ++FORCE_INLINE __m128d _mm_movedup_pd(__m128d a) ++{ ++#if defined(__aarch64__) || defined(_M_ARM64) ++ return vreinterpretq_m128d_f64( ++ vdupq_laneq_f64(vreinterpretq_f64_m128d(a), 0)); ++#else ++ return vreinterpretq_m128d_u64( ++ vdupq_n_u64(vgetq_lane_u64(vreinterpretq_u64_m128d(a), 0))); ++#endif ++} ++ ++// Duplicate odd-indexed single-precision (32-bit) floating-point elements ++// from a, and store the results in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_movehdup_ps ++FORCE_INLINE __m128 _mm_movehdup_ps(__m128 a) ++{ ++#if defined(__aarch64__) || defined(_M_ARM64) ++ return vreinterpretq_m128_f32( ++ vtrn2q_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(a))); ++#elif defined(_sse2neon_shuffle) ++ return vreinterpretq_m128_f32(vshuffleq_s32( ++ vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(a), 1, 1, 3, 3)); ++#else ++ float32_t a1 = vgetq_lane_f32(vreinterpretq_f32_m128(a), 1); ++ float32_t a3 = vgetq_lane_f32(vreinterpretq_f32_m128(a), 3); ++ float ALIGN_STRUCT(16) data[4] = {a1, a1, a3, a3}; ++ return vreinterpretq_m128_f32(vld1q_f32(data)); ++#endif ++} ++ ++// Duplicate even-indexed single-precision (32-bit) floating-point elements ++// from a, and store the results in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_moveldup_ps ++FORCE_INLINE __m128 _mm_moveldup_ps(__m128 a) ++{ ++#if defined(__aarch64__) || defined(_M_ARM64) ++ return vreinterpretq_m128_f32( ++ vtrn1q_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(a))); ++#elif defined(_sse2neon_shuffle) ++ return vreinterpretq_m128_f32(vshuffleq_s32( ++ vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(a), 0, 0, 2, 2)); ++#else ++ float32_t a0 = vgetq_lane_f32(vreinterpretq_f32_m128(a), 0); ++ float32_t a2 = vgetq_lane_f32(vreinterpretq_f32_m128(a), 2); ++ float ALIGN_STRUCT(16) data[4] = {a0, a0, a2, a2}; ++ return vreinterpretq_m128_f32(vld1q_f32(data)); ++#endif ++} ++ ++/* SSSE3 */ ++ ++// Compute the absolute value of packed signed 16-bit integers in a, and store ++// the unsigned results in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_abs_epi16 ++FORCE_INLINE __m128i _mm_abs_epi16(__m128i a) ++{ ++ return vreinterpretq_m128i_s16(vabsq_s16(vreinterpretq_s16_m128i(a))); ++} ++ ++// Compute the absolute value of packed signed 32-bit integers in a, and store ++// the unsigned results in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_abs_epi32 ++FORCE_INLINE __m128i _mm_abs_epi32(__m128i a) ++{ ++ return vreinterpretq_m128i_s32(vabsq_s32(vreinterpretq_s32_m128i(a))); ++} ++ ++// Compute the absolute value of packed signed 8-bit integers in a, and store ++// the unsigned results in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_abs_epi8 ++FORCE_INLINE __m128i _mm_abs_epi8(__m128i a) ++{ ++ return vreinterpretq_m128i_s8(vabsq_s8(vreinterpretq_s8_m128i(a))); ++} ++ ++// Compute the absolute value of packed signed 16-bit integers in a, and store ++// the unsigned results in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_abs_pi16 ++FORCE_INLINE __m64 _mm_abs_pi16(__m64 a) ++{ ++ return vreinterpret_m64_s16(vabs_s16(vreinterpret_s16_m64(a))); ++} ++ ++// Compute the absolute value of packed signed 32-bit integers in a, and store ++// the unsigned results in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_abs_pi32 ++FORCE_INLINE __m64 _mm_abs_pi32(__m64 a) ++{ ++ return vreinterpret_m64_s32(vabs_s32(vreinterpret_s32_m64(a))); ++} ++ ++// Compute the absolute value of packed signed 8-bit integers in a, and store ++// the unsigned results in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_abs_pi8 ++FORCE_INLINE __m64 _mm_abs_pi8(__m64 a) ++{ ++ return vreinterpret_m64_s8(vabs_s8(vreinterpret_s8_m64(a))); ++} ++ ++// Concatenate 16-byte blocks in a and b into a 32-byte temporary result, shift ++// the result right by imm8 bytes, and store the low 16 bytes in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_alignr_epi8 ++#if defined(__GNUC__) && !defined(__clang__) ++#define _mm_alignr_epi8(a, b, imm) \ ++ __extension__({ \ ++ uint8x16_t _a = vreinterpretq_u8_m128i(a); \ ++ uint8x16_t _b = vreinterpretq_u8_m128i(b); \ ++ __m128i ret; \ ++ if (_sse2neon_unlikely((imm) & ~31)) \ ++ ret = vreinterpretq_m128i_u8(vdupq_n_u8(0)); \ ++ else if (imm >= 16) \ ++ ret = _mm_srli_si128(a, imm >= 16 ? imm - 16 : 0); \ ++ else \ ++ ret = \ ++ vreinterpretq_m128i_u8(vextq_u8(_b, _a, imm < 16 ? imm : 0)); \ ++ ret; \ ++ }) ++ ++#else ++#define _mm_alignr_epi8(a, b, imm) \ ++ _sse2neon_define2( \ ++ __m128i, a, b, uint8x16_t __a = vreinterpretq_u8_m128i(_a); \ ++ uint8x16_t __b = vreinterpretq_u8_m128i(_b); __m128i ret; \ ++ if (_sse2neon_unlikely((imm) & ~31)) ret = \ ++ vreinterpretq_m128i_u8(vdupq_n_u8(0)); \ ++ else if (imm >= 16) ret = \ ++ _mm_srli_si128(_a, imm >= 16 ? imm - 16 : 0); \ ++ else ret = \ ++ vreinterpretq_m128i_u8(vextq_u8(__b, __a, imm < 16 ? imm : 0)); \ ++ _sse2neon_return(ret);) ++ ++#endif ++ ++// Concatenate 8-byte blocks in a and b into a 16-byte temporary result, shift ++// the result right by imm8 bytes, and store the low 8 bytes in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_alignr_pi8 ++#define _mm_alignr_pi8(a, b, imm) \ ++ _sse2neon_define2( \ ++ __m64, a, b, __m64 ret; if (_sse2neon_unlikely((imm) >= 16)) { \ ++ ret = vreinterpret_m64_s8(vdup_n_s8(0)); \ ++ } else { \ ++ uint8x8_t tmp_low; \ ++ uint8x8_t tmp_high; \ ++ if ((imm) >= 8) { \ ++ const int idx = (imm) -8; \ ++ tmp_low = vreinterpret_u8_m64(_a); \ ++ tmp_high = vdup_n_u8(0); \ ++ ret = vreinterpret_m64_u8(vext_u8(tmp_low, tmp_high, idx)); \ ++ } else { \ ++ const int idx = (imm); \ ++ tmp_low = vreinterpret_u8_m64(_b); \ ++ tmp_high = vreinterpret_u8_m64(_a); \ ++ ret = vreinterpret_m64_u8(vext_u8(tmp_low, tmp_high, idx)); \ ++ } \ ++ } _sse2neon_return(ret);) ++ ++// Horizontally add adjacent pairs of 16-bit integers in a and b, and pack the ++// signed 16-bit results in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_hadd_epi16 ++FORCE_INLINE __m128i _mm_hadd_epi16(__m128i _a, __m128i _b) ++{ ++ int16x8_t a = vreinterpretq_s16_m128i(_a); ++ int16x8_t b = vreinterpretq_s16_m128i(_b); ++#if defined(__aarch64__) || defined(_M_ARM64) ++ return vreinterpretq_m128i_s16(vpaddq_s16(a, b)); ++#else ++ return vreinterpretq_m128i_s16( ++ vcombine_s16(vpadd_s16(vget_low_s16(a), vget_high_s16(a)), ++ vpadd_s16(vget_low_s16(b), vget_high_s16(b)))); ++#endif ++} ++ ++// Horizontally add adjacent pairs of 32-bit integers in a and b, and pack the ++// signed 32-bit results in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_hadd_epi32 ++FORCE_INLINE __m128i _mm_hadd_epi32(__m128i _a, __m128i _b) ++{ ++ int32x4_t a = vreinterpretq_s32_m128i(_a); ++ int32x4_t b = vreinterpretq_s32_m128i(_b); ++#if defined(__aarch64__) || defined(_M_ARM64) ++ return vreinterpretq_m128i_s32(vpaddq_s32(a, b)); ++#else ++ return vreinterpretq_m128i_s32( ++ vcombine_s32(vpadd_s32(vget_low_s32(a), vget_high_s32(a)), ++ vpadd_s32(vget_low_s32(b), vget_high_s32(b)))); ++#endif ++} ++ ++// Horizontally add adjacent pairs of 16-bit integers in a and b, and pack the ++// signed 16-bit results in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_hadd_pi16 ++FORCE_INLINE __m64 _mm_hadd_pi16(__m64 a, __m64 b) ++{ ++ return vreinterpret_m64_s16( ++ vpadd_s16(vreinterpret_s16_m64(a), vreinterpret_s16_m64(b))); ++} ++ ++// Horizontally add adjacent pairs of 32-bit integers in a and b, and pack the ++// signed 32-bit results in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_hadd_pi32 ++FORCE_INLINE __m64 _mm_hadd_pi32(__m64 a, __m64 b) ++{ ++ return vreinterpret_m64_s32( ++ vpadd_s32(vreinterpret_s32_m64(a), vreinterpret_s32_m64(b))); ++} ++ ++// Horizontally add adjacent pairs of signed 16-bit integers in a and b using ++// saturation, and pack the signed 16-bit results in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_hadds_epi16 ++FORCE_INLINE __m128i _mm_hadds_epi16(__m128i _a, __m128i _b) ++{ ++#if defined(__aarch64__) || defined(_M_ARM64) ++ int16x8_t a = vreinterpretq_s16_m128i(_a); ++ int16x8_t b = vreinterpretq_s16_m128i(_b); ++ return vreinterpretq_s64_s16( ++ vqaddq_s16(vuzp1q_s16(a, b), vuzp2q_s16(a, b))); ++#else ++ int32x4_t a = vreinterpretq_s32_m128i(_a); ++ int32x4_t b = vreinterpretq_s32_m128i(_b); ++ // Interleave using vshrn/vmovn ++ // [a0|a2|a4|a6|b0|b2|b4|b6] ++ // [a1|a3|a5|a7|b1|b3|b5|b7] ++ int16x8_t ab0246 = vcombine_s16(vmovn_s32(a), vmovn_s32(b)); ++ int16x8_t ab1357 = vcombine_s16(vshrn_n_s32(a, 16), vshrn_n_s32(b, 16)); ++ // Saturated add ++ return vreinterpretq_m128i_s16(vqaddq_s16(ab0246, ab1357)); ++#endif ++} ++ ++// Horizontally add adjacent pairs of signed 16-bit integers in a and b using ++// saturation, and pack the signed 16-bit results in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_hadds_pi16 ++FORCE_INLINE __m64 _mm_hadds_pi16(__m64 _a, __m64 _b) ++{ ++ int16x4_t a = vreinterpret_s16_m64(_a); ++ int16x4_t b = vreinterpret_s16_m64(_b); ++#if defined(__aarch64__) || defined(_M_ARM64) ++ return vreinterpret_s64_s16(vqadd_s16(vuzp1_s16(a, b), vuzp2_s16(a, b))); ++#else ++ int16x4x2_t res = vuzp_s16(a, b); ++ return vreinterpret_s64_s16(vqadd_s16(res.val[0], res.val[1])); ++#endif ++} ++ ++// Horizontally subtract adjacent pairs of 16-bit integers in a and b, and pack ++// the signed 16-bit results in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_hsub_epi16 ++FORCE_INLINE __m128i _mm_hsub_epi16(__m128i _a, __m128i _b) ++{ ++ int16x8_t a = vreinterpretq_s16_m128i(_a); ++ int16x8_t b = vreinterpretq_s16_m128i(_b); ++#if defined(__aarch64__) || defined(_M_ARM64) ++ return vreinterpretq_m128i_s16( ++ vsubq_s16(vuzp1q_s16(a, b), vuzp2q_s16(a, b))); ++#else ++ int16x8x2_t c = vuzpq_s16(a, b); ++ return vreinterpretq_m128i_s16(vsubq_s16(c.val[0], c.val[1])); ++#endif ++} ++ ++// Horizontally subtract adjacent pairs of 32-bit integers in a and b, and pack ++// the signed 32-bit results in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_hsub_epi32 ++FORCE_INLINE __m128i _mm_hsub_epi32(__m128i _a, __m128i _b) ++{ ++ int32x4_t a = vreinterpretq_s32_m128i(_a); ++ int32x4_t b = vreinterpretq_s32_m128i(_b); ++#if defined(__aarch64__) || defined(_M_ARM64) ++ return vreinterpretq_m128i_s32( ++ vsubq_s32(vuzp1q_s32(a, b), vuzp2q_s32(a, b))); ++#else ++ int32x4x2_t c = vuzpq_s32(a, b); ++ return vreinterpretq_m128i_s32(vsubq_s32(c.val[0], c.val[1])); ++#endif ++} ++ ++// Horizontally subtract adjacent pairs of 16-bit integers in a and b, and pack ++// the signed 16-bit results in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_hsub_pi16 ++FORCE_INLINE __m64 _mm_hsub_pi16(__m64 _a, __m64 _b) ++{ ++ int16x4_t a = vreinterpret_s16_m64(_a); ++ int16x4_t b = vreinterpret_s16_m64(_b); ++#if defined(__aarch64__) || defined(_M_ARM64) ++ return vreinterpret_m64_s16(vsub_s16(vuzp1_s16(a, b), vuzp2_s16(a, b))); ++#else ++ int16x4x2_t c = vuzp_s16(a, b); ++ return vreinterpret_m64_s16(vsub_s16(c.val[0], c.val[1])); ++#endif ++} ++ ++// Horizontally subtract adjacent pairs of 32-bit integers in a and b, and pack ++// the signed 32-bit results in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=mm_hsub_pi32 ++FORCE_INLINE __m64 _mm_hsub_pi32(__m64 _a, __m64 _b) ++{ ++ int32x2_t a = vreinterpret_s32_m64(_a); ++ int32x2_t b = vreinterpret_s32_m64(_b); ++#if defined(__aarch64__) || defined(_M_ARM64) ++ return vreinterpret_m64_s32(vsub_s32(vuzp1_s32(a, b), vuzp2_s32(a, b))); ++#else ++ int32x2x2_t c = vuzp_s32(a, b); ++ return vreinterpret_m64_s32(vsub_s32(c.val[0], c.val[1])); ++#endif ++} ++ ++// Horizontally subtract adjacent pairs of signed 16-bit integers in a and b ++// using saturation, and pack the signed 16-bit results in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_hsubs_epi16 ++FORCE_INLINE __m128i _mm_hsubs_epi16(__m128i _a, __m128i _b) ++{ ++ int16x8_t a = vreinterpretq_s16_m128i(_a); ++ int16x8_t b = vreinterpretq_s16_m128i(_b); ++#if defined(__aarch64__) || defined(_M_ARM64) ++ return vreinterpretq_m128i_s16( ++ vqsubq_s16(vuzp1q_s16(a, b), vuzp2q_s16(a, b))); ++#else ++ int16x8x2_t c = vuzpq_s16(a, b); ++ return vreinterpretq_m128i_s16(vqsubq_s16(c.val[0], c.val[1])); ++#endif ++} ++ ++// Horizontally subtract adjacent pairs of signed 16-bit integers in a and b ++// using saturation, and pack the signed 16-bit results in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_hsubs_pi16 ++FORCE_INLINE __m64 _mm_hsubs_pi16(__m64 _a, __m64 _b) ++{ ++ int16x4_t a = vreinterpret_s16_m64(_a); ++ int16x4_t b = vreinterpret_s16_m64(_b); ++#if defined(__aarch64__) || defined(_M_ARM64) ++ return vreinterpret_m64_s16(vqsub_s16(vuzp1_s16(a, b), vuzp2_s16(a, b))); ++#else ++ int16x4x2_t c = vuzp_s16(a, b); ++ return vreinterpret_m64_s16(vqsub_s16(c.val[0], c.val[1])); ++#endif ++} ++ ++// Vertically multiply each unsigned 8-bit integer from a with the corresponding ++// signed 8-bit integer from b, producing intermediate signed 16-bit integers. ++// Horizontally add adjacent pairs of intermediate signed 16-bit integers, ++// and pack the saturated results in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_maddubs_epi16 ++FORCE_INLINE __m128i _mm_maddubs_epi16(__m128i _a, __m128i _b) ++{ ++#if defined(__aarch64__) || defined(_M_ARM64) ++ uint8x16_t a = vreinterpretq_u8_m128i(_a); ++ int8x16_t b = vreinterpretq_s8_m128i(_b); ++ int16x8_t tl = vmulq_s16(vreinterpretq_s16_u16(vmovl_u8(vget_low_u8(a))), ++ vmovl_s8(vget_low_s8(b))); ++ int16x8_t th = vmulq_s16(vreinterpretq_s16_u16(vmovl_u8(vget_high_u8(a))), ++ vmovl_s8(vget_high_s8(b))); ++ return vreinterpretq_m128i_s16( ++ vqaddq_s16(vuzp1q_s16(tl, th), vuzp2q_s16(tl, th))); ++#else ++ // This would be much simpler if x86 would choose to zero extend OR sign ++ // extend, not both. This could probably be optimized better. ++ uint16x8_t a = vreinterpretq_u16_m128i(_a); ++ int16x8_t b = vreinterpretq_s16_m128i(_b); ++ ++ // Zero extend a ++ int16x8_t a_odd = vreinterpretq_s16_u16(vshrq_n_u16(a, 8)); ++ int16x8_t a_even = vreinterpretq_s16_u16(vbicq_u16(a, vdupq_n_u16(0xff00))); ++ ++ // Sign extend by shifting left then shifting right. ++ int16x8_t b_even = vshrq_n_s16(vshlq_n_s16(b, 8), 8); ++ int16x8_t b_odd = vshrq_n_s16(b, 8); ++ ++ // multiply ++ int16x8_t prod1 = vmulq_s16(a_even, b_even); ++ int16x8_t prod2 = vmulq_s16(a_odd, b_odd); ++ ++ // saturated add ++ return vreinterpretq_m128i_s16(vqaddq_s16(prod1, prod2)); ++#endif ++} ++ ++// Vertically multiply each unsigned 8-bit integer from a with the corresponding ++// signed 8-bit integer from b, producing intermediate signed 16-bit integers. ++// Horizontally add adjacent pairs of intermediate signed 16-bit integers, and ++// pack the saturated results in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_maddubs_pi16 ++FORCE_INLINE __m64 _mm_maddubs_pi16(__m64 _a, __m64 _b) ++{ ++ uint16x4_t a = vreinterpret_u16_m64(_a); ++ int16x4_t b = vreinterpret_s16_m64(_b); ++ ++ // Zero extend a ++ int16x4_t a_odd = vreinterpret_s16_u16(vshr_n_u16(a, 8)); ++ int16x4_t a_even = vreinterpret_s16_u16(vand_u16(a, vdup_n_u16(0xff))); ++ ++ // Sign extend by shifting left then shifting right. ++ int16x4_t b_even = vshr_n_s16(vshl_n_s16(b, 8), 8); ++ int16x4_t b_odd = vshr_n_s16(b, 8); ++ ++ // multiply ++ int16x4_t prod1 = vmul_s16(a_even, b_even); ++ int16x4_t prod2 = vmul_s16(a_odd, b_odd); ++ ++ // saturated add ++ return vreinterpret_m64_s16(vqadd_s16(prod1, prod2)); ++} ++ ++// Multiply packed signed 16-bit integers in a and b, producing intermediate ++// signed 32-bit integers. Shift right by 15 bits while rounding up, and store ++// the packed 16-bit integers in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_mulhrs_epi16 ++FORCE_INLINE __m128i _mm_mulhrs_epi16(__m128i a, __m128i b) ++{ ++ // Has issues due to saturation ++ // return vreinterpretq_m128i_s16(vqrdmulhq_s16(a, b)); ++ ++ // Multiply ++ int32x4_t mul_lo = vmull_s16(vget_low_s16(vreinterpretq_s16_m128i(a)), ++ vget_low_s16(vreinterpretq_s16_m128i(b))); ++ int32x4_t mul_hi = vmull_s16(vget_high_s16(vreinterpretq_s16_m128i(a)), ++ vget_high_s16(vreinterpretq_s16_m128i(b))); ++ ++ // Rounding narrowing shift right ++ // narrow = (int16_t)((mul + 16384) >> 15); ++ int16x4_t narrow_lo = vrshrn_n_s32(mul_lo, 15); ++ int16x4_t narrow_hi = vrshrn_n_s32(mul_hi, 15); ++ ++ // Join together ++ return vreinterpretq_m128i_s16(vcombine_s16(narrow_lo, narrow_hi)); ++} ++ ++// Multiply packed signed 16-bit integers in a and b, producing intermediate ++// signed 32-bit integers. Truncate each intermediate integer to the 18 most ++// significant bits, round by adding 1, and store bits [16:1] to dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_mulhrs_pi16 ++FORCE_INLINE __m64 _mm_mulhrs_pi16(__m64 a, __m64 b) ++{ ++ int32x4_t mul_extend = ++ vmull_s16((vreinterpret_s16_m64(a)), (vreinterpret_s16_m64(b))); ++ ++ // Rounding narrowing shift right ++ return vreinterpret_m64_s16(vrshrn_n_s32(mul_extend, 15)); ++} ++ ++// Shuffle packed 8-bit integers in a according to shuffle control mask in the ++// corresponding 8-bit element of b, and store the results in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_shuffle_epi8 ++FORCE_INLINE __m128i _mm_shuffle_epi8(__m128i a, __m128i b) ++{ ++ int8x16_t tbl = vreinterpretq_s8_m128i(a); // input a ++ uint8x16_t idx = vreinterpretq_u8_m128i(b); // input b ++ uint8x16_t idx_masked = ++ vandq_u8(idx, vdupq_n_u8(0x8F)); // avoid using meaningless bits ++#if defined(__aarch64__) || defined(_M_ARM64) ++ return vreinterpretq_m128i_s8(vqtbl1q_s8(tbl, idx_masked)); ++#elif defined(__GNUC__) ++ int8x16_t ret; ++ // %e and %f represent the even and odd D registers ++ // respectively. ++ __asm__ __volatile__( ++ "vtbl.8 %e[ret], {%e[tbl], %f[tbl]}, %e[idx]\n" ++ "vtbl.8 %f[ret], {%e[tbl], %f[tbl]}, %f[idx]\n" ++ : [ret] "=&w"(ret) ++ : [tbl] "w"(tbl), [idx] "w"(idx_masked)); ++ return vreinterpretq_m128i_s8(ret); ++#else ++ // use this line if testing on aarch64 ++ int8x8x2_t a_split = {vget_low_s8(tbl), vget_high_s8(tbl)}; ++ return vreinterpretq_m128i_s8( ++ vcombine_s8(vtbl2_s8(a_split, vget_low_u8(idx_masked)), ++ vtbl2_s8(a_split, vget_high_u8(idx_masked)))); ++#endif ++} ++ ++// Shuffle packed 8-bit integers in a according to shuffle control mask in the ++// corresponding 8-bit element of b, and store the results in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_shuffle_pi8 ++FORCE_INLINE __m64 _mm_shuffle_pi8(__m64 a, __m64 b) ++{ ++ const int8x8_t controlMask = ++ vand_s8(vreinterpret_s8_m64(b), vdup_n_s8((int8_t) (0x1 << 7 | 0x07))); ++ int8x8_t res = vtbl1_s8(vreinterpret_s8_m64(a), controlMask); ++ return vreinterpret_m64_s8(res); ++} ++ ++// Negate packed 16-bit integers in a when the corresponding signed ++// 16-bit integer in b is negative, and store the results in dst. ++// Element in dst are zeroed out when the corresponding element ++// in b is zero. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sign_epi16 ++FORCE_INLINE __m128i _mm_sign_epi16(__m128i _a, __m128i _b) ++{ ++ int16x8_t a = vreinterpretq_s16_m128i(_a); ++ int16x8_t b = vreinterpretq_s16_m128i(_b); ++ ++ // signed shift right: faster than vclt ++ // (b < 0) ? 0xFFFF : 0 ++ uint16x8_t ltMask = vreinterpretq_u16_s16(vshrq_n_s16(b, 15)); ++ // (b == 0) ? 0xFFFF : 0 ++#if defined(__aarch64__) || defined(_M_ARM64) ++ int16x8_t zeroMask = vreinterpretq_s16_u16(vceqzq_s16(b)); ++#else ++ int16x8_t zeroMask = vreinterpretq_s16_u16(vceqq_s16(b, vdupq_n_s16(0))); ++#endif ++ ++ // bitwise select either a or negative 'a' (vnegq_s16(a) equals to negative ++ // 'a') based on ltMask ++ int16x8_t masked = vbslq_s16(ltMask, vnegq_s16(a), a); ++ // res = masked & (~zeroMask) ++ int16x8_t res = vbicq_s16(masked, zeroMask); ++ return vreinterpretq_m128i_s16(res); ++} ++ ++// Negate packed 32-bit integers in a when the corresponding signed ++// 32-bit integer in b is negative, and store the results in dst. ++// Element in dst are zeroed out when the corresponding element ++// in b is zero. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sign_epi32 ++FORCE_INLINE __m128i _mm_sign_epi32(__m128i _a, __m128i _b) ++{ ++ int32x4_t a = vreinterpretq_s32_m128i(_a); ++ int32x4_t b = vreinterpretq_s32_m128i(_b); ++ ++ // signed shift right: faster than vclt ++ // (b < 0) ? 0xFFFFFFFF : 0 ++ uint32x4_t ltMask = vreinterpretq_u32_s32(vshrq_n_s32(b, 31)); ++ ++ // (b == 0) ? 0xFFFFFFFF : 0 ++#if defined(__aarch64__) || defined(_M_ARM64) ++ int32x4_t zeroMask = vreinterpretq_s32_u32(vceqzq_s32(b)); ++#else ++ int32x4_t zeroMask = vreinterpretq_s32_u32(vceqq_s32(b, vdupq_n_s32(0))); ++#endif ++ ++ // bitwise select either a or negative 'a' (vnegq_s32(a) equals to negative ++ // 'a') based on ltMask ++ int32x4_t masked = vbslq_s32(ltMask, vnegq_s32(a), a); ++ // res = masked & (~zeroMask) ++ int32x4_t res = vbicq_s32(masked, zeroMask); ++ return vreinterpretq_m128i_s32(res); ++} ++ ++// Negate packed 8-bit integers in a when the corresponding signed ++// 8-bit integer in b is negative, and store the results in dst. ++// Element in dst are zeroed out when the corresponding element ++// in b is zero. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sign_epi8 ++FORCE_INLINE __m128i _mm_sign_epi8(__m128i _a, __m128i _b) ++{ ++ int8x16_t a = vreinterpretq_s8_m128i(_a); ++ int8x16_t b = vreinterpretq_s8_m128i(_b); ++ ++ // signed shift right: faster than vclt ++ // (b < 0) ? 0xFF : 0 ++ uint8x16_t ltMask = vreinterpretq_u8_s8(vshrq_n_s8(b, 7)); ++ ++ // (b == 0) ? 0xFF : 0 ++#if defined(__aarch64__) || defined(_M_ARM64) ++ int8x16_t zeroMask = vreinterpretq_s8_u8(vceqzq_s8(b)); ++#else ++ int8x16_t zeroMask = vreinterpretq_s8_u8(vceqq_s8(b, vdupq_n_s8(0))); ++#endif ++ ++ // bitwise select either a or negative 'a' (vnegq_s8(a) return negative 'a') ++ // based on ltMask ++ int8x16_t masked = vbslq_s8(ltMask, vnegq_s8(a), a); ++ // res = masked & (~zeroMask) ++ int8x16_t res = vbicq_s8(masked, zeroMask); ++ ++ return vreinterpretq_m128i_s8(res); ++} ++ ++// Negate packed 16-bit integers in a when the corresponding signed 16-bit ++// integer in b is negative, and store the results in dst. Element in dst are ++// zeroed out when the corresponding element in b is zero. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sign_pi16 ++FORCE_INLINE __m64 _mm_sign_pi16(__m64 _a, __m64 _b) ++{ ++ int16x4_t a = vreinterpret_s16_m64(_a); ++ int16x4_t b = vreinterpret_s16_m64(_b); ++ ++ // signed shift right: faster than vclt ++ // (b < 0) ? 0xFFFF : 0 ++ uint16x4_t ltMask = vreinterpret_u16_s16(vshr_n_s16(b, 15)); ++ ++ // (b == 0) ? 0xFFFF : 0 ++#if defined(__aarch64__) || defined(_M_ARM64) ++ int16x4_t zeroMask = vreinterpret_s16_u16(vceqz_s16(b)); ++#else ++ int16x4_t zeroMask = vreinterpret_s16_u16(vceq_s16(b, vdup_n_s16(0))); ++#endif ++ ++ // bitwise select either a or negative 'a' (vneg_s16(a) return negative 'a') ++ // based on ltMask ++ int16x4_t masked = vbsl_s16(ltMask, vneg_s16(a), a); ++ // res = masked & (~zeroMask) ++ int16x4_t res = vbic_s16(masked, zeroMask); ++ ++ return vreinterpret_m64_s16(res); ++} ++ ++// Negate packed 32-bit integers in a when the corresponding signed 32-bit ++// integer in b is negative, and store the results in dst. Element in dst are ++// zeroed out when the corresponding element in b is zero. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sign_pi32 ++FORCE_INLINE __m64 _mm_sign_pi32(__m64 _a, __m64 _b) ++{ ++ int32x2_t a = vreinterpret_s32_m64(_a); ++ int32x2_t b = vreinterpret_s32_m64(_b); ++ ++ // signed shift right: faster than vclt ++ // (b < 0) ? 0xFFFFFFFF : 0 ++ uint32x2_t ltMask = vreinterpret_u32_s32(vshr_n_s32(b, 31)); ++ ++ // (b == 0) ? 0xFFFFFFFF : 0 ++#if defined(__aarch64__) || defined(_M_ARM64) ++ int32x2_t zeroMask = vreinterpret_s32_u32(vceqz_s32(b)); ++#else ++ int32x2_t zeroMask = vreinterpret_s32_u32(vceq_s32(b, vdup_n_s32(0))); ++#endif ++ ++ // bitwise select either a or negative 'a' (vneg_s32(a) return negative 'a') ++ // based on ltMask ++ int32x2_t masked = vbsl_s32(ltMask, vneg_s32(a), a); ++ // res = masked & (~zeroMask) ++ int32x2_t res = vbic_s32(masked, zeroMask); ++ ++ return vreinterpret_m64_s32(res); ++} ++ ++// Negate packed 8-bit integers in a when the corresponding signed 8-bit integer ++// in b is negative, and store the results in dst. Element in dst are zeroed out ++// when the corresponding element in b is zero. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sign_pi8 ++FORCE_INLINE __m64 _mm_sign_pi8(__m64 _a, __m64 _b) ++{ ++ int8x8_t a = vreinterpret_s8_m64(_a); ++ int8x8_t b = vreinterpret_s8_m64(_b); ++ ++ // signed shift right: faster than vclt ++ // (b < 0) ? 0xFF : 0 ++ uint8x8_t ltMask = vreinterpret_u8_s8(vshr_n_s8(b, 7)); ++ ++ // (b == 0) ? 0xFF : 0 ++#if defined(__aarch64__) || defined(_M_ARM64) ++ int8x8_t zeroMask = vreinterpret_s8_u8(vceqz_s8(b)); ++#else ++ int8x8_t zeroMask = vreinterpret_s8_u8(vceq_s8(b, vdup_n_s8(0))); ++#endif ++ ++ // bitwise select either a or negative 'a' (vneg_s8(a) return negative 'a') ++ // based on ltMask ++ int8x8_t masked = vbsl_s8(ltMask, vneg_s8(a), a); ++ // res = masked & (~zeroMask) ++ int8x8_t res = vbic_s8(masked, zeroMask); ++ ++ return vreinterpret_m64_s8(res); ++} ++ ++/* SSE4.1 */ ++ ++// Blend packed 16-bit integers from a and b using control mask imm8, and store ++// the results in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_blend_epi16 ++// FORCE_INLINE __m128i _mm_blend_epi16(__m128i a, __m128i b, ++// __constrange(0,255) int imm) ++#define _mm_blend_epi16(a, b, imm) \ ++ _sse2neon_define2( \ ++ __m128i, a, b, \ ++ const uint16_t _mask[8] = \ ++ _sse2neon_init(((imm) & (1 << 0)) ? (uint16_t) -1 : 0x0, \ ++ ((imm) & (1 << 1)) ? (uint16_t) -1 : 0x0, \ ++ ((imm) & (1 << 2)) ? (uint16_t) -1 : 0x0, \ ++ ((imm) & (1 << 3)) ? (uint16_t) -1 : 0x0, \ ++ ((imm) & (1 << 4)) ? (uint16_t) -1 : 0x0, \ ++ ((imm) & (1 << 5)) ? (uint16_t) -1 : 0x0, \ ++ ((imm) & (1 << 6)) ? (uint16_t) -1 : 0x0, \ ++ ((imm) & (1 << 7)) ? (uint16_t) -1 : 0x0); \ ++ uint16x8_t _mask_vec = vld1q_u16(_mask); \ ++ uint16x8_t __a = vreinterpretq_u16_m128i(_a); \ ++ uint16x8_t __b = vreinterpretq_u16_m128i(_b); _sse2neon_return( \ ++ vreinterpretq_m128i_u16(vbslq_u16(_mask_vec, __b, __a)));) ++ ++// Blend packed double-precision (64-bit) floating-point elements from a and b ++// using control mask imm8, and store the results in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_blend_pd ++#define _mm_blend_pd(a, b, imm) \ ++ _sse2neon_define2( \ ++ __m128d, a, b, \ ++ const uint64_t _mask[2] = \ ++ _sse2neon_init(((imm) & (1 << 0)) ? ~UINT64_C(0) : UINT64_C(0), \ ++ ((imm) & (1 << 1)) ? ~UINT64_C(0) : UINT64_C(0)); \ ++ uint64x2_t _mask_vec = vld1q_u64(_mask); \ ++ uint64x2_t __a = vreinterpretq_u64_m128d(_a); \ ++ uint64x2_t __b = vreinterpretq_u64_m128d(_b); _sse2neon_return( \ ++ vreinterpretq_m128d_u64(vbslq_u64(_mask_vec, __b, __a)));) ++ ++// Blend packed single-precision (32-bit) floating-point elements from a and b ++// using mask, and store the results in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_blend_ps ++FORCE_INLINE __m128 _mm_blend_ps(__m128 _a, __m128 _b, const char imm8) ++{ ++ const uint32_t ALIGN_STRUCT(16) ++ data[4] = {((imm8) & (1 << 0)) ? UINT32_MAX : 0, ++ ((imm8) & (1 << 1)) ? UINT32_MAX : 0, ++ ((imm8) & (1 << 2)) ? UINT32_MAX : 0, ++ ((imm8) & (1 << 3)) ? UINT32_MAX : 0}; ++ uint32x4_t mask = vld1q_u32(data); ++ float32x4_t a = vreinterpretq_f32_m128(_a); ++ float32x4_t b = vreinterpretq_f32_m128(_b); ++ return vreinterpretq_m128_f32(vbslq_f32(mask, b, a)); ++} ++ ++// Blend packed 8-bit integers from a and b using mask, and store the results in ++// dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_blendv_epi8 ++FORCE_INLINE __m128i _mm_blendv_epi8(__m128i _a, __m128i _b, __m128i _mask) ++{ ++ // Use a signed shift right to create a mask with the sign bit ++ uint8x16_t mask = ++ vreinterpretq_u8_s8(vshrq_n_s8(vreinterpretq_s8_m128i(_mask), 7)); ++ uint8x16_t a = vreinterpretq_u8_m128i(_a); ++ uint8x16_t b = vreinterpretq_u8_m128i(_b); ++ return vreinterpretq_m128i_u8(vbslq_u8(mask, b, a)); ++} ++ ++// Blend packed double-precision (64-bit) floating-point elements from a and b ++// using mask, and store the results in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_blendv_pd ++FORCE_INLINE __m128d _mm_blendv_pd(__m128d _a, __m128d _b, __m128d _mask) ++{ ++ uint64x2_t mask = ++ vreinterpretq_u64_s64(vshrq_n_s64(vreinterpretq_s64_m128d(_mask), 63)); ++#if defined(__aarch64__) || defined(_M_ARM64) ++ float64x2_t a = vreinterpretq_f64_m128d(_a); ++ float64x2_t b = vreinterpretq_f64_m128d(_b); ++ return vreinterpretq_m128d_f64(vbslq_f64(mask, b, a)); ++#else ++ uint64x2_t a = vreinterpretq_u64_m128d(_a); ++ uint64x2_t b = vreinterpretq_u64_m128d(_b); ++ return vreinterpretq_m128d_u64(vbslq_u64(mask, b, a)); ++#endif ++} ++ ++// Blend packed single-precision (32-bit) floating-point elements from a and b ++// using mask, and store the results in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_blendv_ps ++FORCE_INLINE __m128 _mm_blendv_ps(__m128 _a, __m128 _b, __m128 _mask) ++{ ++ // Use a signed shift right to create a mask with the sign bit ++ uint32x4_t mask = ++ vreinterpretq_u32_s32(vshrq_n_s32(vreinterpretq_s32_m128(_mask), 31)); ++ float32x4_t a = vreinterpretq_f32_m128(_a); ++ float32x4_t b = vreinterpretq_f32_m128(_b); ++ return vreinterpretq_m128_f32(vbslq_f32(mask, b, a)); ++} ++ ++// Round the packed double-precision (64-bit) floating-point elements in a up ++// to an integer value, and store the results as packed double-precision ++// floating-point elements in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_ceil_pd ++FORCE_INLINE __m128d _mm_ceil_pd(__m128d a) ++{ ++#if defined(__aarch64__) || defined(_M_ARM64) ++ return vreinterpretq_m128d_f64(vrndpq_f64(vreinterpretq_f64_m128d(a))); ++#else ++ double *f = (double *) &a; ++ return _mm_set_pd(ceil(f[1]), ceil(f[0])); ++#endif ++} ++ ++// Round the packed single-precision (32-bit) floating-point elements in a up to ++// an integer value, and store the results as packed single-precision ++// floating-point elements in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_ceil_ps ++FORCE_INLINE __m128 _mm_ceil_ps(__m128 a) ++{ ++#if (defined(__aarch64__) || defined(_M_ARM64)) || \ ++ defined(__ARM_FEATURE_DIRECTED_ROUNDING) ++ return vreinterpretq_m128_f32(vrndpq_f32(vreinterpretq_f32_m128(a))); ++#else ++ float *f = (float *) &a; ++ return _mm_set_ps(ceilf(f[3]), ceilf(f[2]), ceilf(f[1]), ceilf(f[0])); ++#endif ++} ++ ++// Round the lower double-precision (64-bit) floating-point element in b up to ++// an integer value, store the result as a double-precision floating-point ++// element in the lower element of dst, and copy the upper element from a to the ++// upper element of dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_ceil_sd ++FORCE_INLINE __m128d _mm_ceil_sd(__m128d a, __m128d b) ++{ ++ return _mm_move_sd(a, _mm_ceil_pd(b)); ++} ++ ++// Round the lower single-precision (32-bit) floating-point element in b up to ++// an integer value, store the result as a single-precision floating-point ++// element in the lower element of dst, and copy the upper 3 packed elements ++// from a to the upper elements of dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_ceil_ss ++FORCE_INLINE __m128 _mm_ceil_ss(__m128 a, __m128 b) ++{ ++ return _mm_move_ss(a, _mm_ceil_ps(b)); ++} ++ ++// Compare packed 64-bit integers in a and b for equality, and store the results ++// in dst ++FORCE_INLINE __m128i _mm_cmpeq_epi64(__m128i a, __m128i b) ++{ ++#if defined(__aarch64__) || defined(_M_ARM64) ++ return vreinterpretq_m128i_u64( ++ vceqq_u64(vreinterpretq_u64_m128i(a), vreinterpretq_u64_m128i(b))); ++#else ++ // ARMv7 lacks vceqq_u64 ++ // (a == b) -> (a_lo == b_lo) && (a_hi == b_hi) ++ uint32x4_t cmp = ++ vceqq_u32(vreinterpretq_u32_m128i(a), vreinterpretq_u32_m128i(b)); ++ uint32x4_t swapped = vrev64q_u32(cmp); ++ return vreinterpretq_m128i_u32(vandq_u32(cmp, swapped)); ++#endif ++} ++ ++// Sign extend packed 16-bit integers in a to packed 32-bit integers, and store ++// the results in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtepi16_epi32 ++FORCE_INLINE __m128i _mm_cvtepi16_epi32(__m128i a) ++{ ++ return vreinterpretq_m128i_s32( ++ vmovl_s16(vget_low_s16(vreinterpretq_s16_m128i(a)))); ++} ++ ++// Sign extend packed 16-bit integers in a to packed 64-bit integers, and store ++// the results in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtepi16_epi64 ++FORCE_INLINE __m128i _mm_cvtepi16_epi64(__m128i a) ++{ ++ int16x8_t s16x8 = vreinterpretq_s16_m128i(a); /* xxxx xxxx xxxx 0B0A */ ++ int32x4_t s32x4 = vmovl_s16(vget_low_s16(s16x8)); /* 000x 000x 000B 000A */ ++ int64x2_t s64x2 = vmovl_s32(vget_low_s32(s32x4)); /* 0000 000B 0000 000A */ ++ return vreinterpretq_m128i_s64(s64x2); ++} ++ ++// Sign extend packed 32-bit integers in a to packed 64-bit integers, and store ++// the results in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtepi32_epi64 ++FORCE_INLINE __m128i _mm_cvtepi32_epi64(__m128i a) ++{ ++ return vreinterpretq_m128i_s64( ++ vmovl_s32(vget_low_s32(vreinterpretq_s32_m128i(a)))); ++} ++ ++// Sign extend packed 8-bit integers in a to packed 16-bit integers, and store ++// the results in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtepi8_epi16 ++FORCE_INLINE __m128i _mm_cvtepi8_epi16(__m128i a) ++{ ++ int8x16_t s8x16 = vreinterpretq_s8_m128i(a); /* xxxx xxxx xxxx DCBA */ ++ int16x8_t s16x8 = vmovl_s8(vget_low_s8(s8x16)); /* 0x0x 0x0x 0D0C 0B0A */ ++ return vreinterpretq_m128i_s16(s16x8); ++} ++ ++// Sign extend packed 8-bit integers in a to packed 32-bit integers, and store ++// the results in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtepi8_epi32 ++FORCE_INLINE __m128i _mm_cvtepi8_epi32(__m128i a) ++{ ++ int8x16_t s8x16 = vreinterpretq_s8_m128i(a); /* xxxx xxxx xxxx DCBA */ ++ int16x8_t s16x8 = vmovl_s8(vget_low_s8(s8x16)); /* 0x0x 0x0x 0D0C 0B0A */ ++ int32x4_t s32x4 = vmovl_s16(vget_low_s16(s16x8)); /* 000D 000C 000B 000A */ ++ return vreinterpretq_m128i_s32(s32x4); ++} ++ ++// Sign extend packed 8-bit integers in the low 8 bytes of a to packed 64-bit ++// integers, and store the results in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtepi8_epi64 ++FORCE_INLINE __m128i _mm_cvtepi8_epi64(__m128i a) ++{ ++ int8x16_t s8x16 = vreinterpretq_s8_m128i(a); /* xxxx xxxx xxxx xxBA */ ++ int16x8_t s16x8 = vmovl_s8(vget_low_s8(s8x16)); /* 0x0x 0x0x 0x0x 0B0A */ ++ int32x4_t s32x4 = vmovl_s16(vget_low_s16(s16x8)); /* 000x 000x 000B 000A */ ++ int64x2_t s64x2 = vmovl_s32(vget_low_s32(s32x4)); /* 0000 000B 0000 000A */ ++ return vreinterpretq_m128i_s64(s64x2); ++} ++ ++// Zero extend packed unsigned 16-bit integers in a to packed 32-bit integers, ++// and store the results in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtepu16_epi32 ++FORCE_INLINE __m128i _mm_cvtepu16_epi32(__m128i a) ++{ ++ return vreinterpretq_m128i_u32( ++ vmovl_u16(vget_low_u16(vreinterpretq_u16_m128i(a)))); ++} ++ ++// Zero extend packed unsigned 16-bit integers in a to packed 64-bit integers, ++// and store the results in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtepu16_epi64 ++FORCE_INLINE __m128i _mm_cvtepu16_epi64(__m128i a) ++{ ++ uint16x8_t u16x8 = vreinterpretq_u16_m128i(a); /* xxxx xxxx xxxx 0B0A */ ++ uint32x4_t u32x4 = vmovl_u16(vget_low_u16(u16x8)); /* 000x 000x 000B 000A */ ++ uint64x2_t u64x2 = vmovl_u32(vget_low_u32(u32x4)); /* 0000 000B 0000 000A */ ++ return vreinterpretq_m128i_u64(u64x2); ++} ++ ++// Zero extend packed unsigned 32-bit integers in a to packed 64-bit integers, ++// and store the results in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtepu32_epi64 ++FORCE_INLINE __m128i _mm_cvtepu32_epi64(__m128i a) ++{ ++ return vreinterpretq_m128i_u64( ++ vmovl_u32(vget_low_u32(vreinterpretq_u32_m128i(a)))); ++} ++ ++// Zero extend packed unsigned 8-bit integers in a to packed 16-bit integers, ++// and store the results in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtepu8_epi16 ++FORCE_INLINE __m128i _mm_cvtepu8_epi16(__m128i a) ++{ ++ uint8x16_t u8x16 = vreinterpretq_u8_m128i(a); /* xxxx xxxx HGFE DCBA */ ++ uint16x8_t u16x8 = vmovl_u8(vget_low_u8(u8x16)); /* 0H0G 0F0E 0D0C 0B0A */ ++ return vreinterpretq_m128i_u16(u16x8); ++} ++ ++// Zero extend packed unsigned 8-bit integers in a to packed 32-bit integers, ++// and store the results in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtepu8_epi32 ++FORCE_INLINE __m128i _mm_cvtepu8_epi32(__m128i a) ++{ ++ uint8x16_t u8x16 = vreinterpretq_u8_m128i(a); /* xxxx xxxx xxxx DCBA */ ++ uint16x8_t u16x8 = vmovl_u8(vget_low_u8(u8x16)); /* 0x0x 0x0x 0D0C 0B0A */ ++ uint32x4_t u32x4 = vmovl_u16(vget_low_u16(u16x8)); /* 000D 000C 000B 000A */ ++ return vreinterpretq_m128i_u32(u32x4); ++} ++ ++// Zero extend packed unsigned 8-bit integers in the low 8 bytes of a to packed ++// 64-bit integers, and store the results in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtepu8_epi64 ++FORCE_INLINE __m128i _mm_cvtepu8_epi64(__m128i a) ++{ ++ uint8x16_t u8x16 = vreinterpretq_u8_m128i(a); /* xxxx xxxx xxxx xxBA */ ++ uint16x8_t u16x8 = vmovl_u8(vget_low_u8(u8x16)); /* 0x0x 0x0x 0x0x 0B0A */ ++ uint32x4_t u32x4 = vmovl_u16(vget_low_u16(u16x8)); /* 000x 000x 000B 000A */ ++ uint64x2_t u64x2 = vmovl_u32(vget_low_u32(u32x4)); /* 0000 000B 0000 000A */ ++ return vreinterpretq_m128i_u64(u64x2); ++} ++ ++// Conditionally multiply the packed double-precision (64-bit) floating-point ++// elements in a and b using the high 4 bits in imm8, sum the four products, and ++// conditionally store the sum in dst using the low 4 bits of imm8. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_dp_pd ++FORCE_INLINE __m128d _mm_dp_pd(__m128d a, __m128d b, const int imm) ++{ ++ // Generate mask value from constant immediate bit value ++ const int64_t bit0Mask = imm & 0x01 ? UINT64_MAX : 0; ++ const int64_t bit1Mask = imm & 0x02 ? UINT64_MAX : 0; ++#if !SSE2NEON_PRECISE_DP ++ const int64_t bit4Mask = imm & 0x10 ? UINT64_MAX : 0; ++ const int64_t bit5Mask = imm & 0x20 ? UINT64_MAX : 0; ++#endif ++ // Conditional multiplication ++#if !SSE2NEON_PRECISE_DP ++ __m128d mul = _mm_mul_pd(a, b); ++ const __m128d mulMask = ++ _mm_castsi128_pd(_mm_set_epi64x(bit5Mask, bit4Mask)); ++ __m128d tmp = _mm_and_pd(mul, mulMask); ++#else ++#if defined(__aarch64__) || defined(_M_ARM64) ++ double d0 = (imm & 0x10) ? vgetq_lane_f64(vreinterpretq_f64_m128d(a), 0) * ++ vgetq_lane_f64(vreinterpretq_f64_m128d(b), 0) ++ : 0; ++ double d1 = (imm & 0x20) ? vgetq_lane_f64(vreinterpretq_f64_m128d(a), 1) * ++ vgetq_lane_f64(vreinterpretq_f64_m128d(b), 1) ++ : 0; ++#else ++ double d0 = (imm & 0x10) ? ((double *) &a)[0] * ((double *) &b)[0] : 0; ++ double d1 = (imm & 0x20) ? ((double *) &a)[1] * ((double *) &b)[1] : 0; ++#endif ++ __m128d tmp = _mm_set_pd(d1, d0); ++#endif ++ // Sum the products ++#if defined(__aarch64__) || defined(_M_ARM64) ++ double sum = vpaddd_f64(vreinterpretq_f64_m128d(tmp)); ++#else ++ double sum = *((double *) &tmp) + *(((double *) &tmp) + 1); ++#endif ++ // Conditionally store the sum ++ const __m128d sumMask = ++ _mm_castsi128_pd(_mm_set_epi64x(bit1Mask, bit0Mask)); ++ __m128d res = _mm_and_pd(_mm_set_pd1(sum), sumMask); ++ return res; ++} ++ ++// Conditionally multiply the packed single-precision (32-bit) floating-point ++// elements in a and b using the high 4 bits in imm8, sum the four products, ++// and conditionally store the sum in dst using the low 4 bits of imm. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_dp_ps ++FORCE_INLINE __m128 _mm_dp_ps(__m128 a, __m128 b, const int imm) ++{ ++ float32x4_t elementwise_prod = _mm_mul_ps(a, b); ++ ++#if defined(__aarch64__) || defined(_M_ARM64) ++ /* shortcuts */ ++ if (imm == 0xFF) { ++ return _mm_set1_ps(vaddvq_f32(elementwise_prod)); ++ } ++ ++ if ((imm & 0x0F) == 0x0F) { ++ if (!(imm & (1 << 4))) ++ elementwise_prod = vsetq_lane_f32(0.0f, elementwise_prod, 0); ++ if (!(imm & (1 << 5))) ++ elementwise_prod = vsetq_lane_f32(0.0f, elementwise_prod, 1); ++ if (!(imm & (1 << 6))) ++ elementwise_prod = vsetq_lane_f32(0.0f, elementwise_prod, 2); ++ if (!(imm & (1 << 7))) ++ elementwise_prod = vsetq_lane_f32(0.0f, elementwise_prod, 3); ++ ++ return _mm_set1_ps(vaddvq_f32(elementwise_prod)); ++ } ++#endif ++ ++ float s = 0.0f; ++ ++ if (imm & (1 << 4)) ++ s += vgetq_lane_f32(elementwise_prod, 0); ++ if (imm & (1 << 5)) ++ s += vgetq_lane_f32(elementwise_prod, 1); ++ if (imm & (1 << 6)) ++ s += vgetq_lane_f32(elementwise_prod, 2); ++ if (imm & (1 << 7)) ++ s += vgetq_lane_f32(elementwise_prod, 3); ++ ++ const float32_t res[4] = { ++ (imm & 0x1) ? s : 0.0f, ++ (imm & 0x2) ? s : 0.0f, ++ (imm & 0x4) ? s : 0.0f, ++ (imm & 0x8) ? s : 0.0f, ++ }; ++ return vreinterpretq_m128_f32(vld1q_f32(res)); ++} ++ ++// Extract a 32-bit integer from a, selected with imm8, and store the result in ++// dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_extract_epi32 ++// FORCE_INLINE int _mm_extract_epi32(__m128i a, __constrange(0,4) int imm) ++#define _mm_extract_epi32(a, imm) \ ++ vgetq_lane_s32(vreinterpretq_s32_m128i(a), (imm)) ++ ++// Extract a 64-bit integer from a, selected with imm8, and store the result in ++// dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_extract_epi64 ++// FORCE_INLINE __int64 _mm_extract_epi64(__m128i a, __constrange(0,2) int imm) ++#define _mm_extract_epi64(a, imm) \ ++ vgetq_lane_s64(vreinterpretq_s64_m128i(a), (imm)) ++ ++// Extract an 8-bit integer from a, selected with imm8, and store the result in ++// the lower element of dst. FORCE_INLINE int _mm_extract_epi8(__m128i a, ++// __constrange(0,16) int imm) ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_extract_epi8 ++#define _mm_extract_epi8(a, imm) vgetq_lane_u8(vreinterpretq_u8_m128i(a), (imm)) ++ ++// Extracts the selected single-precision (32-bit) floating-point from a. ++// FORCE_INLINE int _mm_extract_ps(__m128 a, __constrange(0,4) int imm) ++#define _mm_extract_ps(a, imm) vgetq_lane_s32(vreinterpretq_s32_m128(a), (imm)) ++ ++// Round the packed double-precision (64-bit) floating-point elements in a down ++// to an integer value, and store the results as packed double-precision ++// floating-point elements in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_floor_pd ++FORCE_INLINE __m128d _mm_floor_pd(__m128d a) ++{ ++#if defined(__aarch64__) || defined(_M_ARM64) ++ return vreinterpretq_m128d_f64(vrndmq_f64(vreinterpretq_f64_m128d(a))); ++#else ++ double *f = (double *) &a; ++ return _mm_set_pd(floor(f[1]), floor(f[0])); ++#endif ++} ++ ++// Round the packed single-precision (32-bit) floating-point elements in a down ++// to an integer value, and store the results as packed single-precision ++// floating-point elements in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_floor_ps ++FORCE_INLINE __m128 _mm_floor_ps(__m128 a) ++{ ++#if (defined(__aarch64__) || defined(_M_ARM64)) || \ ++ defined(__ARM_FEATURE_DIRECTED_ROUNDING) ++ return vreinterpretq_m128_f32(vrndmq_f32(vreinterpretq_f32_m128(a))); ++#else ++ float *f = (float *) &a; ++ return _mm_set_ps(floorf(f[3]), floorf(f[2]), floorf(f[1]), floorf(f[0])); ++#endif ++} ++ ++// Round the lower double-precision (64-bit) floating-point element in b down to ++// an integer value, store the result as a double-precision floating-point ++// element in the lower element of dst, and copy the upper element from a to the ++// upper element of dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_floor_sd ++FORCE_INLINE __m128d _mm_floor_sd(__m128d a, __m128d b) ++{ ++ return _mm_move_sd(a, _mm_floor_pd(b)); ++} ++ ++// Round the lower single-precision (32-bit) floating-point element in b down to ++// an integer value, store the result as a single-precision floating-point ++// element in the lower element of dst, and copy the upper 3 packed elements ++// from a to the upper elements of dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_floor_ss ++FORCE_INLINE __m128 _mm_floor_ss(__m128 a, __m128 b) ++{ ++ return _mm_move_ss(a, _mm_floor_ps(b)); ++} ++ ++// Copy a to dst, and insert the 32-bit integer i into dst at the location ++// specified by imm8. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_insert_epi32 ++// FORCE_INLINE __m128i _mm_insert_epi32(__m128i a, int b, ++// __constrange(0,4) int imm) ++#define _mm_insert_epi32(a, b, imm) \ ++ vreinterpretq_m128i_s32( \ ++ vsetq_lane_s32((b), vreinterpretq_s32_m128i(a), (imm))) ++ ++// Copy a to dst, and insert the 64-bit integer i into dst at the location ++// specified by imm8. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_insert_epi64 ++// FORCE_INLINE __m128i _mm_insert_epi64(__m128i a, __int64 b, ++// __constrange(0,2) int imm) ++#define _mm_insert_epi64(a, b, imm) \ ++ vreinterpretq_m128i_s64( \ ++ vsetq_lane_s64((b), vreinterpretq_s64_m128i(a), (imm))) ++ ++// Copy a to dst, and insert the lower 8-bit integer from i into dst at the ++// location specified by imm8. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_insert_epi8 ++// FORCE_INLINE __m128i _mm_insert_epi8(__m128i a, int b, ++// __constrange(0,16) int imm) ++#define _mm_insert_epi8(a, b, imm) \ ++ vreinterpretq_m128i_s8(vsetq_lane_s8((b), vreinterpretq_s8_m128i(a), (imm))) ++ ++// Copy a to tmp, then insert a single-precision (32-bit) floating-point ++// element from b into tmp using the control in imm8. Store tmp to dst using ++// the mask in imm8 (elements are zeroed out when the corresponding bit is set). ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=insert_ps ++#define _mm_insert_ps(a, b, imm8) \ ++ _sse2neon_define2( \ ++ __m128, a, b, \ ++ float32x4_t tmp1 = \ ++ vsetq_lane_f32(vgetq_lane_f32(_b, (imm8 >> 6) & 0x3), \ ++ vreinterpretq_f32_m128(_a), 0); \ ++ float32x4_t tmp2 = \ ++ vsetq_lane_f32(vgetq_lane_f32(tmp1, 0), \ ++ vreinterpretq_f32_m128(_a), ((imm8 >> 4) & 0x3)); \ ++ const uint32_t data[4] = \ ++ _sse2neon_init(((imm8) & (1 << 0)) ? UINT32_MAX : 0, \ ++ ((imm8) & (1 << 1)) ? UINT32_MAX : 0, \ ++ ((imm8) & (1 << 2)) ? UINT32_MAX : 0, \ ++ ((imm8) & (1 << 3)) ? UINT32_MAX : 0); \ ++ uint32x4_t mask = vld1q_u32(data); \ ++ float32x4_t all_zeros = vdupq_n_f32(0); \ ++ \ ++ _sse2neon_return(vreinterpretq_m128_f32( \ ++ vbslq_f32(mask, all_zeros, vreinterpretq_f32_m128(tmp2))));) ++ ++// Compare packed signed 32-bit integers in a and b, and store packed maximum ++// values in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_max_epi32 ++FORCE_INLINE __m128i _mm_max_epi32(__m128i a, __m128i b) ++{ ++ return vreinterpretq_m128i_s32( ++ vmaxq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b))); ++} ++ ++// Compare packed signed 8-bit integers in a and b, and store packed maximum ++// values in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_max_epi8 ++FORCE_INLINE __m128i _mm_max_epi8(__m128i a, __m128i b) ++{ ++ return vreinterpretq_m128i_s8( ++ vmaxq_s8(vreinterpretq_s8_m128i(a), vreinterpretq_s8_m128i(b))); ++} ++ ++// Compare packed unsigned 16-bit integers in a and b, and store packed maximum ++// values in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_max_epu16 ++FORCE_INLINE __m128i _mm_max_epu16(__m128i a, __m128i b) ++{ ++ return vreinterpretq_m128i_u16( ++ vmaxq_u16(vreinterpretq_u16_m128i(a), vreinterpretq_u16_m128i(b))); ++} ++ ++// Compare packed unsigned 32-bit integers in a and b, and store packed maximum ++// values in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_max_epu32 ++FORCE_INLINE __m128i _mm_max_epu32(__m128i a, __m128i b) ++{ ++ return vreinterpretq_m128i_u32( ++ vmaxq_u32(vreinterpretq_u32_m128i(a), vreinterpretq_u32_m128i(b))); ++} ++ ++// Compare packed signed 32-bit integers in a and b, and store packed minimum ++// values in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_min_epi32 ++FORCE_INLINE __m128i _mm_min_epi32(__m128i a, __m128i b) ++{ ++ return vreinterpretq_m128i_s32( ++ vminq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b))); ++} ++ ++// Compare packed signed 8-bit integers in a and b, and store packed minimum ++// values in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_min_epi8 ++FORCE_INLINE __m128i _mm_min_epi8(__m128i a, __m128i b) ++{ ++ return vreinterpretq_m128i_s8( ++ vminq_s8(vreinterpretq_s8_m128i(a), vreinterpretq_s8_m128i(b))); ++} ++ ++// Compare packed unsigned 16-bit integers in a and b, and store packed minimum ++// values in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_min_epu16 ++FORCE_INLINE __m128i _mm_min_epu16(__m128i a, __m128i b) ++{ ++ return vreinterpretq_m128i_u16( ++ vminq_u16(vreinterpretq_u16_m128i(a), vreinterpretq_u16_m128i(b))); ++} ++ ++// Compare packed unsigned 32-bit integers in a and b, and store packed minimum ++// values in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_max_epu32 ++FORCE_INLINE __m128i _mm_min_epu32(__m128i a, __m128i b) ++{ ++ return vreinterpretq_m128i_u32( ++ vminq_u32(vreinterpretq_u32_m128i(a), vreinterpretq_u32_m128i(b))); ++} ++ ++// Horizontally compute the minimum amongst the packed unsigned 16-bit integers ++// in a, store the minimum and index in dst, and zero the remaining bits in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_minpos_epu16 ++FORCE_INLINE __m128i _mm_minpos_epu16(__m128i a) ++{ ++ __m128i dst; ++ uint16_t min, idx = 0; ++#if defined(__aarch64__) || defined(_M_ARM64) ++ // Find the minimum value ++ min = vminvq_u16(vreinterpretq_u16_m128i(a)); ++ ++ // Get the index of the minimum value ++ static const uint16_t idxv[] = {0, 1, 2, 3, 4, 5, 6, 7}; ++ uint16x8_t minv = vdupq_n_u16(min); ++ uint16x8_t cmeq = vceqq_u16(minv, vreinterpretq_u16_m128i(a)); ++ idx = vminvq_u16(vornq_u16(vld1q_u16(idxv), cmeq)); ++#else ++ // Find the minimum value ++ __m64 tmp; ++ tmp = vreinterpret_m64_u16( ++ vmin_u16(vget_low_u16(vreinterpretq_u16_m128i(a)), ++ vget_high_u16(vreinterpretq_u16_m128i(a)))); ++ tmp = vreinterpret_m64_u16( ++ vpmin_u16(vreinterpret_u16_m64(tmp), vreinterpret_u16_m64(tmp))); ++ tmp = vreinterpret_m64_u16( ++ vpmin_u16(vreinterpret_u16_m64(tmp), vreinterpret_u16_m64(tmp))); ++ min = vget_lane_u16(vreinterpret_u16_m64(tmp), 0); ++ // Get the index of the minimum value ++ int i; ++ for (i = 0; i < 8; i++) { ++ if (min == vgetq_lane_u16(vreinterpretq_u16_m128i(a), 0)) { ++ idx = (uint16_t) i; ++ break; ++ } ++ a = _mm_srli_si128(a, 2); ++ } ++#endif ++ // Generate result ++ dst = _mm_setzero_si128(); ++ dst = vreinterpretq_m128i_u16( ++ vsetq_lane_u16(min, vreinterpretq_u16_m128i(dst), 0)); ++ dst = vreinterpretq_m128i_u16( ++ vsetq_lane_u16(idx, vreinterpretq_u16_m128i(dst), 1)); ++ return dst; ++} ++ ++// Compute the sum of absolute differences (SADs) of quadruplets of unsigned ++// 8-bit integers in a compared to those in b, and store the 16-bit results in ++// dst. Eight SADs are performed using one quadruplet from b and eight ++// quadruplets from a. One quadruplet is selected from b starting at on the ++// offset specified in imm8. Eight quadruplets are formed from sequential 8-bit ++// integers selected from a starting at the offset specified in imm8. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_mpsadbw_epu8 ++FORCE_INLINE __m128i _mm_mpsadbw_epu8(__m128i a, __m128i b, const int imm) ++{ ++ uint8x16_t _a, _b; ++ ++ switch (imm & 0x4) { ++ case 0: ++ // do nothing ++ _a = vreinterpretq_u8_m128i(a); ++ break; ++ case 4: ++ _a = vreinterpretq_u8_u32(vextq_u32(vreinterpretq_u32_m128i(a), ++ vreinterpretq_u32_m128i(a), 1)); ++ break; ++ default: ++#if defined(__GNUC__) || defined(__clang__) ++ __builtin_unreachable(); ++#elif defined(_MSC_VER) ++ __assume(0); ++#endif ++ break; ++ } ++ ++ switch (imm & 0x3) { ++ case 0: ++ _b = vreinterpretq_u8_u32( ++ vdupq_n_u32(vgetq_lane_u32(vreinterpretq_u32_m128i(b), 0))); ++ break; ++ case 1: ++ _b = vreinterpretq_u8_u32( ++ vdupq_n_u32(vgetq_lane_u32(vreinterpretq_u32_m128i(b), 1))); ++ break; ++ case 2: ++ _b = vreinterpretq_u8_u32( ++ vdupq_n_u32(vgetq_lane_u32(vreinterpretq_u32_m128i(b), 2))); ++ break; ++ case 3: ++ _b = vreinterpretq_u8_u32( ++ vdupq_n_u32(vgetq_lane_u32(vreinterpretq_u32_m128i(b), 3))); ++ break; ++ default: ++#if defined(__GNUC__) || defined(__clang__) ++ __builtin_unreachable(); ++#elif defined(_MSC_VER) ++ __assume(0); ++#endif ++ break; ++ } ++ ++ int16x8_t c04, c15, c26, c37; ++ uint8x8_t low_b = vget_low_u8(_b); ++ c04 = vreinterpretq_s16_u16(vabdl_u8(vget_low_u8(_a), low_b)); ++ uint8x16_t _a_1 = vextq_u8(_a, _a, 1); ++ c15 = vreinterpretq_s16_u16(vabdl_u8(vget_low_u8(_a_1), low_b)); ++ uint8x16_t _a_2 = vextq_u8(_a, _a, 2); ++ c26 = vreinterpretq_s16_u16(vabdl_u8(vget_low_u8(_a_2), low_b)); ++ uint8x16_t _a_3 = vextq_u8(_a, _a, 3); ++ c37 = vreinterpretq_s16_u16(vabdl_u8(vget_low_u8(_a_3), low_b)); ++#if defined(__aarch64__) || defined(_M_ARM64) ++ // |0|4|2|6| ++ c04 = vpaddq_s16(c04, c26); ++ // |1|5|3|7| ++ c15 = vpaddq_s16(c15, c37); ++ ++ int32x4_t trn1_c = ++ vtrn1q_s32(vreinterpretq_s32_s16(c04), vreinterpretq_s32_s16(c15)); ++ int32x4_t trn2_c = ++ vtrn2q_s32(vreinterpretq_s32_s16(c04), vreinterpretq_s32_s16(c15)); ++ return vreinterpretq_m128i_s16(vpaddq_s16(vreinterpretq_s16_s32(trn1_c), ++ vreinterpretq_s16_s32(trn2_c))); ++#else ++ int16x4_t c01, c23, c45, c67; ++ c01 = vpadd_s16(vget_low_s16(c04), vget_low_s16(c15)); ++ c23 = vpadd_s16(vget_low_s16(c26), vget_low_s16(c37)); ++ c45 = vpadd_s16(vget_high_s16(c04), vget_high_s16(c15)); ++ c67 = vpadd_s16(vget_high_s16(c26), vget_high_s16(c37)); ++ ++ return vreinterpretq_m128i_s16( ++ vcombine_s16(vpadd_s16(c01, c23), vpadd_s16(c45, c67))); ++#endif ++} ++ ++// Multiply the low signed 32-bit integers from each packed 64-bit element in ++// a and b, and store the signed 64-bit results in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_mul_epi32 ++FORCE_INLINE __m128i _mm_mul_epi32(__m128i a, __m128i b) ++{ ++ // vmull_s32 upcasts instead of masking, so we downcast. ++ int32x2_t a_lo = vmovn_s64(vreinterpretq_s64_m128i(a)); ++ int32x2_t b_lo = vmovn_s64(vreinterpretq_s64_m128i(b)); ++ return vreinterpretq_m128i_s64(vmull_s32(a_lo, b_lo)); ++} ++ ++// Multiply the packed 32-bit integers in a and b, producing intermediate 64-bit ++// integers, and store the low 32 bits of the intermediate integers in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_mullo_epi32 ++FORCE_INLINE __m128i _mm_mullo_epi32(__m128i a, __m128i b) ++{ ++ return vreinterpretq_m128i_s32( ++ vmulq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b))); ++} ++ ++// Convert packed signed 32-bit integers from a and b to packed 16-bit integers ++// using unsigned saturation, and store the results in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_packus_epi32 ++FORCE_INLINE __m128i _mm_packus_epi32(__m128i a, __m128i b) ++{ ++ return vreinterpretq_m128i_u16( ++ vcombine_u16(vqmovun_s32(vreinterpretq_s32_m128i(a)), ++ vqmovun_s32(vreinterpretq_s32_m128i(b)))); ++} ++ ++// Round the packed double-precision (64-bit) floating-point elements in a using ++// the rounding parameter, and store the results as packed double-precision ++// floating-point elements in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_round_pd ++FORCE_INLINE_OPTNONE __m128d _mm_round_pd(__m128d a, int rounding) ++{ ++#if defined(__aarch64__) || defined(_M_ARM64) ++ switch (rounding) { ++ case (_MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC): ++ return vreinterpretq_m128d_f64(vrndnq_f64(vreinterpretq_f64_m128d(a))); ++ case (_MM_FROUND_TO_NEG_INF | _MM_FROUND_NO_EXC): ++ return _mm_floor_pd(a); ++ case (_MM_FROUND_TO_POS_INF | _MM_FROUND_NO_EXC): ++ return _mm_ceil_pd(a); ++ case (_MM_FROUND_TO_ZERO | _MM_FROUND_NO_EXC): ++ return vreinterpretq_m128d_f64(vrndq_f64(vreinterpretq_f64_m128d(a))); ++ default: //_MM_FROUND_CUR_DIRECTION ++ return vreinterpretq_m128d_f64(vrndiq_f64(vreinterpretq_f64_m128d(a))); ++ } ++#else ++ double *v_double = (double *) &a; ++ ++ if (rounding == (_MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC) || ++ (rounding == _MM_FROUND_CUR_DIRECTION && ++ _MM_GET_ROUNDING_MODE() == _MM_ROUND_NEAREST)) { ++ double res[2], tmp; ++ for (int i = 0; i < 2; i++) { ++ tmp = (v_double[i] < 0) ? -v_double[i] : v_double[i]; ++ double roundDown = floor(tmp); // Round down value ++ double roundUp = ceil(tmp); // Round up value ++ double diffDown = tmp - roundDown; ++ double diffUp = roundUp - tmp; ++ if (diffDown < diffUp) { ++ /* If it's closer to the round down value, then use it */ ++ res[i] = roundDown; ++ } else if (diffDown > diffUp) { ++ /* If it's closer to the round up value, then use it */ ++ res[i] = roundUp; ++ } else { ++ /* If it's equidistant between round up and round down value, ++ * pick the one which is an even number */ ++ double half = roundDown / 2; ++ if (half != floor(half)) { ++ /* If the round down value is odd, return the round up value ++ */ ++ res[i] = roundUp; ++ } else { ++ /* If the round up value is odd, return the round down value ++ */ ++ res[i] = roundDown; ++ } ++ } ++ res[i] = (v_double[i] < 0) ? -res[i] : res[i]; ++ } ++ return _mm_set_pd(res[1], res[0]); ++ } else if (rounding == (_MM_FROUND_TO_NEG_INF | _MM_FROUND_NO_EXC) || ++ (rounding == _MM_FROUND_CUR_DIRECTION && ++ _MM_GET_ROUNDING_MODE() == _MM_ROUND_DOWN)) { ++ return _mm_floor_pd(a); ++ } else if (rounding == (_MM_FROUND_TO_POS_INF | _MM_FROUND_NO_EXC) || ++ (rounding == _MM_FROUND_CUR_DIRECTION && ++ _MM_GET_ROUNDING_MODE() == _MM_ROUND_UP)) { ++ return _mm_ceil_pd(a); ++ } ++ return _mm_set_pd(v_double[1] > 0 ? floor(v_double[1]) : ceil(v_double[1]), ++ v_double[0] > 0 ? floor(v_double[0]) : ceil(v_double[0])); ++#endif ++} ++ ++// Round the packed single-precision (32-bit) floating-point elements in a using ++// the rounding parameter, and store the results as packed single-precision ++// floating-point elements in dst. ++// software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_round_ps ++FORCE_INLINE_OPTNONE __m128 _mm_round_ps(__m128 a, int rounding) ++{ ++#if (defined(__aarch64__) || defined(_M_ARM64)) || \ ++ defined(__ARM_FEATURE_DIRECTED_ROUNDING) ++ switch (rounding) { ++ case (_MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC): ++ return vreinterpretq_m128_f32(vrndnq_f32(vreinterpretq_f32_m128(a))); ++ case (_MM_FROUND_TO_NEG_INF | _MM_FROUND_NO_EXC): ++ return _mm_floor_ps(a); ++ case (_MM_FROUND_TO_POS_INF | _MM_FROUND_NO_EXC): ++ return _mm_ceil_ps(a); ++ case (_MM_FROUND_TO_ZERO | _MM_FROUND_NO_EXC): ++ return vreinterpretq_m128_f32(vrndq_f32(vreinterpretq_f32_m128(a))); ++ default: //_MM_FROUND_CUR_DIRECTION ++ return vreinterpretq_m128_f32(vrndiq_f32(vreinterpretq_f32_m128(a))); ++ } ++#else ++ float *v_float = (float *) &a; ++ ++ if (rounding == (_MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC) || ++ (rounding == _MM_FROUND_CUR_DIRECTION && ++ _MM_GET_ROUNDING_MODE() == _MM_ROUND_NEAREST)) { ++ uint32x4_t signmask = vdupq_n_u32(0x80000000); ++ float32x4_t half = vbslq_f32(signmask, vreinterpretq_f32_m128(a), ++ vdupq_n_f32(0.5f)); /* +/- 0.5 */ ++ int32x4_t r_normal = vcvtq_s32_f32(vaddq_f32( ++ vreinterpretq_f32_m128(a), half)); /* round to integer: [a + 0.5]*/ ++ int32x4_t r_trunc = vcvtq_s32_f32( ++ vreinterpretq_f32_m128(a)); /* truncate to integer: [a] */ ++ int32x4_t plusone = vreinterpretq_s32_u32(vshrq_n_u32( ++ vreinterpretq_u32_s32(vnegq_s32(r_trunc)), 31)); /* 1 or 0 */ ++ int32x4_t r_even = vbicq_s32(vaddq_s32(r_trunc, plusone), ++ vdupq_n_s32(1)); /* ([a] + {0,1}) & ~1 */ ++ float32x4_t delta = vsubq_f32( ++ vreinterpretq_f32_m128(a), ++ vcvtq_f32_s32(r_trunc)); /* compute delta: delta = (a - [a]) */ ++ uint32x4_t is_delta_half = ++ vceqq_f32(delta, half); /* delta == +/- 0.5 */ ++ return vreinterpretq_m128_f32( ++ vcvtq_f32_s32(vbslq_s32(is_delta_half, r_even, r_normal))); ++ } else if (rounding == (_MM_FROUND_TO_NEG_INF | _MM_FROUND_NO_EXC) || ++ (rounding == _MM_FROUND_CUR_DIRECTION && ++ _MM_GET_ROUNDING_MODE() == _MM_ROUND_DOWN)) { ++ return _mm_floor_ps(a); ++ } else if (rounding == (_MM_FROUND_TO_POS_INF | _MM_FROUND_NO_EXC) || ++ (rounding == _MM_FROUND_CUR_DIRECTION && ++ _MM_GET_ROUNDING_MODE() == _MM_ROUND_UP)) { ++ return _mm_ceil_ps(a); ++ } ++ return _mm_set_ps(v_float[3] > 0 ? floorf(v_float[3]) : ceilf(v_float[3]), ++ v_float[2] > 0 ? floorf(v_float[2]) : ceilf(v_float[2]), ++ v_float[1] > 0 ? floorf(v_float[1]) : ceilf(v_float[1]), ++ v_float[0] > 0 ? floorf(v_float[0]) : ceilf(v_float[0])); ++#endif ++} ++ ++// Round the lower double-precision (64-bit) floating-point element in b using ++// the rounding parameter, store the result as a double-precision floating-point ++// element in the lower element of dst, and copy the upper element from a to the ++// upper element of dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_round_sd ++FORCE_INLINE __m128d _mm_round_sd(__m128d a, __m128d b, int rounding) ++{ ++ return _mm_move_sd(a, _mm_round_pd(b, rounding)); ++} ++ ++// Round the lower single-precision (32-bit) floating-point element in b using ++// the rounding parameter, store the result as a single-precision floating-point ++// element in the lower element of dst, and copy the upper 3 packed elements ++// from a to the upper elements of dst. Rounding is done according to the ++// rounding[3:0] parameter, which can be one of: ++// (_MM_FROUND_TO_NEAREST_INT |_MM_FROUND_NO_EXC) // round to nearest, and ++// suppress exceptions ++// (_MM_FROUND_TO_NEG_INF |_MM_FROUND_NO_EXC) // round down, and ++// suppress exceptions ++// (_MM_FROUND_TO_POS_INF |_MM_FROUND_NO_EXC) // round up, and suppress ++// exceptions ++// (_MM_FROUND_TO_ZERO |_MM_FROUND_NO_EXC) // truncate, and suppress ++// exceptions _MM_FROUND_CUR_DIRECTION // use MXCSR.RC; see ++// _MM_SET_ROUNDING_MODE ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_round_ss ++FORCE_INLINE __m128 _mm_round_ss(__m128 a, __m128 b, int rounding) ++{ ++ return _mm_move_ss(a, _mm_round_ps(b, rounding)); ++} ++ ++// Load 128-bits of integer data from memory into dst using a non-temporal ++// memory hint. mem_addr must be aligned on a 16-byte boundary or a ++// general-protection exception may be generated. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_stream_load_si128 ++FORCE_INLINE __m128i _mm_stream_load_si128(__m128i *p) ++{ ++#if __has_builtin(__builtin_nontemporal_store) ++ return __builtin_nontemporal_load(p); ++#else ++ return vreinterpretq_m128i_s64(vld1q_s64((int64_t *) p)); ++#endif ++} ++ ++// Compute the bitwise NOT of a and then AND with a 128-bit vector containing ++// all 1's, and return 1 if the result is zero, otherwise return 0. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_test_all_ones ++FORCE_INLINE int _mm_test_all_ones(__m128i a) ++{ ++ return (uint64_t) (vgetq_lane_s64(a, 0) & vgetq_lane_s64(a, 1)) == ++ ~(uint64_t) 0; ++} ++ ++// Compute the bitwise AND of 128 bits (representing integer data) in a and ++// mask, and return 1 if the result is zero, otherwise return 0. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_test_all_zeros ++FORCE_INLINE int _mm_test_all_zeros(__m128i a, __m128i mask) ++{ ++ int64x2_t a_and_mask = ++ vandq_s64(vreinterpretq_s64_m128i(a), vreinterpretq_s64_m128i(mask)); ++ return !(vgetq_lane_s64(a_and_mask, 0) | vgetq_lane_s64(a_and_mask, 1)); ++} ++ ++// Compute the bitwise AND of 128 bits (representing integer data) in a and ++// mask, and set ZF to 1 if the result is zero, otherwise set ZF to 0. Compute ++// the bitwise NOT of a and then AND with mask, and set CF to 1 if the result is ++// zero, otherwise set CF to 0. Return 1 if both the ZF and CF values are zero, ++// otherwise return 0. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=mm_test_mix_ones_zero ++// Note: Argument names may be wrong in the Intel intrinsics guide. ++FORCE_INLINE int _mm_test_mix_ones_zeros(__m128i a, __m128i mask) ++{ ++ uint64x2_t v = vreinterpretq_u64_m128i(a); ++ uint64x2_t m = vreinterpretq_u64_m128i(mask); ++ ++ // find ones (set-bits) and zeros (clear-bits) under clip mask ++ uint64x2_t ones = vandq_u64(m, v); ++ uint64x2_t zeros = vbicq_u64(m, v); ++ ++ // If both 128-bit variables are populated (non-zero) then return 1. ++ // For comparison purposes, first compact each var down to 32-bits. ++ uint32x2_t reduced = vpmax_u32(vqmovn_u64(ones), vqmovn_u64(zeros)); ++ ++ // if folding minimum is non-zero then both vars must be non-zero ++ return (vget_lane_u32(vpmin_u32(reduced, reduced), 0) != 0); ++} ++ ++// Compute the bitwise AND of 128 bits (representing integer data) in a and b, ++// and set ZF to 1 if the result is zero, otherwise set ZF to 0. Compute the ++// bitwise NOT of a and then AND with b, and set CF to 1 if the result is zero, ++// otherwise set CF to 0. Return the CF value. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_testc_si128 ++FORCE_INLINE int _mm_testc_si128(__m128i a, __m128i b) ++{ ++ int64x2_t s64 = ++ vbicq_s64(vreinterpretq_s64_m128i(b), vreinterpretq_s64_m128i(a)); ++ return !(vgetq_lane_s64(s64, 0) | vgetq_lane_s64(s64, 1)); ++} ++ ++// Compute the bitwise AND of 128 bits (representing integer data) in a and b, ++// and set ZF to 1 if the result is zero, otherwise set ZF to 0. Compute the ++// bitwise NOT of a and then AND with b, and set CF to 1 if the result is zero, ++// otherwise set CF to 0. Return 1 if both the ZF and CF values are zero, ++// otherwise return 0. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_testnzc_si128 ++#define _mm_testnzc_si128(a, b) _mm_test_mix_ones_zeros(a, b) ++ ++// Compute the bitwise AND of 128 bits (representing integer data) in a and b, ++// and set ZF to 1 if the result is zero, otherwise set ZF to 0. Compute the ++// bitwise NOT of a and then AND with b, and set CF to 1 if the result is zero, ++// otherwise set CF to 0. Return the ZF value. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_testz_si128 ++FORCE_INLINE int _mm_testz_si128(__m128i a, __m128i b) ++{ ++ int64x2_t s64 = ++ vandq_s64(vreinterpretq_s64_m128i(a), vreinterpretq_s64_m128i(b)); ++ return !(vgetq_lane_s64(s64, 0) | vgetq_lane_s64(s64, 1)); ++} ++ ++/* SSE4.2 */ ++ ++static const uint16_t ALIGN_STRUCT(16) _sse2neon_cmpestr_mask16b[8] = { ++ 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, ++}; ++static const uint8_t ALIGN_STRUCT(16) _sse2neon_cmpestr_mask8b[16] = { ++ 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, ++ 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, ++}; ++ ++/* specify the source data format */ ++#define _SIDD_UBYTE_OPS 0x00 /* unsigned 8-bit characters */ ++#define _SIDD_UWORD_OPS 0x01 /* unsigned 16-bit characters */ ++#define _SIDD_SBYTE_OPS 0x02 /* signed 8-bit characters */ ++#define _SIDD_SWORD_OPS 0x03 /* signed 16-bit characters */ ++ ++/* specify the comparison operation */ ++#define _SIDD_CMP_EQUAL_ANY 0x00 /* compare equal any: strchr */ ++#define _SIDD_CMP_RANGES 0x04 /* compare ranges */ ++#define _SIDD_CMP_EQUAL_EACH 0x08 /* compare equal each: strcmp */ ++#define _SIDD_CMP_EQUAL_ORDERED 0x0C /* compare equal ordered */ ++ ++/* specify the polarity */ ++#define _SIDD_POSITIVE_POLARITY 0x00 ++#define _SIDD_MASKED_POSITIVE_POLARITY 0x20 ++#define _SIDD_NEGATIVE_POLARITY 0x10 /* negate results */ ++#define _SIDD_MASKED_NEGATIVE_POLARITY \ ++ 0x30 /* negate results only before end of string */ ++ ++/* specify the output selection in _mm_cmpXstri */ ++#define _SIDD_LEAST_SIGNIFICANT 0x00 ++#define _SIDD_MOST_SIGNIFICANT 0x40 ++ ++/* specify the output selection in _mm_cmpXstrm */ ++#define _SIDD_BIT_MASK 0x00 ++#define _SIDD_UNIT_MASK 0x40 ++ ++/* Pattern Matching for C macros. ++ * https://github.com/pfultz2/Cloak/wiki/C-Preprocessor-tricks,-tips,-and-idioms ++ */ ++ ++/* catenate */ ++#define SSE2NEON_PRIMITIVE_CAT(a, ...) a##__VA_ARGS__ ++#define SSE2NEON_CAT(a, b) SSE2NEON_PRIMITIVE_CAT(a, b) ++ ++#define SSE2NEON_IIF(c) SSE2NEON_PRIMITIVE_CAT(SSE2NEON_IIF_, c) ++/* run the 2nd parameter */ ++#define SSE2NEON_IIF_0(t, ...) __VA_ARGS__ ++/* run the 1st parameter */ ++#define SSE2NEON_IIF_1(t, ...) t ++ ++#define SSE2NEON_COMPL(b) SSE2NEON_PRIMITIVE_CAT(SSE2NEON_COMPL_, b) ++#define SSE2NEON_COMPL_0 1 ++#define SSE2NEON_COMPL_1 0 ++ ++#define SSE2NEON_DEC(x) SSE2NEON_PRIMITIVE_CAT(SSE2NEON_DEC_, x) ++#define SSE2NEON_DEC_1 0 ++#define SSE2NEON_DEC_2 1 ++#define SSE2NEON_DEC_3 2 ++#define SSE2NEON_DEC_4 3 ++#define SSE2NEON_DEC_5 4 ++#define SSE2NEON_DEC_6 5 ++#define SSE2NEON_DEC_7 6 ++#define SSE2NEON_DEC_8 7 ++#define SSE2NEON_DEC_9 8 ++#define SSE2NEON_DEC_10 9 ++#define SSE2NEON_DEC_11 10 ++#define SSE2NEON_DEC_12 11 ++#define SSE2NEON_DEC_13 12 ++#define SSE2NEON_DEC_14 13 ++#define SSE2NEON_DEC_15 14 ++#define SSE2NEON_DEC_16 15 ++ ++/* detection */ ++#define SSE2NEON_CHECK_N(x, n, ...) n ++#define SSE2NEON_CHECK(...) SSE2NEON_CHECK_N(__VA_ARGS__, 0, ) ++#define SSE2NEON_PROBE(x) x, 1, ++ ++#define SSE2NEON_NOT(x) SSE2NEON_CHECK(SSE2NEON_PRIMITIVE_CAT(SSE2NEON_NOT_, x)) ++#define SSE2NEON_NOT_0 SSE2NEON_PROBE(~) ++ ++#define SSE2NEON_BOOL(x) SSE2NEON_COMPL(SSE2NEON_NOT(x)) ++#define SSE2NEON_IF(c) SSE2NEON_IIF(SSE2NEON_BOOL(c)) ++ ++#define SSE2NEON_EAT(...) ++#define SSE2NEON_EXPAND(...) __VA_ARGS__ ++#define SSE2NEON_WHEN(c) SSE2NEON_IF(c)(SSE2NEON_EXPAND, SSE2NEON_EAT) ++ ++/* recursion */ ++/* deferred expression */ ++#define SSE2NEON_EMPTY() ++#define SSE2NEON_DEFER(id) id SSE2NEON_EMPTY() ++#define SSE2NEON_OBSTRUCT(...) __VA_ARGS__ SSE2NEON_DEFER(SSE2NEON_EMPTY)() ++#define SSE2NEON_EXPAND(...) __VA_ARGS__ ++ ++#define SSE2NEON_EVAL(...) \ ++ SSE2NEON_EVAL1(SSE2NEON_EVAL1(SSE2NEON_EVAL1(__VA_ARGS__))) ++#define SSE2NEON_EVAL1(...) \ ++ SSE2NEON_EVAL2(SSE2NEON_EVAL2(SSE2NEON_EVAL2(__VA_ARGS__))) ++#define SSE2NEON_EVAL2(...) \ ++ SSE2NEON_EVAL3(SSE2NEON_EVAL3(SSE2NEON_EVAL3(__VA_ARGS__))) ++#define SSE2NEON_EVAL3(...) __VA_ARGS__ ++ ++#define SSE2NEON_REPEAT(count, macro, ...) \ ++ SSE2NEON_WHEN(count) \ ++ (SSE2NEON_OBSTRUCT(SSE2NEON_REPEAT_INDIRECT)()( \ ++ SSE2NEON_DEC(count), macro, \ ++ __VA_ARGS__) SSE2NEON_OBSTRUCT(macro)(SSE2NEON_DEC(count), \ ++ __VA_ARGS__)) ++#define SSE2NEON_REPEAT_INDIRECT() SSE2NEON_REPEAT ++ ++#define SSE2NEON_SIZE_OF_byte 8 ++#define SSE2NEON_NUMBER_OF_LANES_byte 16 ++#define SSE2NEON_SIZE_OF_word 16 ++#define SSE2NEON_NUMBER_OF_LANES_word 8 ++ ++#define SSE2NEON_COMPARE_EQUAL_THEN_FILL_LANE(i, type) \ ++ mtx[i] = vreinterpretq_m128i_##type(vceqq_##type( \ ++ vdupq_n_##type(vgetq_lane_##type(vreinterpretq_##type##_m128i(b), i)), \ ++ vreinterpretq_##type##_m128i(a))); ++ ++#define SSE2NEON_FILL_LANE(i, type) \ ++ vec_b[i] = \ ++ vdupq_n_##type(vgetq_lane_##type(vreinterpretq_##type##_m128i(b), i)); ++ ++#define PCMPSTR_RANGES(a, b, mtx, data_type_prefix, type_prefix, size, \ ++ number_of_lanes, byte_or_word) \ ++ do { \ ++ SSE2NEON_CAT( \ ++ data_type_prefix, \ ++ SSE2NEON_CAT(size, \ ++ SSE2NEON_CAT(x, SSE2NEON_CAT(number_of_lanes, _t)))) \ ++ vec_b[number_of_lanes]; \ ++ __m128i mask = SSE2NEON_IIF(byte_or_word)( \ ++ vreinterpretq_m128i_u16(vdupq_n_u16(0xff)), \ ++ vreinterpretq_m128i_u32(vdupq_n_u32(0xffff))); \ ++ SSE2NEON_EVAL(SSE2NEON_REPEAT(number_of_lanes, SSE2NEON_FILL_LANE, \ ++ SSE2NEON_CAT(type_prefix, size))) \ ++ for (int i = 0; i < number_of_lanes; i++) { \ ++ mtx[i] = SSE2NEON_CAT(vreinterpretq_m128i_u, \ ++ size)(SSE2NEON_CAT(vbslq_u, size)( \ ++ SSE2NEON_CAT(vreinterpretq_u, \ ++ SSE2NEON_CAT(size, _m128i))(mask), \ ++ SSE2NEON_CAT(vcgeq_, SSE2NEON_CAT(type_prefix, size))( \ ++ vec_b[i], \ ++ SSE2NEON_CAT( \ ++ vreinterpretq_, \ ++ SSE2NEON_CAT(type_prefix, \ ++ SSE2NEON_CAT(size, _m128i(a))))), \ ++ SSE2NEON_CAT(vcleq_, SSE2NEON_CAT(type_prefix, size))( \ ++ vec_b[i], \ ++ SSE2NEON_CAT( \ ++ vreinterpretq_, \ ++ SSE2NEON_CAT(type_prefix, \ ++ SSE2NEON_CAT(size, _m128i(a))))))); \ ++ } \ ++ } while (0) ++ ++#define PCMPSTR_EQ(a, b, mtx, size, number_of_lanes) \ ++ do { \ ++ SSE2NEON_EVAL(SSE2NEON_REPEAT(number_of_lanes, \ ++ SSE2NEON_COMPARE_EQUAL_THEN_FILL_LANE, \ ++ SSE2NEON_CAT(u, size))) \ ++ } while (0) ++ ++#define SSE2NEON_CMP_EQUAL_ANY_IMPL(type) \ ++ static int _sse2neon_cmp_##type##_equal_any(__m128i a, int la, __m128i b, \ ++ int lb) \ ++ { \ ++ __m128i mtx[16]; \ ++ PCMPSTR_EQ(a, b, mtx, SSE2NEON_CAT(SSE2NEON_SIZE_OF_, type), \ ++ SSE2NEON_CAT(SSE2NEON_NUMBER_OF_LANES_, type)); \ ++ return SSE2NEON_CAT( \ ++ _sse2neon_aggregate_equal_any_, \ ++ SSE2NEON_CAT( \ ++ SSE2NEON_CAT(SSE2NEON_SIZE_OF_, type), \ ++ SSE2NEON_CAT(x, SSE2NEON_CAT(SSE2NEON_NUMBER_OF_LANES_, \ ++ type))))(la, lb, mtx); \ ++ } ++ ++#define SSE2NEON_CMP_RANGES_IMPL(type, data_type, us, byte_or_word) \ ++ static int _sse2neon_cmp_##us##type##_ranges(__m128i a, int la, __m128i b, \ ++ int lb) \ ++ { \ ++ __m128i mtx[16]; \ ++ PCMPSTR_RANGES( \ ++ a, b, mtx, data_type, us, SSE2NEON_CAT(SSE2NEON_SIZE_OF_, type), \ ++ SSE2NEON_CAT(SSE2NEON_NUMBER_OF_LANES_, type), byte_or_word); \ ++ return SSE2NEON_CAT( \ ++ _sse2neon_aggregate_ranges_, \ ++ SSE2NEON_CAT( \ ++ SSE2NEON_CAT(SSE2NEON_SIZE_OF_, type), \ ++ SSE2NEON_CAT(x, SSE2NEON_CAT(SSE2NEON_NUMBER_OF_LANES_, \ ++ type))))(la, lb, mtx); \ ++ } ++ ++#define SSE2NEON_CMP_EQUAL_ORDERED_IMPL(type) \ ++ static int _sse2neon_cmp_##type##_equal_ordered(__m128i a, int la, \ ++ __m128i b, int lb) \ ++ { \ ++ __m128i mtx[16]; \ ++ PCMPSTR_EQ(a, b, mtx, SSE2NEON_CAT(SSE2NEON_SIZE_OF_, type), \ ++ SSE2NEON_CAT(SSE2NEON_NUMBER_OF_LANES_, type)); \ ++ return SSE2NEON_CAT( \ ++ _sse2neon_aggregate_equal_ordered_, \ ++ SSE2NEON_CAT( \ ++ SSE2NEON_CAT(SSE2NEON_SIZE_OF_, type), \ ++ SSE2NEON_CAT(x, \ ++ SSE2NEON_CAT(SSE2NEON_NUMBER_OF_LANES_, type))))( \ ++ SSE2NEON_CAT(SSE2NEON_NUMBER_OF_LANES_, type), la, lb, mtx); \ ++ } ++ ++static int _sse2neon_aggregate_equal_any_8x16(int la, int lb, __m128i mtx[16]) ++{ ++ int res = 0; ++ int m = (1 << la) - 1; ++ uint8x8_t vec_mask = vld1_u8(_sse2neon_cmpestr_mask8b); ++ uint8x8_t t_lo = vtst_u8(vdup_n_u8(m & 0xff), vec_mask); ++ uint8x8_t t_hi = vtst_u8(vdup_n_u8(m >> 8), vec_mask); ++ uint8x16_t vec = vcombine_u8(t_lo, t_hi); ++ for (int j = 0; j < lb; j++) { ++ mtx[j] = vreinterpretq_m128i_u8( ++ vandq_u8(vec, vreinterpretq_u8_m128i(mtx[j]))); ++ mtx[j] = vreinterpretq_m128i_u8( ++ vshrq_n_u8(vreinterpretq_u8_m128i(mtx[j]), 7)); ++ int tmp = _sse2neon_vaddvq_u8(vreinterpretq_u8_m128i(mtx[j])) ? 1 : 0; ++ res |= (tmp << j); ++ } ++ return res; ++} ++ ++static int _sse2neon_aggregate_equal_any_16x8(int la, int lb, __m128i mtx[16]) ++{ ++ int res = 0; ++ int m = (1 << la) - 1; ++ uint16x8_t vec = ++ vtstq_u16(vdupq_n_u16(m), vld1q_u16(_sse2neon_cmpestr_mask16b)); ++ for (int j = 0; j < lb; j++) { ++ mtx[j] = vreinterpretq_m128i_u16( ++ vandq_u16(vec, vreinterpretq_u16_m128i(mtx[j]))); ++ mtx[j] = vreinterpretq_m128i_u16( ++ vshrq_n_u16(vreinterpretq_u16_m128i(mtx[j]), 15)); ++ int tmp = _sse2neon_vaddvq_u16(vreinterpretq_u16_m128i(mtx[j])) ? 1 : 0; ++ res |= (tmp << j); ++ } ++ return res; ++} ++ ++/* clang-format off */ ++#define SSE2NEON_GENERATE_CMP_EQUAL_ANY(prefix) \ ++ prefix##IMPL(byte) \ ++ prefix##IMPL(word) ++/* clang-format on */ ++ ++SSE2NEON_GENERATE_CMP_EQUAL_ANY(SSE2NEON_CMP_EQUAL_ANY_) ++ ++static int _sse2neon_aggregate_ranges_16x8(int la, int lb, __m128i mtx[16]) ++{ ++ int res = 0; ++ int m = (1 << la) - 1; ++ uint16x8_t vec = ++ vtstq_u16(vdupq_n_u16(m), vld1q_u16(_sse2neon_cmpestr_mask16b)); ++ for (int j = 0; j < lb; j++) { ++ mtx[j] = vreinterpretq_m128i_u16( ++ vandq_u16(vec, vreinterpretq_u16_m128i(mtx[j]))); ++ mtx[j] = vreinterpretq_m128i_u16( ++ vshrq_n_u16(vreinterpretq_u16_m128i(mtx[j]), 15)); ++ __m128i tmp = vreinterpretq_m128i_u32( ++ vshrq_n_u32(vreinterpretq_u32_m128i(mtx[j]), 16)); ++ uint32x4_t vec_res = vandq_u32(vreinterpretq_u32_m128i(mtx[j]), ++ vreinterpretq_u32_m128i(tmp)); ++#if defined(__aarch64__) || defined(_M_ARM64) ++ int t = vaddvq_u32(vec_res) ? 1 : 0; ++#else ++ uint64x2_t sumh = vpaddlq_u32(vec_res); ++ int t = vgetq_lane_u64(sumh, 0) + vgetq_lane_u64(sumh, 1); ++#endif ++ res |= (t << j); ++ } ++ return res; ++} ++ ++static int _sse2neon_aggregate_ranges_8x16(int la, int lb, __m128i mtx[16]) ++{ ++ int res = 0; ++ int m = (1 << la) - 1; ++ uint8x8_t vec_mask = vld1_u8(_sse2neon_cmpestr_mask8b); ++ uint8x8_t t_lo = vtst_u8(vdup_n_u8(m & 0xff), vec_mask); ++ uint8x8_t t_hi = vtst_u8(vdup_n_u8(m >> 8), vec_mask); ++ uint8x16_t vec = vcombine_u8(t_lo, t_hi); ++ for (int j = 0; j < lb; j++) { ++ mtx[j] = vreinterpretq_m128i_u8( ++ vandq_u8(vec, vreinterpretq_u8_m128i(mtx[j]))); ++ mtx[j] = vreinterpretq_m128i_u8( ++ vshrq_n_u8(vreinterpretq_u8_m128i(mtx[j]), 7)); ++ __m128i tmp = vreinterpretq_m128i_u16( ++ vshrq_n_u16(vreinterpretq_u16_m128i(mtx[j]), 8)); ++ uint16x8_t vec_res = vandq_u16(vreinterpretq_u16_m128i(mtx[j]), ++ vreinterpretq_u16_m128i(tmp)); ++ int t = _sse2neon_vaddvq_u16(vec_res) ? 1 : 0; ++ res |= (t << j); ++ } ++ return res; ++} ++ ++#define SSE2NEON_CMP_RANGES_IS_BYTE 1 ++#define SSE2NEON_CMP_RANGES_IS_WORD 0 ++ ++/* clang-format off */ ++#define SSE2NEON_GENERATE_CMP_RANGES(prefix) \ ++ prefix##IMPL(byte, uint, u, prefix##IS_BYTE) \ ++ prefix##IMPL(byte, int, s, prefix##IS_BYTE) \ ++ prefix##IMPL(word, uint, u, prefix##IS_WORD) \ ++ prefix##IMPL(word, int, s, prefix##IS_WORD) ++/* clang-format on */ ++ ++SSE2NEON_GENERATE_CMP_RANGES(SSE2NEON_CMP_RANGES_) ++ ++#undef SSE2NEON_CMP_RANGES_IS_BYTE ++#undef SSE2NEON_CMP_RANGES_IS_WORD ++ ++static int _sse2neon_cmp_byte_equal_each(__m128i a, int la, __m128i b, int lb) ++{ ++ uint8x16_t mtx = ++ vceqq_u8(vreinterpretq_u8_m128i(a), vreinterpretq_u8_m128i(b)); ++ int m0 = (la < lb) ? 0 : ((1 << la) - (1 << lb)); ++ int m1 = 0x10000 - (1 << la); ++ int tb = 0x10000 - (1 << lb); ++ uint8x8_t vec_mask, vec0_lo, vec0_hi, vec1_lo, vec1_hi; ++ uint8x8_t tmp_lo, tmp_hi, res_lo, res_hi; ++ vec_mask = vld1_u8(_sse2neon_cmpestr_mask8b); ++ vec0_lo = vtst_u8(vdup_n_u8(m0), vec_mask); ++ vec0_hi = vtst_u8(vdup_n_u8(m0 >> 8), vec_mask); ++ vec1_lo = vtst_u8(vdup_n_u8(m1), vec_mask); ++ vec1_hi = vtst_u8(vdup_n_u8(m1 >> 8), vec_mask); ++ tmp_lo = vtst_u8(vdup_n_u8(tb), vec_mask); ++ tmp_hi = vtst_u8(vdup_n_u8(tb >> 8), vec_mask); ++ ++ res_lo = vbsl_u8(vec0_lo, vdup_n_u8(0), vget_low_u8(mtx)); ++ res_hi = vbsl_u8(vec0_hi, vdup_n_u8(0), vget_high_u8(mtx)); ++ res_lo = vbsl_u8(vec1_lo, tmp_lo, res_lo); ++ res_hi = vbsl_u8(vec1_hi, tmp_hi, res_hi); ++ res_lo = vand_u8(res_lo, vec_mask); ++ res_hi = vand_u8(res_hi, vec_mask); ++ ++ int res = _sse2neon_vaddv_u8(res_lo) + (_sse2neon_vaddv_u8(res_hi) << 8); ++ return res; ++} ++ ++static int _sse2neon_cmp_word_equal_each(__m128i a, int la, __m128i b, int lb) ++{ ++ uint16x8_t mtx = ++ vceqq_u16(vreinterpretq_u16_m128i(a), vreinterpretq_u16_m128i(b)); ++ int m0 = (la < lb) ? 