-
Notifications
You must be signed in to change notification settings - Fork 0
/
MultigradedImplicitization.m2
720 lines (569 loc) · 21.7 KB
/
MultigradedImplicitization.m2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
newPackage(
"MultigradedImplicitization",
Version => "1.0",
Date => "October 26, 2023",
Authors => {
{Name => "Joseph Cummings",
Email => "josephcummings03@gmail.com",
HomePage => "https://sites.google.com/view/josephcummingsuky/home"},
{Name => "Benjamin Hollering",
Email => "benhollering@gmail.com",
HomePage => "https://sites.google.com/view/benhollering"}
},
Headline => "A package for levaraging multigradings to solve implicitization problems",
DebuggingMode => true,
PackageImports => {"gfanInterface"}
)
--------------------
--Exports
--------------------
export {
-- Methods
"maxGrading",
"trimBasisInDegree",
"componentOfKernel",
"componentsOfKernel",
"probCompOfKernel",
"probCompsOfKernel",
-- Options
"Grading", "PreviousGens", "ReturnTargetGrading", "UseMatroidSpeedup", "CoeffField"
}
---------------------
---- maxGrading -----
---------------------
maxGrading = method(Options => {ReturnTargetGrading => false});
maxGrading RingMap := Matrix => opts -> F -> (
dom := source F;
codom := target F;
elimRing := dom ** codom;
X := vars dom;
n := numgens dom;
elimIdeal := ideal(sub(X, elimRing) - sub(F(X), elimRing));
if opts.ReturnTargetGrading then (transpose linealitySpace(gfanHomogeneitySpace(elimIdeal))) else (transpose linealitySpace(gfanHomogeneitySpace(elimIdeal)))_(toList(0..n-1))
)
TEST ///
A = matrix {{1,1,1,0,0,0,0,0,0}, {0,0,0,1,1,1,0,0,0}, {0,0,0,0,0,0,1,1,1}, {1,0,0,1,0,0,1,0,0}, {0,1,0,0,1,0,0,1,0}};
R = QQ[x_1..x_(numcols A)];
S = QQ[t_1..t_(numrows A)];
F = map(S, R, apply(numcols(A), i -> S_(flatten entries A_i)));
assert(ker(A) == ker(maxGrading(F)));
///
----------------------------
----- trimBasisInDegree ----
----------------------------
trimBasisInDegree = method();
trimBasisInDegree (List, Ring, List, MutableHashTable) := Matrix => (deg, dom, G, basisHash) -> (
if #G == 0 then (
return basisHash#deg;
);
-- otherwise, we shift G in all possible ways to land in R_deg
G = apply(G, g -> sub(g, dom));
L := apply(G, g -> (
checkDegree := deg - degree(g);
if basisHash#?checkDegree then (
g*basisHash#checkDegree
) else (
-- this else condition is only hit when basis(checkDegree,dom) = |0|
g*basis(checkDegree, dom)
)
)
);
-- stick em all in a matrix
mat := L#0;
scan(1..#L-1, i -> mat = mat | L#i);
-- and collect coefficients.
