forked from ryanbressler/CloudForest
-
Notifications
You must be signed in to change notification settings - Fork 0
/
ordinaltarget.go
93 lines (78 loc) · 2.31 KB
/
ordinaltarget.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
package CloudForest
import (
"fmt"
)
/*
OrdinalTarget wraps a numerical feature as a target for us in ordinal regression.
Data should be represented as positive integers and the Error is embeded from the
embeded NumFeature.
*/
type OrdinalTarget struct {
NumFeature
nClass int
max float64
}
/*
NewOrdinalTarget creates a categorical adaptive boosting target and initializes its weights.
*/
func NewOrdinalTarget(f NumFeature) (abt *OrdinalTarget) {
nCases := f.Length()
abt = &OrdinalTarget{f, 0, 0.0}
for i := 0; i < nCases; i++ {
v := f.Get(i)
if v > abt.max {
abt.max = v
}
}
abt.nClass = int(abt.max) + 1
return
}
/*
OrdinalTarget.SplitImpurity is an ordinal version of SplitImpurity.
*/
func (target *OrdinalTarget) SplitImpurity(l *[]int, r *[]int, m *[]int, allocs *BestSplitAllocs) (impurityDecrease float64) {
nl := float64(len(*l))
nr := float64(len(*r))
nm := 0.0
impurityDecrease = nl * target.Impurity(l, allocs.LCounter)
impurityDecrease += nr * target.Impurity(r, allocs.RCounter)
if m != nil && len(*m) > 0 {
nm = float64(len(*m))
impurityDecrease += nm * target.Impurity(m, allocs.Counter)
}
impurityDecrease /= nl + nr + nm
return
}
//UpdateSImpFromAllocs willl be called when splits are being built by moving cases from r to l as in learning from numerical variables.
//Here it just wraps SplitImpurity but it can be implemented to provide further optimization.
func (target *OrdinalTarget) UpdateSImpFromAllocs(l *[]int, r *[]int, m *[]int, allocs *BestSplitAllocs, movedRtoL *[]int) (impurityDecrease float64) {
return target.SplitImpurity(l, r, m, allocs)
}
func (f *OrdinalTarget) Predicted(cases *[]int) float64 {
return f.Mode(cases)
}
func (f *OrdinalTarget) Mode(cases *[]int) (m float64) {
counts := make([]int, f.nClass)
for _, i := range *cases {
if !f.IsMissing(i) {
counts[int(f.Get(i))] += 1
}
}
max := 0
for k, v := range counts {
if v > max {
m = float64(k)
max = v
}
}
return
}
//OrdinalTarget.Impurity is an ordinal version of impurity using Mode instead of Mean for prediction.
func (target *OrdinalTarget) Impurity(cases *[]int, counter *[]int) (e float64) {
m := target.Predicted(cases)
e = target.Error(cases, m)
return
}
func (target *OrdinalTarget) FindPredicted(cases []int) (pred string) {
return fmt.Sprintf("%v", target.Predicted(&cases))
}