0 : ((1 << la) - (1 << lb)); ++ int m1 = 0x100 - (1 << la); ++ int tb = 0x100 - (1 << lb); ++ uint16x8_t vec_mask = vld1q_u16(_sse2neon_cmpestr_mask16b); ++ uint16x8_t vec0 = vtstq_u16(vdupq_n_u16(m0), vec_mask); ++ uint16x8_t vec1 = vtstq_u16(vdupq_n_u16(m1), vec_mask); ++ uint16x8_t tmp = vtstq_u16(vdupq_n_u16(tb), vec_mask); ++ mtx = vbslq_u16(vec0, vdupq_n_u16(0), mtx); ++ mtx = vbslq_u16(vec1, tmp, mtx); ++ mtx = vandq_u16(mtx, vec_mask); ++ return _sse2neon_vaddvq_u16(mtx); ++} ++ ++#define SSE2NEON_AGGREGATE_EQUAL_ORDER_IS_UBYTE 1 ++#define SSE2NEON_AGGREGATE_EQUAL_ORDER_IS_UWORD 0 ++ ++#define SSE2NEON_AGGREGATE_EQUAL_ORDER_IMPL(size, number_of_lanes, data_type) \ ++ static int _sse2neon_aggregate_equal_ordered_##size##x##number_of_lanes( \ ++ int bound, int la, int lb, __m128i mtx[16]) \ ++ { \ ++ int res = 0; \ ++ int m1 = SSE2NEON_IIF(data_type)(0x10000, 0x100) - (1 << la); \ ++ uint##size##x8_t vec_mask = SSE2NEON_IIF(data_type)( \ ++ vld1_u##size(_sse2neon_cmpestr_mask##size##b), \ ++ vld1q_u##size(_sse2neon_cmpestr_mask##size##b)); \ ++ uint##size##x##number_of_lanes##_t vec1 = SSE2NEON_IIF(data_type)( \ ++ vcombine_u##size(vtst_u##size(vdup_n_u##size(m1), vec_mask), \ ++ vtst_u##size(vdup_n_u##size(m1 >> 8), vec_mask)), \ ++ vtstq_u##size(vdupq_n_u##size(m1), vec_mask)); \ ++ uint##size##x##number_of_lanes##_t vec_minusone = vdupq_n_u##size(-1); \ ++ uint##size##x##number_of_lanes##_t vec_zero = vdupq_n_u##size(0); \ ++ for (int j = 0; j < lb; j++) { \ ++ mtx[j] = vreinterpretq_m128i_u##size(vbslq_u##size( \ ++ vec1, vec_minusone, vreinterpretq_u##size##_m128i(mtx[j]))); \ ++ } \ ++ for (int j = lb; j < bound; j++) { \ ++ mtx[j] = vreinterpretq_m128i_u##size( \ ++ vbslq_u##size(vec1, vec_minusone, vec_zero)); \ ++ } \ ++ unsigned SSE2NEON_IIF(data_type)(char, short) *ptr = \ ++ (unsigned SSE2NEON_IIF(data_type)(char, short) *) mtx; \ ++ for (int i = 0; i < bound; i++) { \ ++ int val = 1; \ ++ for (int j = 0, k = i; j < bound - i && k < bound; j++, k++) \ ++ val &= ptr[k * bound + j]; \ ++ res += val << i; \ ++ } \ ++ return res; \ ++ } ++ ++/* clang-format off */ ++#define SSE2NEON_GENERATE_AGGREGATE_EQUAL_ORDER(prefix) \ ++ prefix##IMPL(8, 16, prefix##IS_UBYTE) \ ++ prefix##IMPL(16, 8, prefix##IS_UWORD) ++/* clang-format on */ ++ ++SSE2NEON_GENERATE_AGGREGATE_EQUAL_ORDER(SSE2NEON_AGGREGATE_EQUAL_ORDER_) ++ ++#undef SSE2NEON_AGGREGATE_EQUAL_ORDER_IS_UBYTE ++#undef SSE2NEON_AGGREGATE_EQUAL_ORDER_IS_UWORD ++ ++/* clang-format off */ ++#define SSE2NEON_GENERATE_CMP_EQUAL_ORDERED(prefix) \ ++ prefix##IMPL(byte) \ ++ prefix##IMPL(word) ++/* clang-format on */ ++ ++SSE2NEON_GENERATE_CMP_EQUAL_ORDERED(SSE2NEON_CMP_EQUAL_ORDERED_) ++ ++#define SSE2NEON_CMPESTR_LIST \ ++ _(CMP_UBYTE_EQUAL_ANY, cmp_byte_equal_any) \ ++ _(CMP_UWORD_EQUAL_ANY, cmp_word_equal_any) \ ++ _(CMP_SBYTE_EQUAL_ANY, cmp_byte_equal_any) \ ++ _(CMP_SWORD_EQUAL_ANY, cmp_word_equal_any) \ ++ _(CMP_UBYTE_RANGES, cmp_ubyte_ranges) \ ++ _(CMP_UWORD_RANGES, cmp_uword_ranges) \ ++ _(CMP_SBYTE_RANGES, cmp_sbyte_ranges) \ ++ _(CMP_SWORD_RANGES, cmp_sword_ranges) \ ++ _(CMP_UBYTE_EQUAL_EACH, cmp_byte_equal_each) \ ++ _(CMP_UWORD_EQUAL_EACH, cmp_word_equal_each) \ ++ _(CMP_SBYTE_EQUAL_EACH, cmp_byte_equal_each) \ ++ _(CMP_SWORD_EQUAL_EACH, cmp_word_equal_each) \ ++ _(CMP_UBYTE_EQUAL_ORDERED, cmp_byte_equal_ordered) \ ++ _(CMP_UWORD_EQUAL_ORDERED, cmp_word_equal_ordered) \ ++ _(CMP_SBYTE_EQUAL_ORDERED, cmp_byte_equal_ordered) \ ++ _(CMP_SWORD_EQUAL_ORDERED, cmp_word_equal_ordered) ++ ++enum { ++#define _(name, func_suffix) name, ++ SSE2NEON_CMPESTR_LIST ++#undef _ ++}; ++typedef int (*cmpestr_func_t)(__m128i a, int la, __m128i b, int lb); ++static cmpestr_func_t _sse2neon_cmpfunc_table[] = { ++#define _(name, func_suffix) _sse2neon_##func_suffix, ++ SSE2NEON_CMPESTR_LIST ++#undef _ ++}; ++ ++FORCE_INLINE int _sse2neon_sido_negative(int res, int lb, int imm8, int bound) ++{ ++ switch (imm8 & 0x30) { ++ case _SIDD_NEGATIVE_POLARITY: ++ res ^= 0xffffffff; ++ break; ++ case _SIDD_MASKED_NEGATIVE_POLARITY: ++ res ^= (1 << lb) - 1; ++ break; ++ default: ++ break; ++ } ++ ++ return res & ((bound == 8) ? 0xFF : 0xFFFF); ++} ++ ++FORCE_INLINE int _sse2neon_clz(unsigned int x) ++{ ++#ifdef _MSC_VER ++ unsigned long cnt = 0; ++ if (_BitScanReverse(&cnt, x)) ++ return 31 - cnt; ++ return 32; ++#else ++ return x != 0 ? __builtin_clz(x) : 32; ++#endif ++} ++ ++FORCE_INLINE int _sse2neon_ctz(unsigned int x) ++{ ++#ifdef _MSC_VER ++ unsigned long cnt = 0; ++ if (_BitScanForward(&cnt, x)) ++ return cnt; ++ return 32; ++#else ++ return x != 0 ? __builtin_ctz(x) : 32; ++#endif ++} ++ ++FORCE_INLINE int _sse2neon_ctzll(unsigned long long x) ++{ ++#ifdef _MSC_VER ++ unsigned long cnt; ++#if defined(SSE2NEON_HAS_BITSCAN64) ++ if (_BitScanForward64(&cnt, x)) ++ return (int) (cnt); ++#else ++ if (_BitScanForward(&cnt, (unsigned long) (x))) ++ return (int) cnt; ++ if (_BitScanForward(&cnt, (unsigned long) (x >> 32))) ++ return (int) (cnt + 32); ++#endif /* SSE2NEON_HAS_BITSCAN64 */ ++ return 64; ++#else /* assume GNU compatible compilers */ ++ return x != 0 ? __builtin_ctzll(x) : 64; ++#endif ++} ++ ++#define SSE2NEON_MIN(x, y) (x) < (y) ? (x) : (y) ++ ++#define SSE2NEON_CMPSTR_SET_UPPER(var, imm) \ ++ const int var = (imm & 0x01) ? 8 : 16 ++ ++#define SSE2NEON_CMPESTRX_LEN_PAIR(a, b, la, lb) \ ++ int tmp1 = la ^ (la >> 31); \ ++ la = tmp1 - (la >> 31); \ ++ int tmp2 = lb ^ (lb >> 31); \ ++ lb = tmp2 - (lb >> 31); \ ++ la = SSE2NEON_MIN(la, bound); \ ++ lb = SSE2NEON_MIN(lb, bound) ++ ++// Compare all pairs of character in string a and b, ++// then aggregate the result. ++// As the only difference of PCMPESTR* and PCMPISTR* is the way to calculate the ++// length of string, we use SSE2NEON_CMP{I,E}STRX_GET_LEN to get the length of ++// string a and b. ++#define SSE2NEON_COMP_AGG(a, b, la, lb, imm8, IE) \ ++ SSE2NEON_CMPSTR_SET_UPPER(bound, imm8); \ ++ SSE2NEON_##IE##_LEN_PAIR(a, b, la, lb); \ ++ int r2 = (_sse2neon_cmpfunc_table[imm8 & 0x0f])(a, la, b, lb); \ ++ r2 = _sse2neon_sido_negative(r2, lb, imm8, bound) ++ ++#define SSE2NEON_CMPSTR_GENERATE_INDEX(r2, bound, imm8) \ ++ return (r2 == 0) ? bound \ ++ : ((imm8 & 0x40) ? (31 - _sse2neon_clz(r2)) \ ++ : _sse2neon_ctz(r2)) ++ ++#define SSE2NEON_CMPSTR_GENERATE_MASK(dst) \ ++ __m128i dst = vreinterpretq_m128i_u8(vdupq_n_u8(0)); \ ++ if (imm8 & 0x40) { \ ++ if (bound == 8) { \ ++ uint16x8_t tmp = vtstq_u16(vdupq_n_u16(r2), \ ++ vld1q_u16(_sse2neon_cmpestr_mask16b)); \ ++ dst = vreinterpretq_m128i_u16(vbslq_u16( \ ++ tmp, vdupq_n_u16(-1), vreinterpretq_u16_m128i(dst))); \ ++ } else { \ ++ uint8x16_t vec_r2 = \ ++ vcombine_u8(vdup_n_u8(r2), vdup_n_u8(r2 >> 8)); \ ++ uint8x16_t tmp = \ ++ vtstq_u8(vec_r2, vld1q_u8(_sse2neon_cmpestr_mask8b)); \ ++ dst = vreinterpretq_m128i_u8( \ ++ vbslq_u8(tmp, vdupq_n_u8(-1), vreinterpretq_u8_m128i(dst))); \ ++ } \ ++ } else { \ ++ if (bound == 16) { \ ++ dst = vreinterpretq_m128i_u16( \ ++ vsetq_lane_u16(r2 & 0xffff, vreinterpretq_u16_m128i(dst), 0)); \ ++ } else { \ ++ dst = vreinterpretq_m128i_u8( \ ++ vsetq_lane_u8(r2 & 0xff, vreinterpretq_u8_m128i(dst), 0)); \ ++ } \ ++ } \ ++ return dst ++ ++// Compare packed strings in a and b with lengths la and lb using the control ++// in imm8, and returns 1 if b did not contain a null character and the ++// resulting mask was zero, and 0 otherwise. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpestra ++FORCE_INLINE int _mm_cmpestra(__m128i a, ++ int la, ++ __m128i b, ++ int lb, ++ const int imm8) ++{ ++ int lb_cpy = lb; ++ SSE2NEON_COMP_AGG(a, b, la, lb, imm8, CMPESTRX); ++ return !r2 & (lb_cpy > bound); ++} ++ ++// Compare packed strings in a and b with lengths la and lb using the control in ++// imm8, and returns 1 if the resulting mask was non-zero, and 0 otherwise. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpestrc ++FORCE_INLINE int _mm_cmpestrc(__m128i a, ++ int la, ++ __m128i b, ++ int lb, ++ const int imm8) ++{ ++ SSE2NEON_COMP_AGG(a, b, la, lb, imm8, CMPESTRX); ++ return r2 != 0; ++} ++ ++// Compare packed strings in a and b with lengths la and lb using the control ++// in imm8, and store the generated index in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpestri ++FORCE_INLINE int _mm_cmpestri(__m128i a, ++ int la, ++ __m128i b, ++ int lb, ++ const int imm8) ++{ ++ SSE2NEON_COMP_AGG(a, b, la, lb, imm8, CMPESTRX); ++ SSE2NEON_CMPSTR_GENERATE_INDEX(r2, bound, imm8); ++} ++ ++// Compare packed strings in a and b with lengths la and lb using the control ++// in imm8, and store the generated mask in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpestrm ++FORCE_INLINE __m128i ++_mm_cmpestrm(__m128i a, int la, __m128i b, int lb, const int imm8) ++{ ++ SSE2NEON_COMP_AGG(a, b, la, lb, imm8, CMPESTRX); ++ SSE2NEON_CMPSTR_GENERATE_MASK(dst); ++} ++ ++// Compare packed strings in a and b with lengths la and lb using the control in ++// imm8, and returns bit 0 of the resulting bit mask. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpestro ++FORCE_INLINE int _mm_cmpestro(__m128i a, ++ int la, ++ __m128i b, ++ int lb, ++ const int imm8) ++{ ++ SSE2NEON_COMP_AGG(a, b, la, lb, imm8, CMPESTRX); ++ return r2 & 1; ++} ++ ++// Compare packed strings in a and b with lengths la and lb using the control in ++// imm8, and returns 1 if any character in a was null, and 0 otherwise. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpestrs ++FORCE_INLINE int _mm_cmpestrs(__m128i a, ++ int la, ++ __m128i b, ++ int lb, ++ const int imm8) ++{ ++ (void) a; ++ (void) b; ++ (void) lb; ++ SSE2NEON_CMPSTR_SET_UPPER(bound, imm8); ++ return la <= (bound - 1); ++} ++ ++// Compare packed strings in a and b with lengths la and lb using the control in ++// imm8, and returns 1 if any character in b was null, and 0 otherwise. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpestrz ++FORCE_INLINE int _mm_cmpestrz(__m128i a, ++ int la, ++ __m128i b, ++ int lb, ++ const int imm8) ++{ ++ (void) a; ++ (void) b; ++ (void) la; ++ SSE2NEON_CMPSTR_SET_UPPER(bound, imm8); ++ return lb <= (bound - 1); ++} ++ ++#define SSE2NEON_CMPISTRX_LENGTH(str, len, imm8) \ ++ do { \ ++ if (imm8 & 0x01) { \ ++ uint16x8_t equal_mask_##str = \ ++ vceqq_u16(vreinterpretq_u16_m128i(str), vdupq_n_u16(0)); \ ++ uint8x8_t res_##str = vshrn_n_u16(equal_mask_##str, 4); \ ++ uint64_t matches_##str = \ ++ vget_lane_u64(vreinterpret_u64_u8(res_##str), 0); \ ++ len = _sse2neon_ctzll(matches_##str) >> 3; \ ++ } else { \ ++ uint16x8_t equal_mask_##str = vreinterpretq_u16_u8( \ ++ vceqq_u8(vreinterpretq_u8_m128i(str), vdupq_n_u8(0))); \ ++ uint8x8_t res_##str = vshrn_n_u16(equal_mask_##str, 4); \ ++ uint64_t matches_##str = \ ++ vget_lane_u64(vreinterpret_u64_u8(res_##str), 0); \ ++ len = _sse2neon_ctzll(matches_##str) >> 2; \ ++ } \ ++ } while (0) ++ ++#define SSE2NEON_CMPISTRX_LEN_PAIR(a, b, la, lb) \ ++ int la, lb; \ ++ do { \ ++ SSE2NEON_CMPISTRX_LENGTH(a, la, imm8); \ ++ SSE2NEON_CMPISTRX_LENGTH(b, lb, imm8); \ ++ } while (0) ++ ++// Compare packed strings with implicit lengths in a and b using the control in ++// imm8, and returns 1 if b did not contain a null character and the resulting ++// mask was zero, and 0 otherwise. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpistra ++FORCE_INLINE int _mm_cmpistra(__m128i a, __m128i b, const int imm8) ++{ ++ SSE2NEON_COMP_AGG(a, b, la, lb, imm8, CMPISTRX); ++ return !r2 & (lb >= bound); ++} ++ ++// Compare packed strings with implicit lengths in a and b using the control in ++// imm8, and returns 1 if the resulting mask was non-zero, and 0 otherwise. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpistrc ++FORCE_INLINE int _mm_cmpistrc(__m128i a, __m128i b, const int imm8) ++{ ++ SSE2NEON_COMP_AGG(a, b, la, lb, imm8, CMPISTRX); ++ return r2 != 0; ++} ++ ++// Compare packed strings with implicit lengths in a and b using the control in ++// imm8, and store the generated index in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpistri ++FORCE_INLINE int _mm_cmpistri(__m128i a, __m128i b, const int imm8) ++{ ++ SSE2NEON_COMP_AGG(a, b, la, lb, imm8, CMPISTRX); ++ SSE2NEON_CMPSTR_GENERATE_INDEX(r2, bound, imm8); ++} ++ ++// Compare packed strings with implicit lengths in a and b using the control in ++// imm8, and store the generated mask in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpistrm ++FORCE_INLINE __m128i _mm_cmpistrm(__m128i a, __m128i b, const int imm8) ++{ ++ SSE2NEON_COMP_AGG(a, b, la, lb, imm8, CMPISTRX); ++ SSE2NEON_CMPSTR_GENERATE_MASK(dst); ++} ++ ++// Compare packed strings with implicit lengths in a and b using the control in ++// imm8, and returns bit 0 of the resulting bit mask. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpistro ++FORCE_INLINE int _mm_cmpistro(__m128i a, __m128i b, const int imm8) ++{ ++ SSE2NEON_COMP_AGG(a, b, la, lb, imm8, CMPISTRX); ++ return r2 & 1; ++} ++ ++// Compare packed strings with implicit lengths in a and b using the control in ++// imm8, and returns 1 if any character in a was null, and 0 otherwise. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpistrs ++FORCE_INLINE int _mm_cmpistrs(__m128i a, __m128i b, const int imm8) ++{ ++ (void) b; ++ SSE2NEON_CMPSTR_SET_UPPER(bound, imm8); ++ int la; ++ SSE2NEON_CMPISTRX_LENGTH(a, la, imm8); ++ return la <= (bound - 1); ++} ++ ++// Compare packed strings with implicit lengths in a and b using the control in ++// imm8, and returns 1 if any character in b was null, and 0 otherwise. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpistrz ++FORCE_INLINE int _mm_cmpistrz(__m128i a, __m128i b, const int imm8) ++{ ++ (void) a; ++ SSE2NEON_CMPSTR_SET_UPPER(bound, imm8); ++ int lb; ++ SSE2NEON_CMPISTRX_LENGTH(b, lb, imm8); ++ return lb <= (bound - 1); ++} ++ ++// Compares the 2 signed 64-bit integers in a and the 2 signed 64-bit integers ++// in b for greater than. ++FORCE_INLINE __m128i _mm_cmpgt_epi64(__m128i a, __m128i b) ++{ ++#if defined(__aarch64__) || defined(_M_ARM64) ++ return vreinterpretq_m128i_u64( ++ vcgtq_s64(vreinterpretq_s64_m128i(a), vreinterpretq_s64_m128i(b))); ++#else ++ return vreinterpretq_m128i_s64(vshrq_n_s64( ++ vqsubq_s64(vreinterpretq_s64_m128i(b), vreinterpretq_s64_m128i(a)), ++ 63)); ++#endif ++} ++ ++// Starting with the initial value in crc, accumulates a CRC32 value for ++// unsigned 16-bit integer v, and stores the result in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_crc32_u16 ++FORCE_INLINE uint32_t _mm_crc32_u16(uint32_t crc, uint16_t v) ++{ ++#if defined(__aarch64__) && defined(__ARM_FEATURE_CRC32) ++ __asm__ __volatile__("crc32ch %w[c], %w[c], %w[v]\n\t" ++ : [c] "+r"(crc) ++ : [v] "r"(v)); ++#elif ((__ARM_ARCH == 8) && defined(__ARM_FEATURE_CRC32)) || \ ++ (defined(_M_ARM64) && !defined(__clang__)) ++ crc = __crc32ch(crc, v); ++#else ++ crc = _mm_crc32_u8(crc, v & 0xff); ++ crc = _mm_crc32_u8(crc, (v >> 8) & 0xff); ++#endif ++ return crc; ++} ++ ++// Starting with the initial value in crc, accumulates a CRC32 value for ++// unsigned 32-bit integer v, and stores the result in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_crc32_u32 ++FORCE_INLINE uint32_t _mm_crc32_u32(uint32_t crc, uint32_t v) ++{ ++#if defined(__aarch64__) && defined(__ARM_FEATURE_CRC32) ++ __asm__ __volatile__("crc32cw %w[c], %w[c], %w[v]\n\t" ++ : [c] "+r"(crc) ++ : [v] "r"(v)); ++#elif ((__ARM_ARCH == 8) && defined(__ARM_FEATURE_CRC32)) || \ ++ (defined(_M_ARM64) && !defined(__clang__)) ++ crc = __crc32cw(crc, v); ++#else ++ crc = _mm_crc32_u16(crc, v & 0xffff); ++ crc = _mm_crc32_u16(crc, (v >> 16) & 0xffff); ++#endif ++ return crc; ++} ++ ++// Starting with the initial value in crc, accumulates a CRC32 value for ++// unsigned 64-bit integer v, and stores the result in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_crc32_u64 ++FORCE_INLINE uint64_t _mm_crc32_u64(uint64_t crc, uint64_t v) ++{ ++#if defined(__aarch64__) && defined(__ARM_FEATURE_CRC32) ++ __asm__ __volatile__("crc32cx %w[c], %w[c], %x[v]\n\t" ++ : [c] "+r"(crc) ++ : [v] "r"(v)); ++#elif (defined(_M_ARM64) && !defined(__clang__)) ++ crc = __crc32cd((uint32_t) crc, v); ++#else ++ crc = _mm_crc32_u32((uint32_t) (crc), v & 0xffffffff); ++ crc = _mm_crc32_u32((uint32_t) (crc), (v >> 32) & 0xffffffff); ++#endif ++ return crc; ++} ++ ++// Starting with the initial value in crc, accumulates a CRC32 value for ++// unsigned 8-bit integer v, and stores the result in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_crc32_u8 ++FORCE_INLINE uint32_t _mm_crc32_u8(uint32_t crc, uint8_t v) ++{ ++#if defined(__aarch64__) && defined(__ARM_FEATURE_CRC32) ++ __asm__ __volatile__("crc32cb %w[c], %w[c], %w[v]\n\t" ++ : [c] "+r"(crc) ++ : [v] "r"(v)); ++#elif ((__ARM_ARCH == 8) && defined(__ARM_FEATURE_CRC32)) || \ ++ (defined(_M_ARM64) && !defined(__clang__)) ++ crc = __crc32cb(crc, v); ++#else ++ crc ^= v; ++#if defined(__ARM_FEATURE_CRYPTO) ++ // Adapted from: https://mary.rs/lab/crc32/ ++ // Barrent reduction ++ uint64x2_t orig = ++ vcombine_u64(vcreate_u64((uint64_t) (crc) << 24), vcreate_u64(0x0)); ++ uint64x2_t tmp = orig; ++ ++ // Polynomial P(x) of CRC32C ++ uint64_t p = 0x105EC76F1; ++ // Barrett Reduction (in bit-reflected form) constant mu_{64} = \lfloor ++ // 2^{64} / P(x) \rfloor = 0x11f91caf6 ++ uint64_t mu = 0x1dea713f1; ++ ++ // Multiply by mu_{64} ++ tmp = _sse2neon_vmull_p64(vget_low_u64(tmp), vcreate_u64(mu)); ++ // Divide by 2^{64} (mask away the unnecessary bits) ++ tmp = ++ vandq_u64(tmp, vcombine_u64(vcreate_u64(0xFFFFFFFF), vcreate_u64(0x0))); ++ // Multiply by P(x) (shifted left by 1 for alignment reasons) ++ tmp = _sse2neon_vmull_p64(vget_low_u64(tmp), vcreate_u64(p)); ++ // Subtract original from result ++ tmp = veorq_u64(tmp, orig); ++ ++ // Extract the 'lower' (in bit-reflected sense) 32 bits ++ crc = vgetq_lane_u32(vreinterpretq_u32_u64(tmp), 1); ++#else // Fall back to the generic table lookup approach ++ // Adapted from: https://create.stephan-brumme.com/crc32/ ++ // Apply half-byte comparison algorithm for the best ratio between ++ // performance and lookup table. ++ ++ // The lookup table just needs to store every 16th entry ++ // of the standard look-up table. ++ static const uint32_t crc32_half_byte_tbl[] = { ++ 0x00000000, 0x105ec76f, 0x20bd8ede, 0x30e349b1, 0x417b1dbc, 0x5125dad3, ++ 0x61c69362, 0x7198540d, 0x82f63b78, 0x92a8fc17, 0xa24bb5a6, 0xb21572c9, ++ 0xc38d26c4, 0xd3d3e1ab, 0xe330a81a, 0xf36e6f75, ++ }; ++ ++ crc = (crc >> 4) ^ crc32_half_byte_tbl[crc & 0x0F]; ++ crc = (crc >> 4) ^ crc32_half_byte_tbl[crc & 0x0F]; ++#endif ++#endif ++ return crc; ++} ++ ++/* AES */ ++ ++#if !defined(__ARM_FEATURE_CRYPTO) && (!defined(_M_ARM64) || defined(__clang__)) ++/* clang-format off */ ++#define SSE2NEON_AES_SBOX(w) \ ++ { \ ++ w(0x63), w(0x7c), w(0x77), w(0x7b), w(0xf2), w(0x6b), w(0x6f), \ ++ w(0xc5), w(0x30), w(0x01), w(0x67), w(0x2b), w(0xfe), w(0xd7), \ ++ w(0xab), w(0x76), w(0xca), w(0x82), w(0xc9), w(0x7d), w(0xfa), \ ++ w(0x59), w(0x47), w(0xf0), w(0xad), w(0xd4), w(0xa2), w(0xaf), \ ++ w(0x9c), w(0xa4), w(0x72), w(0xc0), w(0xb7), w(0xfd), w(0x93), \ ++ w(0x26), w(0x36), w(0x3f), w(0xf7), w(0xcc), w(0x34), w(0xa5), \ ++ w(0xe5), w(0xf1), w(0x71), w(0xd8), w(0x31), w(0x15), w(0x04), \ ++ w(0xc7), w(0x23), w(0xc3), w(0x18), w(0x96), w(0x05), w(0x9a), \ ++ w(0x07), w(0x12), w(0x80), w(0xe2), w(0xeb), w(0x27), w(0xb2), \ ++ w(0x75), w(0x09), w(0x83), w(0x2c), w(0x1a), w(0x1b), w(0x6e), \ ++ w(0x5a), w(0xa0), w(0x52), w(0x3b), w(0xd6), w(0xb3), w(0x29), \ ++ w(0xe3), w(0x2f), w(0x84), w(0x53), w(0xd1), w(0x00), w(0xed), \ ++ w(0x20), w(0xfc), w(0xb1), w(0x5b), w(0x6a), w(0xcb), w(0xbe), \ ++ w(0x39), w(0x4a), w(0x4c), w(0x58), w(0xcf), w(0xd0), w(0xef), \ ++ w(0xaa), w(0xfb), w(0x43), w(0x4d), w(0x33), w(0x85), w(0x45), \ ++ w(0xf9), w(0x02), w(0x7f), w(0x50), w(0x3c), w(0x9f), w(0xa8), \ ++ w(0x51), w(0xa3), w(0x40), w(0x8f), w(0x92), w(0x9d), w(0x38), \ ++ w(0xf5), w(0xbc), w(0xb6), w(0xda), w(0x21), w(0x10), w(0xff), \ ++ w(0xf3), w(0xd2), w(0xcd), w(0x0c), w(0x13), w(0xec), w(0x5f), \ ++ w(0x97), w(0x44), w(0x17), w(0xc4), w(0xa7), w(0x7e), w(0x3d), \ ++ w(0x64), w(0x5d), w(0x19), w(0x73), w(0x60), w(0x81), w(0x4f), \ ++ w(0xdc), w(0x22), w(0x2a), w(0x90), w(0x88), w(0x46), w(0xee), \ ++ w(0xb8), w(0x14), w(0xde), w(0x5e), w(0x0b), w(0xdb), w(0xe0), \ ++ w(0x32), w(0x3a), w(0x0a), w(0x49), w(0x06), w(0x24), w(0x5c), \ ++ w(0xc2), w(0xd3), w(0xac), w(0x62), w(0x91), w(0x95), w(0xe4), \ ++ w(0x79), w(0xe7), w(0xc8), w(0x37), w(0x6d), w(0x8d), w(0xd5), \ ++ w(0x4e), w(0xa9), w(0x6c), w(0x56), w(0xf4), w(0xea), w(0x65), \ ++ w(0x7a), w(0xae), w(0x08), w(0xba), w(0x78), w(0x25), w(0x2e), \ ++ w(0x1c), w(0xa6), w(0xb4), w(0xc6), w(0xe8), w(0xdd), w(0x74), \ ++ w(0x1f), w(0x4b), w(0xbd), w(0x8b), w(0x8a), w(0x70), w(0x3e), \ ++ w(0xb5), w(0x66), w(0x48), w(0x03), w(0xf6), w(0x0e), w(0x61), \ ++ w(0x35), w(0x57), w(0xb9), w(0x86), w(0xc1), w(0x1d), w(0x9e), \ ++ w(0xe1), w(0xf8), w(0x98), w(0x11), w(0x69), w(0xd9), w(0x8e), \ ++ w(0x94), w(0x9b), w(0x1e), w(0x87), w(0xe9), w(0xce), w(0x55), \ ++ w(0x28), w(0xdf), w(0x8c), w(0xa1), w(0x89), w(0x0d), w(0xbf), \ ++ w(0xe6), w(0x42), w(0x68), w(0x41), w(0x99), w(0x2d), w(0x0f), \ ++ w(0xb0), w(0x54), w(0xbb), w(0x16) \ ++ } ++#define SSE2NEON_AES_RSBOX(w) \ ++ { \ ++ w(0x52), w(0x09), w(0x6a), w(0xd5), w(0x30), w(0x36), w(0xa5), \ ++ w(0x38), w(0xbf), w(0x40), w(0xa3), w(0x9e), w(0x81), w(0xf3), \ ++ w(0xd7), w(0xfb), w(0x7c), w(0xe3), w(0x39), w(0x82), w(0x9b), \ ++ w(0x2f), w(0xff), w(0x87), w(0x34), w(0x8e), w(0x43), w(0x44), \ ++ w(0xc4), w(0xde), w(0xe9), w(0xcb), w(0x54), w(0x7b), w(0x94), \ ++ w(0x32), w(0xa6), w(0xc2), w(0x23), w(0x3d), w(0xee), w(0x4c), \ ++ w(0x95), w(0x0b), w(0x42), w(0xfa), w(0xc3), w(0x4e), w(0x08), \ ++ w(0x2e), w(0xa1), w(0x66), w(0x28), w(0xd9), w(0x24), w(0xb2), \ ++ w(0x76), w(0x5b), w(0xa2), w(0x49), w(0x6d), w(0x8b), w(0xd1), \ ++ w(0x25), w(0x72), w(0xf8), w(0xf6), w(0x64), w(0x86), w(0x68), \ ++ w(0x98), w(0x16), w(0xd4), w(0xa4), w(0x5c), w(0xcc), w(0x5d), \ ++ w(0x65), w(0xb6), w(0x92), w(0x6c), w(0x70), w(0x48), w(0x50), \ ++ w(0xfd), w(0xed), w(0xb9), w(0xda), w(0x5e), w(0x15), w(0x46), \ ++ w(0x57), w(0xa7), w(0x8d), w(0x9d), w(0x84), w(0x90), w(0xd8), \ ++ w(0xab), w(0x00), w(0x8c), w(0xbc), w(0xd3), w(0x0a), w(0xf7), \ ++ w(0xe4), w(0x58), w(0x05), w(0xb8), w(0xb3), w(0x45), w(0x06), \ ++ w(0xd0), w(0x2c), w(0x1e), w(0x8f), w(0xca), w(0x3f), w(0x0f), \ ++ w(0x02), w(0xc1), w(0xaf), w(0xbd), w(0x03), w(0x01), w(0x13), \ ++ w(0x8a), w(0x6b), w(0x3a), w(0x91), w(0x11), w(0x41), w(0x4f), \ ++ w(0x67), w(0xdc), w(0xea), w(0x97), w(0xf2), w(0xcf), w(0xce), \ ++ w(0xf0), w(0xb4), w(0xe6), w(0x73), w(0x96), w(0xac), w(0x74), \ ++ w(0x22), w(0xe7), w(0xad), w(0x35), w(0x85), w(0xe2), w(0xf9), \ ++ w(0x37), w(0xe8), w(0x1c), w(0x75), w(0xdf), w(0x6e), w(0x47), \ ++ w(0xf1), w(0x1a), w(0x71), w(0x1d), w(0x29), w(0xc5), w(0x89), \ ++ w(0x6f), w(0xb7), w(0x62), w(0x0e), w(0xaa), w(0x18), w(0xbe), \ ++ w(0x1b), w(0xfc), w(0x56), w(0x3e), w(0x4b), w(0xc6), w(0xd2), \ ++ w(0x79), w(0x20), w(0x9a), w(0xdb), w(0xc0), w(0xfe), w(0x78), \ ++ w(0xcd), w(0x5a), w(0xf4), w(0x1f), w(0xdd), w(0xa8), w(0x33), \ ++ w(0x88), w(0x07), w(0xc7), w(0x31), w(0xb1), w(0x12), w(0x10), \ ++ w(0x59), w(0x27), w(0x80), w(0xec), w(0x5f), w(0x60), w(0x51), \ ++ w(0x7f), w(0xa9), w(0x19), w(0xb5), w(0x4a), w(0x0d), w(0x2d), \ ++ w(0xe5), w(0x7a), w(0x9f), w(0x93), w(0xc9), w(0x9c), w(0xef), \ ++ w(0xa0), w(0xe0), w(0x3b), w(0x4d), w(0xae), w(0x2a), w(0xf5), \ ++ w(0xb0), w(0xc8), w(0xeb), w(0xbb), w(0x3c), w(0x83), w(0x53), \ ++ w(0x99), w(0x61), w(0x17), w(0x2b), w(0x04), w(0x7e), w(0xba), \ ++ w(0x77), w(0xd6), w(0x26), w(0xe1), w(0x69), w(0x14), w(0x63), \ ++ w(0x55), w(0x21), w(0x0c), w(0x7d) \ ++ } ++/* clang-format on */ ++ ++/* X Macro trick. See https://en.wikipedia.org/wiki/X_Macro */ ++#define SSE2NEON_AES_H0(x) (x) ++static const uint8_t _sse2neon_sbox[256] = SSE2NEON_AES_SBOX(SSE2NEON_AES_H0); ++static const uint8_t _sse2neon_rsbox[256] = SSE2NEON_AES_RSBOX(SSE2NEON_AES_H0); ++#undef SSE2NEON_AES_H0 ++ ++/* x_time function and matrix multiply function */ ++#if !defined(__aarch64__) && !defined(_M_ARM64) ++#define SSE2NEON_XT(x) (((x) << 1) ^ ((((x) >> 7) & 1) * 0x1b)) ++#define SSE2NEON_MULTIPLY(x, y) \ ++ (((y & 1) * x) ^ ((y >> 1 & 1) * SSE2NEON_XT(x)) ^ \ ++ ((y >> 2 & 1) * SSE2NEON_XT(SSE2NEON_XT(x))) ^ \ ++ ((y >> 3 & 1) * SSE2NEON_XT(SSE2NEON_XT(SSE2NEON_XT(x)))) ^ \ ++ ((y >> 4 & 1) * SSE2NEON_XT(SSE2NEON_XT(SSE2NEON_XT(SSE2NEON_XT(x)))))) ++#endif ++ ++// In the absence of crypto extensions, implement aesenc using regular NEON ++// intrinsics instead. See: ++// https://www.workofard.com/2017/01/accelerated-aes-for-the-arm64-linux-kernel/ ++// https://www.workofard.com/2017/07/ghash-for-low-end-cores/ and ++// for more information. ++FORCE_INLINE __m128i _mm_aesenc_si128(__m128i a, __m128i RoundKey) ++{ ++#if defined(__aarch64__) || defined(_M_ARM64) ++ static const uint8_t shift_rows[] = { ++ 0x0, 0x5, 0xa, 0xf, 0x4, 0x9, 0xe, 0x3, ++ 0x8, 0xd, 0x2, 0x7, 0xc, 0x1, 0x6, 0xb, ++ }; ++ static const uint8_t ror32by8[] = { ++ 0x1, 0x2, 0x3, 0x0, 0x5, 0x6, 0x7, 0x4, ++ 0x9, 0xa, 0xb, 0x8, 0xd, 0xe, 0xf, 0xc, ++ }; ++ ++ uint8x16_t v; ++ uint8x16_t w = vreinterpretq_u8_m128i(a); ++ ++ /* shift rows */ ++ w = vqtbl1q_u8(w, vld1q_u8(shift_rows)); ++ ++ /* sub bytes */ ++ // Here, we separate the whole 256-bytes table into 4 64-bytes tables, and ++ // look up each of the table. After each lookup, we load the next table ++ // which locates at the next 64-bytes. In the meantime, the index in the ++ // table would be smaller than it was, so the index parameters of ++ // `vqtbx4q_u8()` need to be added the same constant as the loaded tables. ++ v = vqtbl4q_u8(_sse2neon_vld1q_u8_x4(_sse2neon_sbox), w); ++ // 'w-0x40' equals to 'vsubq_u8(w, vdupq_n_u8(0x40))' ++ v = vqtbx4q_u8(v, _sse2neon_vld1q_u8_x4(_sse2neon_sbox + 0x40), w - 0x40); ++ v = vqtbx4q_u8(v, _sse2neon_vld1q_u8_x4(_sse2neon_sbox + 0x80), w - 0x80); ++ v = vqtbx4q_u8(v, _sse2neon_vld1q_u8_x4(_sse2neon_sbox + 0xc0), w - 0xc0); ++ ++ /* mix columns */ ++ w = (v << 1) ^ (uint8x16_t) (((int8x16_t) v >> 7) & 0x1b); ++ w ^= (uint8x16_t) vrev32q_u16((uint16x8_t) v); ++ w ^= vqtbl1q_u8(v ^ w, vld1q_u8(ror32by8)); ++ ++ /* add round key */ ++ return vreinterpretq_m128i_u8(w) ^ RoundKey; ++ ++#else /* ARMv7-A implementation for a table-based AES */ ++#define SSE2NEON_AES_B2W(b0, b1, b2, b3) \ ++ (((uint32_t) (b3) << 24) | ((uint32_t) (b2) << 16) | \ ++ ((uint32_t) (b1) << 8) | (uint32_t) (b0)) ++// multiplying 'x' by 2 in GF(2^8) ++#define SSE2NEON_AES_F2(x) ((x << 1) ^ (((x >> 7) & 1) * 0x011b /* WPOLY */)) ++// multiplying 'x' by 3 in GF(2^8) ++#define SSE2NEON_AES_F3(x) (SSE2NEON_AES_F2(x) ^ x) ++#define SSE2NEON_AES_U0(p) \ ++ SSE2NEON_AES_B2W(SSE2NEON_AES_F2(p), p, p, SSE2NEON_AES_F3(p)) ++#define SSE2NEON_AES_U1(p) \ ++ SSE2NEON_AES_B2W(SSE2NEON_AES_F3(p), SSE2NEON_AES_F2(p), p, p) ++#define SSE2NEON_AES_U2(p) \ ++ SSE2NEON_AES_B2W(p, SSE2NEON_AES_F3(p), SSE2NEON_AES_F2(p), p) ++#define SSE2NEON_AES_U3(p) \ ++ SSE2NEON_AES_B2W(p, p, SSE2NEON_AES_F3(p), SSE2NEON_AES_F2(p)) ++ ++ // this generates a table containing every possible permutation of ++ // shift_rows() and sub_bytes() with mix_columns(). ++ static const uint32_t ALIGN_STRUCT(16) aes_table[4][256] = { ++ SSE2NEON_AES_SBOX(SSE2NEON_AES_U0), ++ SSE2NEON_AES_SBOX(SSE2NEON_AES_U1), ++ SSE2NEON_AES_SBOX(SSE2NEON_AES_U2), ++ SSE2NEON_AES_SBOX(SSE2NEON_AES_U3), ++ }; ++#undef SSE2NEON_AES_B2W ++#undef SSE2NEON_AES_F2 ++#undef SSE2NEON_AES_F3 ++#undef SSE2NEON_AES_U0 ++#undef SSE2NEON_AES_U1 ++#undef SSE2NEON_AES_U2 ++#undef SSE2NEON_AES_U3 ++ ++ uint32_t x0 = _mm_cvtsi128_si32(a); // get a[31:0] ++ uint32_t x1 = ++ _mm_cvtsi128_si32(_mm_shuffle_epi32(a, 0x55)); // get a[63:32] ++ uint32_t x2 = ++ _mm_cvtsi128_si32(_mm_shuffle_epi32(a, 0xAA)); // get a[95:64] ++ uint32_t x3 = ++ _mm_cvtsi128_si32(_mm_shuffle_epi32(a, 0xFF)); // get a[127:96] ++ ++ // finish the modulo addition step in mix_columns() ++ __m128i out = _mm_set_epi32( ++ (aes_table[0][x3 & 0xff] ^ aes_table[1][(x0 >> 8) & 0xff] ^ ++ aes_table[2][(x1 >> 16) & 0xff] ^ aes_table[3][x2 >> 24]), ++ (aes_table[0][x2 & 0xff] ^ aes_table[1][(x3 >> 8) & 0xff] ^ ++ aes_table[2][(x0 >> 16) & 0xff] ^ aes_table[3][x1 >> 24]), ++ (aes_table[0][x1 & 0xff] ^ aes_table[1][(x2 >> 8) & 0xff] ^ ++ aes_table[2][(x3 >> 16) & 0xff] ^ aes_table[3][x0 >> 24]), ++ (aes_table[0][x0 & 0xff] ^ aes_table[1][(x1 >> 8) & 0xff] ^ ++ aes_table[2][(x2 >> 16) & 0xff] ^ aes_table[3][x3 >> 24])); ++ ++ return _mm_xor_si128(out, RoundKey); ++#endif ++} ++ ++// Perform one round of an AES decryption flow on data (state) in a using the ++// round key in RoundKey, and store the result in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_aesdec_si128 ++FORCE_INLINE __m128i _mm_aesdec_si128(__m128i a, __m128i RoundKey) ++{ ++#if defined(__aarch64__) ++ static const uint8_t inv_shift_rows[] = { ++ 0x0, 0xd, 0xa, 0x7, 0x4, 0x1, 0xe, 0xb, ++ 0x8, 0x5, 0x2, 0xf, 0xc, 0x9, 0x6, 0x3, ++ }; ++ static const uint8_t ror32by8[] = { ++ 0x1, 0x2, 0x3, 0x0, 0x5, 0x6, 0x7, 0x4, ++ 0x9, 0xa, 0xb, 0x8, 0xd, 0xe, 0xf, 0xc, ++ }; ++ ++ uint8x16_t v; ++ uint8x16_t w = vreinterpretq_u8_m128i(a); ++ ++ // inverse shift rows ++ w = vqtbl1q_u8(w, vld1q_u8(inv_shift_rows)); ++ ++ // inverse sub bytes ++ v = vqtbl4q_u8(_sse2neon_vld1q_u8_x4(_sse2neon_rsbox), w); ++ v = vqtbx4q_u8(v, _sse2neon_vld1q_u8_x4(_sse2neon_rsbox + 0x40), w - 0x40); ++ v = vqtbx4q_u8(v, _sse2neon_vld1q_u8_x4(_sse2neon_rsbox + 0x80), w - 0x80); ++ v = vqtbx4q_u8(v, _sse2neon_vld1q_u8_x4(_sse2neon_rsbox + 0xc0), w - 0xc0); ++ ++ // inverse mix columns ++ // multiplying 'v' by 4 in GF(2^8) ++ w = (v << 1) ^ (uint8x16_t) (((int8x16_t) v >> 7) & 0x1b); ++ w = (w << 1) ^ (uint8x16_t) (((int8x16_t) w >> 7) & 0x1b); ++ v ^= w; ++ v ^= (uint8x16_t) vrev32q_u16((uint16x8_t) w); ++ ++ w = (v << 1) ^ (uint8x16_t) (((int8x16_t) v >> 7) & ++ 0x1b); // multiplying 'v' by 2 in GF(2^8) ++ w ^= (uint8x16_t) vrev32q_u16((uint16x8_t) v); ++ w ^= vqtbl1q_u8(v ^ w, vld1q_u8(ror32by8)); ++ ++ // add round key ++ return vreinterpretq_m128i_u8(w) ^ RoundKey; ++ ++#else /* ARMv7-A NEON implementation */ ++ /* FIXME: optimized for NEON */ ++ uint8_t i, e, f, g, h, v[4][4]; ++ uint8_t *_a = (uint8_t *) &a; ++ for (i = 0; i < 16; ++i) { ++ v[((i / 4) + (i % 4)) % 4][i % 4] = _sse2neon_rsbox[_a[i]]; ++ } ++ ++ // inverse mix columns ++ for (i = 0; i < 4; ++i) { ++ e = v[i][0]; ++ f = v[i][1]; ++ g = v[i][2]; ++ h = v[i][3]; ++ ++ v[i][0] = SSE2NEON_MULTIPLY(e, 0x0e) ^ SSE2NEON_MULTIPLY(f, 0x0b) ^ ++ SSE2NEON_MULTIPLY(g, 0x0d) ^ SSE2NEON_MULTIPLY(h, 0x09); ++ v[i][1] = SSE2NEON_MULTIPLY(e, 0x09) ^ SSE2NEON_MULTIPLY(f, 0x0e) ^ ++ SSE2NEON_MULTIPLY(g, 0x0b) ^ SSE2NEON_MULTIPLY(h, 0x0d); ++ v[i][2] = SSE2NEON_MULTIPLY(e, 0x0d) ^ SSE2NEON_MULTIPLY(f, 0x09) ^ ++ SSE2NEON_MULTIPLY(g, 0x0e) ^ SSE2NEON_MULTIPLY(h, 0x0b); ++ v[i][3] = SSE2NEON_MULTIPLY(e, 0x0b) ^ SSE2NEON_MULTIPLY(f, 0x0d) ^ ++ SSE2NEON_MULTIPLY(g, 0x09) ^ SSE2NEON_MULTIPLY(h, 0x0e); ++ } ++ ++ return vreinterpretq_m128i_u8(vld1q_u8((uint8_t *) v)) ^ RoundKey; ++#endif ++} ++ ++// Perform the last round of an AES encryption flow on data (state) in a using ++// the round key in RoundKey, and store the result in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_aesenclast_si128 ++FORCE_INLINE __m128i _mm_aesenclast_si128(__m128i a, __m128i RoundKey) ++{ ++#if defined(__aarch64__) ++ static const uint8_t shift_rows[] = { ++ 0x0, 0x5, 0xa, 0xf, 0x4, 0x9, 0xe, 0x3, ++ 0x8, 0xd, 0x2, 0x7, 0xc, 0x1, 0x6, 0xb, ++ }; ++ ++ uint8x16_t v; ++ uint8x16_t w = vreinterpretq_u8_m128i(a); ++ ++ // shift rows ++ w = vqtbl1q_u8(w, vld1q_u8(shift_rows)); ++ ++ // sub bytes ++ v = vqtbl4q_u8(_sse2neon_vld1q_u8_x4(_sse2neon_sbox), w); ++ v = vqtbx4q_u8(v, _sse2neon_vld1q_u8_x4(_sse2neon_sbox + 0x40), w - 0x40); ++ v = vqtbx4q_u8(v, _sse2neon_vld1q_u8_x4(_sse2neon_sbox + 0x80), w - 0x80); ++ v = vqtbx4q_u8(v, _sse2neon_vld1q_u8_x4(_sse2neon_sbox + 0xc0), w - 0xc0); ++ ++ // add round key ++ return vreinterpretq_m128i_u8(v) ^ RoundKey; ++ ++#else /* ARMv7-A implementation */ ++ uint8_t v[16] = { ++ _sse2neon_sbox[vgetq_lane_u8(vreinterpretq_u8_m128i(a), 0)], ++ _sse2neon_sbox[vgetq_lane_u8(vreinterpretq_u8_m128i(a), 5)], ++ _sse2neon_sbox[vgetq_lane_u8(vreinterpretq_u8_m128i(a), 10)], ++ _sse2neon_sbox[vgetq_lane_u8(vreinterpretq_u8_m128i(a), 15)], ++ _sse2neon_sbox[vgetq_lane_u8(vreinterpretq_u8_m128i(a), 4)], ++ _sse2neon_sbox[vgetq_lane_u8(vreinterpretq_u8_m128i(a), 9)], ++ _sse2neon_sbox[vgetq_lane_u8(vreinterpretq_u8_m128i(a), 14)], ++ _sse2neon_sbox[vgetq_lane_u8(vreinterpretq_u8_m128i(a), 3)], ++ _sse2neon_sbox[vgetq_lane_u8(vreinterpretq_u8_m128i(a), 8)], ++ _sse2neon_sbox[vgetq_lane_u8(vreinterpretq_u8_m128i(a), 13)], ++ _sse2neon_sbox[vgetq_lane_u8(vreinterpretq_u8_m128i(a), 2)], ++ _sse2neon_sbox[vgetq_lane_u8(vreinterpretq_u8_m128i(a), 7)], ++ _sse2neon_sbox[vgetq_lane_u8(vreinterpretq_u8_m128i(a), 12)], ++ _sse2neon_sbox[vgetq_lane_u8(vreinterpretq_u8_m128i(a), 1)], ++ _sse2neon_sbox[vgetq_lane_u8(vreinterpretq_u8_m128i(a), 6)], ++ _sse2neon_sbox[vgetq_lane_u8(vreinterpretq_u8_m128i(a), 