(mons, coeffs) := coefficients(mat);
-- find the independent linear relations
coeffs = mingens(image sub(coeffs, coefficientRing(dom)));
-- remove monomials corresponding to pivots
badMonomials := apply(pivots coeffs, i -> mons_(0,i#0));
monomialBasis := flatten entries basisHash#deg;
scan(badMonomials, m -> monomialBasis = delete(m, monomialBasis));
matrix{monomialBasis}
)
trimBasisInDegree (List, Ring, MutableHashTable) := Matrix => (deg, dom, basisHash) -> trimBasisInDegree(deg, dom, {}, basisHash)
TEST ///
A = matrix {{1,1,1,0,0,0,0,0,0}, {0,0,0,1,1,1,0,0,0}, {0,0,0,0,0,0,1,1,1}, {1,0,0,1,0,0,1,0,0}, {0,1,0,0,1,0,0,1,0}};
R = QQ[x_1..x_(numcols A)];
S = QQ[t_1..t_(numrows A)];
F = map(S, R, apply(numcols(A), i -> S_(flatten entries A_i)));
dom = newRing(R, Degrees => A);
basisHash = new MutableHashTable from apply(gens(dom), i -> degree(i) => i);
B = basis(2, source F) | basis(3, source F);
lats = unique apply(flatten entries B, i -> degree(sub(i, dom)));
scan(lats, deg -> basisHash#deg = basis(deg, dom));
assert(trimBasisInDegree({2,1,0,1,1}, dom, {x_2*x_4-x_1*x_5, x_3*x_4-x_1*x_6, x_3*x_5-x_2*x_6}, basisHash) == matrix {{x_2*x_3*x_4}});
///
----------------------------
----- componentOfKernel ----
----------------------------
componentOfKernel = method(Options => {PreviousGens => {}});
componentOfKernel (List, Ring, RingMap, Matrix) := List => opts -> (deg, dom, F, monomialBasis) -> (
-- collect coefficients into a matrix
(mons, coeffs) := coefficients(F(sub(monomialBasis, source F)));
-- find the linear relations among coefficients
K := gens ker sub(coeffs, coefficientRing(dom));
newGens := flatten entries (monomialBasis * K);
newGens
)
componentOfKernel (List, Ring, RingMap, MutableHashTable) := List => opts -> (deg, dom, F, basisHash) -> (
monomialBasis := if basisHash#?deg then basisHash#deg else trimBasisInDegree(deg, dom, opts.PreviousGens, basisHash);
componentOfKernel(deg, dom, F, monomialBasis)
)
componentOfKernel (List, Ring, RingMap) := List => opts -> (deg, dom, F) -> (
monomialBasis := basis(deg, dom);
componentOfKernel(deg, dom, F, monomialBasis)
)
TEST ///
A = matrix {{1,1,1,0,0,0,0,0,0}, {0,0,0,1,1,1,0,0,0}, {0,0,0,0,0,0,1,1,1}, {1,0,0,1,0,0,1,0,0}, {0,1,0,0,1,0,0,1,0}};
R = QQ[x_1..x_(numcols A)];
S = QQ[t_1..t_(numrows A)];
F = map(S, R, apply(numcols(A), i -> S_(flatten entries A_i)));
dom = newRing(R, Degrees => A);
assert(componentOfKernel({1,1,0,1,1}, dom, F, matrix {{x_1*x_5, x_2*x_4}}) == {x_2*x_4-x_1*x_5});
///
-----------------------------
----- componentsOfKernel ----
-----------------------------
componentsOfKernel = method(Options => {Grading => null, UseMatroidSpeedup => true});
componentsOfKernel (Number, RingMap) := MutableHashTable => opts -> (d, F) -> (
A := if opts.Grading === null then maxGrading(F) else opts.Grading;
dom := newRing(source F, Degrees => A);
basisHash := new MutableHashTable;
gensHash := new MutableHashTable;
if (transpose(matrix {toList(numColumns(A) : 1/1)}) % image(transpose sub(A,QQ))) != 0 then (
print("ERROR: The multigrading does not refine total degree. Try homogenizing or a user-defined multigrading");
return;
);
-- compute the jacobian of F and substitute in random parameter values in a large finite field
if opts.UseMatroidSpeedup then(
J := jacobian matrix F;
J = sub(J, apply(gens target F, t -> t => random(ZZ/nextPrime(100000))));
);
areThereLinearRelations := false;
-- assumes homogeneous with normal Z-grading
for i in 1..d do (
if i == 2 and areThereLinearRelations then print("WARNING: There are linear relations. You may want to reduce the number of variables to speed up the computation.");
B := sub(basis(i, source F), dom);
lats := unique apply(flatten entries B, m -> degree m);
G := flatten(values(gensHash));
for deg in lats do (
basisHash#deg = basis(deg, dom);
S := findSupportIndices(support sub(basisHash#deg, source F), F);
if (numcols(basisHash#deg) == 1) and (i > 1) then(
gensHash#deg = {};
continue;
);
if opts.UseMatroidSpeedup then(
if rank(J_S) == #S then(
gensHash#deg = {};
continue;
);
);
monomialBasis := trimBasisInDegree(deg, dom, G, basisHash);
gensHash#deg = componentOfKernel(deg, dom, F, monomialBasis);
if i == 1 and #(gensHash#deg) > 0 then (
areThereLinearRelations = true;
);
);
);
gensHash
)
TEST ///
A = matrix {{1,1,1,0,0,0,0,0,0}, {0,0,0,1,1,1,0,0,0}, {0,0,0,0,0,0,1,1,1}, {1,0,0,1,0,0,1,0,0}, {0,1,0,0,1,0,0,1,0}};
R = QQ[x_1..x_(numcols A)];
S = QQ[t_1..t_(numrows A)];
F = map(S, R, apply(numcols(A), i -> S_(flatten entries A_i)));
dom = newRing(R, Degrees => A);
G = componentsOfKernel(2,F);
G = new HashTable from G;
G = delete(null, flatten values(G));
assert(sub(ideal(G),R) == ker F)
///
----------------------------
----- probCompOfKernel ----
----------------------------
probCompOfKernel = method(Options => {PreviousGens => {}});
probCompOfKernel (List, Ring, List, Matrix) := List => opts -> (deg, dom, samplePts, monomialBasis) -> (
-- collect coefficients into a matrix
evalBasis := matrix for i from 0 to numcols(monomialBasis)-1 list flatten entries sub(monomialBasis, samplePts_i);
-- find the linear relations among coefficients
K := gens ker evalBasis;
newGens := flatten entries (monomialBasis * K);
newGens
)
-----------------------------
----- probCompsOfKernel ----
-----------------------------
probCompsOfKernel = method(Options => {Grading => null, UseMatroidSpeedup => true, CoeffField => null});
probCompsOfKernel (Number, RingMap) := MutableHashTable => opts -> (d, F) -> (
print("warning: computation begun over finite field. resulting polynomials may not lie in the ideal");
A := if opts.Grading === null then maxGrading(F) else opts.Grading;
KK := if opts.CoeffField == null then ZZ/nextPrime(1000000) else opts.CoeffField;
dom := newRing(source F, Degrees => A);
basisHash := new MutableHashTable;
gensHash := new MutableHashTable;
if (transpose(matrix {toList(numColumns(A) : 1/1)}) % image(transpose sub(A,QQ))) != 0 then (
print("ERROR: The multigrading does not refine total degree. Try homogenizing or a user-defined multigrading");
return;
);
-- compute the jacobian of F and substitute in random parameter values in a large finite field
if opts.UseMatroidSpeedup then(
J := jacobian matrix F;
J = sub(J, apply(gens target F, t -> t => random(KK)));
);
areThereLinearRelations := false;
samplePts := {};
-- assumes homogeneous with normal Z-grading
for i in 1..d do (
if i == 2 and areThereLinearRelations then print("WARNING: There are linear relations. You may want to reduce the number of variables to speed up the computation.");
print(concatenate("computing total degree: ", toString(i)));
B := sub(basis(i, source F), dom);
lats := unique apply(flatten entries B, m -> degree m);
scan(lats, deg -> basisHash#deg = basis(deg, dom));
maxBasisSize := max(apply(values(basisHash), k -> numcols(k)));
print(concatenate("number of monomials = ", toString(numcols(B))));
print(concatenate("number of distinct multidegrees = ", toString(#lats)));
-- make list of current generators
G := flatten(values(gensHash));
print(concatenate("sampling ", toString(maxBasisSize), " points from the variety"));
-- sample additional points from the variety if necessary
if #samplePts < maxBasisSize then(
newPts := for l from 0 to (maxBasisSize - #samplePts - 1) list(
paramVals := apply(gens target F, t -> t => random(KK));
apply(gens source F, x -> sub(x, dom) => sub(F(x), paramVals))