11)], ++ }; ++ ++ return vreinterpretq_m128i_u8(vld1q_u8(v)) ^ RoundKey; ++#endif ++} ++ ++// Perform the last round of an AES decryption flow on data (state) in a using ++// the round key in RoundKey, and store the result in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_aesdeclast_si128 ++FORCE_INLINE __m128i _mm_aesdeclast_si128(__m128i a, __m128i RoundKey) ++{ ++#if defined(__aarch64__) ++ static const uint8_t inv_shift_rows[] = { ++ 0x0, 0xd, 0xa, 0x7, 0x4, 0x1, 0xe, 0xb, ++ 0x8, 0x5, 0x2, 0xf, 0xc, 0x9, 0x6, 0x3, ++ }; ++ ++ uint8x16_t v; ++ uint8x16_t w = vreinterpretq_u8_m128i(a); ++ ++ // inverse shift rows ++ w = vqtbl1q_u8(w, vld1q_u8(inv_shift_rows)); ++ ++ // inverse sub bytes ++ v = vqtbl4q_u8(_sse2neon_vld1q_u8_x4(_sse2neon_rsbox), w); ++ v = vqtbx4q_u8(v, _sse2neon_vld1q_u8_x4(_sse2neon_rsbox + 0x40), w - 0x40); ++ v = vqtbx4q_u8(v, _sse2neon_vld1q_u8_x4(_sse2neon_rsbox + 0x80), w - 0x80); ++ v = vqtbx4q_u8(v, _sse2neon_vld1q_u8_x4(_sse2neon_rsbox + 0xc0), w - 0xc0); ++ ++ // add round key ++ return vreinterpretq_m128i_u8(v) ^ RoundKey; ++ ++#else /* ARMv7-A NEON implementation */ ++ /* FIXME: optimized for NEON */ ++ uint8_t v[4][4]; ++ uint8_t *_a = (uint8_t *) &a; ++ for (int i = 0; i < 16; ++i) { ++ v[((i / 4) + (i % 4)) % 4][i % 4] = _sse2neon_rsbox[_a[i]]; ++ } ++ ++ return vreinterpretq_m128i_u8(vld1q_u8((uint8_t *) v)) ^ RoundKey; ++#endif ++} ++ ++// Perform the InvMixColumns transformation on a and store the result in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_aesimc_si128 ++FORCE_INLINE __m128i _mm_aesimc_si128(__m128i a) ++{ ++#if defined(__aarch64__) ++ static const uint8_t ror32by8[] = { ++ 0x1, 0x2, 0x3, 0x0, 0x5, 0x6, 0x7, 0x4, ++ 0x9, 0xa, 0xb, 0x8, 0xd, 0xe, 0xf, 0xc, ++ }; ++ uint8x16_t v = vreinterpretq_u8_m128i(a); ++ uint8x16_t w; ++ ++ // multiplying 'v' by 4 in GF(2^8) ++ w = (v << 1) ^ (uint8x16_t) (((int8x16_t) v >> 7) & 0x1b); ++ w = (w << 1) ^ (uint8x16_t) (((int8x16_t) w >> 7) & 0x1b); ++ v ^= w; ++ v ^= (uint8x16_t) vrev32q_u16((uint16x8_t) w); ++ ++ // multiplying 'v' by 2 in GF(2^8) ++ w = (v << 1) ^ (uint8x16_t) (((int8x16_t) v >> 7) & 0x1b); ++ w ^= (uint8x16_t) vrev32q_u16((uint16x8_t) v); ++ w ^= vqtbl1q_u8(v ^ w, vld1q_u8(ror32by8)); ++ return vreinterpretq_m128i_u8(w); ++ ++#else /* ARMv7-A NEON implementation */ ++ uint8_t i, e, f, g, h, v[4][4]; ++ vst1q_u8((uint8_t *) v, vreinterpretq_u8_m128i(a)); ++ for (i = 0; i < 4; ++i) { ++ e = v[i][0]; ++ f = v[i][1]; ++ g = v[i][2]; ++ h = v[i][3]; ++ ++ v[i][0] = SSE2NEON_MULTIPLY(e, 0x0e) ^ SSE2NEON_MULTIPLY(f, 0x0b) ^ ++ SSE2NEON_MULTIPLY(g, 0x0d) ^ SSE2NEON_MULTIPLY(h, 0x09); ++ v[i][1] = SSE2NEON_MULTIPLY(e, 0x09) ^ SSE2NEON_MULTIPLY(f, 0x0e) ^ ++ SSE2NEON_MULTIPLY(g, 0x0b) ^ SSE2NEON_MULTIPLY(h, 0x0d); ++ v[i][2] = SSE2NEON_MULTIPLY(e, 0x0d) ^ SSE2NEON_MULTIPLY(f, 0x09) ^ ++ SSE2NEON_MULTIPLY(g, 0x0e) ^ SSE2NEON_MULTIPLY(h, 0x0b); ++ v[i][3] = SSE2NEON_MULTIPLY(e, 0x0b) ^ SSE2NEON_MULTIPLY(f, 0x0d) ^ ++ SSE2NEON_MULTIPLY(g, 0x09) ^ SSE2NEON_MULTIPLY(h, 0x0e); ++ } ++ ++ return vreinterpretq_m128i_u8(vld1q_u8((uint8_t *) v)); ++#endif ++} ++ ++// Assist in expanding the AES cipher key by computing steps towards generating ++// a round key for encryption cipher using data from a and an 8-bit round ++// constant specified in imm8, and store the result in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_aeskeygenassist_si128 ++// ++// Emits the Advanced Encryption Standard (AES) instruction aeskeygenassist. ++// This instruction generates a round key for AES encryption. See ++// https://kazakov.life/2017/11/01/cryptocurrency-mining-on-ios-devices/ ++// for details. ++FORCE_INLINE __m128i _mm_aeskeygenassist_si128(__m128i a, const int rcon) ++{ ++#if defined(__aarch64__) ++ uint8x16_t _a = vreinterpretq_u8_m128i(a); ++ uint8x16_t v = vqtbl4q_u8(_sse2neon_vld1q_u8_x4(_sse2neon_sbox), _a); ++ v = vqtbx4q_u8(v, _sse2neon_vld1q_u8_x4(_sse2neon_sbox + 0x40), _a - 0x40); ++ v = vqtbx4q_u8(v, _sse2neon_vld1q_u8_x4(_sse2neon_sbox + 0x80), _a - 0x80); ++ v = vqtbx4q_u8(v, _sse2neon_vld1q_u8_x4(_sse2neon_sbox + 0xc0), _a - 0xc0); ++ ++ uint32x4_t v_u32 = vreinterpretq_u32_u8(v); ++ uint32x4_t ror_v = vorrq_u32(vshrq_n_u32(v_u32, 8), vshlq_n_u32(v_u32, 24)); ++ uint32x4_t ror_xor_v = veorq_u32(ror_v, vdupq_n_u32(rcon)); ++ ++ return vreinterpretq_m128i_u32(vtrn2q_u32(v_u32, ror_xor_v)); ++ ++#else /* ARMv7-A NEON implementation */ ++ uint32_t X1 = _mm_cvtsi128_si32(_mm_shuffle_epi32(a, 0x55)); ++ uint32_t X3 = _mm_cvtsi128_si32(_mm_shuffle_epi32(a, 0xFF)); ++ for (int i = 0; i < 4; ++i) { ++ ((uint8_t *) &X1)[i] = _sse2neon_sbox[((uint8_t *) &X1)[i]]; ++ ((uint8_t *) &X3)[i] = _sse2neon_sbox[((uint8_t *) &X3)[i]]; ++ } ++ return _mm_set_epi32(((X3 >> 8) | (X3 << 24)) ^ rcon, X3, ++ ((X1 >> 8) | (X1 << 24)) ^ rcon, X1); ++#endif ++} ++#undef SSE2NEON_AES_SBOX ++#undef SSE2NEON_AES_RSBOX ++ ++#if defined(__aarch64__) ++#undef SSE2NEON_XT ++#undef SSE2NEON_MULTIPLY ++#endif ++ ++#else /* __ARM_FEATURE_CRYPTO */ ++// Implements equivalent of 'aesenc' by combining AESE (with an empty key) and ++// AESMC and then manually applying the real key as an xor operation. This ++// unfortunately means an additional xor op; the compiler should be able to ++// optimize this away for repeated calls however. See ++// https://blog.michaelbrase.com/2018/05/08/emulating-x86-aes-intrinsics-on-armv8-a ++// for more details. ++FORCE_INLINE __m128i _mm_aesenc_si128(__m128i a, __m128i b) ++{ ++ return vreinterpretq_m128i_u8(veorq_u8( ++ vaesmcq_u8(vaeseq_u8(vreinterpretq_u8_m128i(a), vdupq_n_u8(0))), ++ vreinterpretq_u8_m128i(b))); ++} ++ ++// Perform one round of an AES decryption flow on data (state) in a using the ++// round key in RoundKey, and store the result in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_aesdec_si128 ++FORCE_INLINE __m128i _mm_aesdec_si128(__m128i a, __m128i RoundKey) ++{ ++ return vreinterpretq_m128i_u8(veorq_u8( ++ vaesimcq_u8(vaesdq_u8(vreinterpretq_u8_m128i(a), vdupq_n_u8(0))), ++ vreinterpretq_u8_m128i(RoundKey))); ++} ++ ++// Perform the last round of an AES encryption flow on data (state) in a using ++// the round key in RoundKey, and store the result in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_aesenclast_si128 ++FORCE_INLINE __m128i _mm_aesenclast_si128(__m128i a, __m128i RoundKey) ++{ ++ return _mm_xor_si128(vreinterpretq_m128i_u8(vaeseq_u8( ++ vreinterpretq_u8_m128i(a), vdupq_n_u8(0))), ++ RoundKey); ++} ++ ++// Perform the last round of an AES decryption flow on data (state) in a using ++// the round key in RoundKey, and store the result in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_aesdeclast_si128 ++FORCE_INLINE __m128i _mm_aesdeclast_si128(__m128i a, __m128i RoundKey) ++{ ++ return vreinterpretq_m128i_u8( ++ veorq_u8(vaesdq_u8(vreinterpretq_u8_m128i(a), vdupq_n_u8(0)), ++ vreinterpretq_u8_m128i(RoundKey))); ++} ++ ++// Perform the InvMixColumns transformation on a and store the result in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_aesimc_si128 ++FORCE_INLINE __m128i _mm_aesimc_si128(__m128i a) ++{ ++ return vreinterpretq_m128i_u8(vaesimcq_u8(vreinterpretq_u8_m128i(a))); ++} ++ ++// Assist in expanding the AES cipher key by computing steps towards generating ++// a round key for encryption cipher using data from a and an 8-bit round ++// constant specified in imm8, and store the result in dst." ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_aeskeygenassist_si128 ++FORCE_INLINE __m128i _mm_aeskeygenassist_si128(__m128i a, const int rcon) ++{ ++ // AESE does ShiftRows and SubBytes on A ++ uint8x16_t u8 = vaeseq_u8(vreinterpretq_u8_m128i(a), vdupq_n_u8(0)); ++ ++#ifndef _MSC_VER ++ uint8x16_t dest = { ++ // Undo ShiftRows step from AESE and extract X1 and X3 ++ u8[0x4], u8[0x1], u8[0xE], u8[0xB], // SubBytes(X1) ++ u8[0x1], u8[0xE], u8[0xB], u8[0x4], // ROT(SubBytes(X1)) ++ u8[0xC], u8[0x9], u8[0x6], u8[0x3], // SubBytes(X3) ++ u8[0x9], u8[0x6], u8[0x3], u8[0xC], // ROT(SubBytes(X3)) ++ }; ++ uint32x4_t r = {0, (unsigned) rcon, 0, (unsigned) rcon}; ++ return vreinterpretq_m128i_u8(dest) ^ vreinterpretq_m128i_u32(r); ++#else ++ // We have to do this hack because MSVC is strictly adhering to the CPP ++ // standard, in particular C++03 8.5.1 sub-section 15, which states that ++ // unions must be initialized by their first member type. ++ ++ // As per the Windows ARM64 ABI, it is always little endian, so this works ++ __n128 dest{ ++ ((uint64_t) u8.n128_u8[0x4] << 0) | ((uint64_t) u8.n128_u8[0x1] << 8) | ++ ((uint64_t) u8.n128_u8[0xE] << 16) | ++ ((uint64_t) u8.n128_u8[0xB] << 24) | ++ ((uint64_t) u8.n128_u8[0x1] << 32) | ++ ((uint64_t) u8.n128_u8[0xE] << 40) | ++ ((uint64_t) u8.n128_u8[0xB] << 48) | ++ ((uint64_t) u8.n128_u8[0x4] << 56), ++ ((uint64_t) u8.n128_u8[0xC] << 0) | ((uint64_t) u8.n128_u8[0x9] << 8) | ++ ((uint64_t) u8.n128_u8[0x6] << 16) | ++ ((uint64_t) u8.n128_u8[0x3] << 24) | ++ ((uint64_t) u8.n128_u8[0x9] << 32) | ++ ((uint64_t) u8.n128_u8[0x6] << 40) | ++ ((uint64_t) u8.n128_u8[0x3] << 48) | ++ ((uint64_t) u8.n128_u8[0xC] << 56)}; ++ ++ dest.n128_u32[1] = dest.n128_u32[1] ^ rcon; ++ dest.n128_u32[3] = dest.n128_u32[3] ^ rcon; ++ ++ return dest; ++#endif ++} ++#endif ++ ++/* Others */ ++ ++// Perform a carry-less multiplication of two 64-bit integers, selected from a ++// and b according to imm8, and store the results in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_clmulepi64_si128 ++FORCE_INLINE __m128i _mm_clmulepi64_si128(__m128i _a, __m128i _b, const int imm) ++{ ++ uint64x2_t a = vreinterpretq_u64_m128i(_a); ++ uint64x2_t b = vreinterpretq_u64_m128i(_b); ++ switch (imm & 0x11) { ++ case 0x00: ++ return vreinterpretq_m128i_u64( ++ _sse2neon_vmull_p64(vget_low_u64(a), vget_low_u64(b))); ++ case 0x01: ++ return vreinterpretq_m128i_u64( ++ _sse2neon_vmull_p64(vget_high_u64(a), vget_low_u64(b))); ++ case 0x10: ++ return vreinterpretq_m128i_u64( ++ _sse2neon_vmull_p64(vget_low_u64(a), vget_high_u64(b))); ++ case 0x11: ++ return vreinterpretq_m128i_u64( ++ _sse2neon_vmull_p64(vget_high_u64(a), vget_high_u64(b))); ++ default: ++ abort(); ++ } ++} ++ ++FORCE_INLINE unsigned int _sse2neon_mm_get_denormals_zero_mode(void) ++{ ++ union { ++ fpcr_bitfield field; ++#if defined(__aarch64__) || defined(_M_ARM64) ++ uint64_t value; ++#else ++ uint32_t value; ++#endif ++ } r; ++ ++#if defined(__aarch64__) || defined(_M_ARM64) ++ r.value = _sse2neon_get_fpcr(); ++#else ++ __asm__ __volatile__("vmrs %0, FPSCR" : "=r"(r.value)); /* read */ ++#endif ++ ++ return r.field.bit24 ? _MM_DENORMALS_ZERO_ON : _MM_DENORMALS_ZERO_OFF; ++} ++ ++// Count the number of bits set to 1 in unsigned 32-bit integer a, and ++// return that count in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_popcnt_u32 ++FORCE_INLINE int _mm_popcnt_u32(unsigned int a) ++{ ++#if defined(__aarch64__) || defined(_M_ARM64) ++#if __has_builtin(__builtin_popcount) ++ return __builtin_popcount(a); ++#elif defined(_MSC_VER) ++ return _CountOneBits(a); ++#else ++ return (int) vaddlv_u8(vcnt_u8(vcreate_u8((uint64_t) a))); ++#endif ++#else ++ uint32_t count = 0; ++ uint8x8_t input_val, count8x8_val; ++ uint16x4_t count16x4_val; ++ uint32x2_t count32x2_val; ++ ++ input_val = vld1_u8((uint8_t *) &a); ++ count8x8_val = vcnt_u8(input_val); ++ count16x4_val = vpaddl_u8(count8x8_val); ++ count32x2_val = vpaddl_u16(count16x4_val); ++ ++ vst1_u32(&count, count32x2_val); ++ return count; ++#endif ++} ++ ++// Count the number of bits set to 1 in unsigned 64-bit integer a, and ++// return that count in dst. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_popcnt_u64 ++FORCE_INLINE int64_t _mm_popcnt_u64(uint64_t a) ++{ ++#if defined(__aarch64__) || defined(_M_ARM64) ++#if __has_builtin(__builtin_popcountll) ++ return __builtin_popcountll(a); ++#elif defined(_MSC_VER) ++ return _CountOneBits64(a); ++#else ++ return (int64_t) vaddlv_u8(vcnt_u8(vcreate_u8(a))); ++#endif ++#else ++ uint64_t count = 0; ++ uint8x8_t input_val, count8x8_val; ++ uint16x4_t count16x4_val; ++ uint32x2_t count32x2_val; ++ uint64x1_t count64x1_val; ++ ++ input_val = vld1_u8((uint8_t *) &a); ++ count8x8_val = vcnt_u8(input_val); ++ count16x4_val = vpaddl_u8(count8x8_val); ++ count32x2_val = vpaddl_u16(count16x4_val); ++ count64x1_val = vpaddl_u32(count32x2_val); ++ vst1_u64(&count, count64x1_val); ++ return count; ++#endif ++} ++ ++FORCE_INLINE void _sse2neon_mm_set_denormals_zero_mode(unsigned int flag) ++{ ++ // AArch32 Advanced SIMD arithmetic always uses the Flush-to-zero setting, ++ // regardless of the value of the FZ bit. ++ union { ++ fpcr_bitfield field; ++#if defined(__aarch64__) || defined(_M_ARM64) ++ uint64_t value; ++#else ++ uint32_t value; ++#endif ++ } r; ++ ++#if defined(__aarch64__) || defined(_M_ARM64) ++ r.value = _sse2neon_get_fpcr(); ++#else ++ __asm__ __volatile__("vmrs %0, FPSCR" : "=r"(r.value)); /* read */ ++#endif ++ ++ r.field.bit24 = (flag & _MM_DENORMALS_ZERO_MASK) == _MM_DENORMALS_ZERO_ON; ++ ++#if defined(__aarch64__) || defined(_M_ARM64) ++ _sse2neon_set_fpcr(r.value); ++#else ++ __asm__ __volatile__("vmsr FPSCR, %0" ::"r"(r)); /* write */ ++#endif ++} ++ ++// Return the current 64-bit value of the processor's time-stamp counter. ++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=rdtsc ++FORCE_INLINE uint64_t _rdtsc(void) ++{ ++#if defined(__aarch64__) || defined(_M_ARM64) ++ uint64_t val; ++ ++ /* According to ARM DDI 0487F.c, from Armv8.0 to Armv8.5 inclusive, the ++ * system counter is at least 56 bits wide; from Armv8.6, the counter ++ * must be 64 bits wide. So the system counter could be less than 64 ++ * bits wide and it is attributed with the flag 'cap_user_time_short' ++ * is true. ++ */ ++#if defined(_MSC_VER) ++ val = _ReadStatusReg(ARM64_SYSREG(3, 3, 14, 0, 2)); ++#else ++ __asm__ __volatile__("mrs %0, cntvct_el0" : "=r"(val)); ++#endif ++ ++ return val; ++#else ++ uint32_t pmccntr, pmuseren, pmcntenset; ++ // Read the user mode Performance Monitoring Unit (PMU) ++ // User Enable Register (PMUSERENR) access permissions. ++ __asm__ __volatile__("mrc p15, 0, %0, c9, c14, 0" : "=r"(pmuseren)); ++ if (pmuseren & 1) { // Allows reading PMUSERENR for user mode code. ++ __asm__ __volatile__("mrc p15, 0, %0, c9, c12, 1" : "=r"(pmcntenset)); ++ if (pmcntenset & 0x80000000UL) { // Is it counting? ++ __asm__ __volatile__("mrc p15, 0, %0, c9, c13, 0" : "=r"(pmccntr)); ++ // The counter is set up to count every 64th cycle ++ return (uint64_t) (pmccntr) << 6; ++ } ++ } ++ ++ // Fallback to syscall as we can't enable PMUSERENR in user mode. ++ struct timeval tv; ++ gettimeofday(&tv, NULL); ++ return (uint64_t) (tv.tv_sec) * 1000000 + tv.tv_usec; ++#endif ++} ++ ++#if defined(__GNUC__) || defined(__clang__) ++#pragma pop_macro("ALIGN_STRUCT") ++#pragma pop_macro("FORCE_INLINE") ++#pragma pop_macro("FORCE_INLINE_OPTNONE") ++#endif ++ ++#if defined(__GNUC__) && !defined(__clang__) ++#pragma GCC pop_options ++#endif ++ ++#endif diff --git a/recipes/meryl/meta.yaml b/recipes/meryl/meta.yaml index 43e0d6f4d274f..1eb2454b22499 100644 --- a/recipes/meryl/meta.yaml +++ b/recipes/meryl/meta.yaml @@ -7,14 +7,16 @@ package: version: {{ version }} source: - url: https://github.com/marbl/{{name}}/releases/download/v{{version}}/{{name}}-{{version}}.tar.xz - sha256: {{ sha256 }} + git_url: https://github.com/marbl/{{name}} + git_rev: v{{version}} patches: - - 0001-Do-not-bail-out-for-Clang-on-macOS.patch + - 0001-Do-not-bail-out-for-Clang-on-macOS.patch # [osx] - 0002-macos-cmath.patch # [osx] + - 0003-align.patch # [aarch64 or arm64] + - meryl-utility-aarch64.patch # [aarch64 or arm64] build: - number: 0 + number: 1 run_exports: - {{ pin_subpackage('meryl', max_pin="x") }} @@ -42,7 +44,13 @@ about: license: 'Public Domain' extra: + additional-platforms: + - linux-aarch64 + - osx-arm64 identifiers: - biotools:meryl - usegalaxy-eu:meryl - doi:10.1186/s13059-020-02134-9 + skip-lints: + - uses_vcs_url + - missing_hash