);
samplePts = samplePts | newPts;
);
for deg in lats do (
S := findSupportIndices(support sub(basisHash#deg, source F), F);
if (numcols(basisHash#deg) == 1) and (i > 1) then(
gensHash#deg = {};
continue;
);
if opts.UseMatroidSpeedup then(
if rank(J_S) == #S then(
gensHash#deg = {};
continue;
);
);
monomialBasis := trimBasisInDegree(deg, dom, G, basisHash);
gensHash#deg = probCompOfKernel(deg, dom, samplePts, monomialBasis);
if i == 1 and #(gensHash#deg) > 0 then (
areThereLinearRelations = true;
);
);
);
gensHash
)
TEST ///
A = matrix {{1,1,1,0,0,0,0,0,0}, {0,0,0,1,1,1,0,0,0}, {0,0,0,0,0,0,1,1,1}, {1,0,0,1,0,0,1,0,0}, {0,1,0,0,1,0,0,1,0}};
R = QQ[x_1..x_(numcols A)];
S = QQ[t_1..t_(numrows A)];
F = map(S, R, apply(numcols(A), i -> S_(flatten entries A_i)));
dom = newRing(R, Degrees => A);
G = componentsOfKernel(2,F);
G = new HashTable from G;
G = delete(null, flatten values(G));
assert(sub(ideal(G),R) == ker F)
///
findSupportIndices = (supp, F) -> (
apply(supp, s -> position(gens source F, x -> x == s))
)
-- Documentation below
beginDocumentation()
-- template for function documentation
--doc ///
--Key
--Headline
--Usage
--Inputs
--Outputs
--Consequences
-- Item
--Description
-- Text
-- Code
-- Pre
-- Example
-- CannedExample
--Subnodes
--Caveat
--SeeAlso
--///
doc ///
Key
MultigradedImplicitization
Headline
Package for levaraging multigradings to solve implicitization problems
Description
Text
The MultigradedImplicitization package provides methods for computing the maximal $\mathbb{Z}^k$ grading in which the
kernel of a polynomial map $F$ is homogeneous and exploiting it to find generators of $\ker(F)$. This package is
particularly useful for problems from algebraic statistics which often involve highly structured maps {\tt F} which are
often naturally homogeneous in a larger multigrading than the standard $\mathbb{Z}$-multigrading given by total degree.
For more information on this approach see the following:
Text
References:
[1] Cummings, J., & Hollering , B. (2023). Computing Implicitizations of Multi-Graded Polynomial Maps. arXiv preprint arXiv:2311.07678.
[2] Cummings, J., & Hauenstein, J. (2023). Multi-graded Macaulay Dual Spaces. arXiv preprint arXiv:2310.11587.
[3] Cummings, J., Hollering, B., & Manon, C. (2024). Invariants for level-1 phylogenetic networks under the cavendar-farris-neyman model. Advances in Applied Mathematics, 153, 102633.
///
doc ///
Key
maxGrading
(maxGrading, RingMap)
[maxGrading, ReturnTargetGrading]
Headline
computes the maximal $\mathbb{Z}^k$ grading such that $\ker(F)$ is homogeneous
Usage
maxGrading(F)
Inputs
F:RingMap
ReturnTargetGrading => Boolean
a boolean which encodes whether or not to also return the grading on {\tt target(F)} which induces the grading on $\ker(F)$
Outputs
:Matrix
the maximal $\mathbb{Z}^k$ grading in which $\ker(F)$ is homogeneous
--Consequences
-- asd
Description
Text
Computes the maximal $\mathbb{Z}^k$ grading such that the $\ker(F)$ is homogeneous.
The columns of the output matrix are the degrees of the corresponding variables in {\tt source(F)}.
For example, the snippet below shows that the maximal grading of a toric ideal
is exactly the integer matrix which encodes the monomial map parameterizing the ideal.
Example
A = matrix {{1,1,1,0,0,0}, {0,0,0,1,1,1}, {1,0,0,1,0,0}, {0,1,0,0,1,0}, {0,0,1,0,0,1}}
R = QQ[x_(1,1)..x_(2,3)];
S = QQ[t_1..t_2, s_1..s_3];
F = map(S, R, {t_1*s_1, t_1*s_2, t_1*s_3, t_2*s_1, t_2*s_2, t_2*s_3})
maxGrading(F)
Text
The option {\tt ReturnTargetGrading} returns a matrix which also gives the corresponding
grading on the target ring of $F$ which induces the grading on $\ker(F)$. This option is {\tt false}
by default.
Example
maxGrading(F, ReturnTargetGrading => true)
///
doc ///
Key
trimBasisInDegree
(trimBasisInDegree, List, Ring, List, MutableHashTable)
(trimBasisInDegree, List, Ring, MutableHashTable)
Headline
Finds a basis for the homogeneous component of a graded ring but removes basis elements which correspond to previously computed generators.
Usage
trimBasisInDegree(deg, dom, G, B)
trimBasisInDegree(deg, dom, B)
Inputs
deg:List
the degree of the homogeneous component to compute
dom:Ring
a graded ring which is the source of a homogeneous ring map $F$
G:List
a list of previously computed generators of $\ker(F)$
B:MutableHashTable
a mutable hashtable which contains all bases of homogeneous components which correspond to lower total degrees than {\tt deg}
Outputs
:Matrix
A monomial basis for the homogeneous component of degree {\tt deg} of {\tt dom} with any monomials which cannot be involved in new generators of $\ker(F)$ removed.
--Consequences
-- asd
Description
Text
Computes a monomial basis for the homogeneous component of degree {\tt deg} of the graded ring {\tt dom} which is the source of a ring map $F$.
Monomials which correspond to previously computed relations which are in {\tt G} are automatically removed since they will not yield new generators
in $\ker(F)$ when applying @TO2{componentOfKernel, "componentOfKernel"}@ to this basis.
Example
A = matrix {{1,1,1,0,0,0,0,0,0}, {0,0,0,1,1,1,0,0,0}, {0,0,0,0,0,0,1,1,1}, {1,0,0,1,0,0,1,0,0}, {0,1,0,0,1,0,0,1,0}};
R = QQ[x_1..x_(numcols A)];
S = QQ[t_1..t_(numrows A)];
F = map(S, R, apply(numcols(A), i -> S_(flatten entries A_i)));
dom = newRing(R, Degrees => A);
basisHash = new MutableHashTable from apply(gens(dom), i -> degree(i) => i);
B = basis(2, source F) | basis(3, source F);
lats = unique apply(flatten entries B, i -> degree(sub(i, dom)));
scan(lats, deg -> basisHash#deg = basis(deg, dom));
trimBasisInDegree({2,1,0,1,1}, dom, {x_2*x_4-x_1*x_5, x_3*x_4-x_1*x_6, x_3*x_5-x_2*x_6}, basisHash)
Text
Observe that after trimming we get a smaller monomial basis for this homogeneous component. The full monomial basis is
Example
basis({2,1,0,1,1}, dom)
///
doc ///
Key
componentsOfKernel
(componentsOfKernel, Number, RingMap)
[componentsOfKernel, Grading]
[componentsOfKernel, UseMatroidSpeedup]
Headline
Finds all minimal generators up to a given total degree in the kernel of a ring map
Usage
componentsOfKernel(d, F)
Inputs
d:List
the total degree at which to stop computing generators
F:RingMap
Grading => Matrix
a matrix whose columns give a homogeneous multigrading on $\ker(F)$
UseMatroidSpeedup => Boolean
if true, then the jacobian of $F$ is used to detect if it is possible for kernel element to exist in a homogeneous component. If the jacobian does not drop rank, then that component cannot contain kernel generators and is skipped.
Outputs
:MutableHashTable
A mutable hashtable whose keys correspond to all homogeneous components of $\ker(F)$ and values correspond to generators in $\ker(F)$ with those components
--Consequences
-- asd
Description
Text
Computes all minimal generators of $\ker(F)$ which are of total degree at most {\tt d}.
Example
A = matrix {{1,1,1,0,0,0}, {0,0,0,1,1,1}, {1,0,0,1,0,0}, {0,1,0,0,1,0}, {0,0,1,0,0,1}}
R = QQ[x_(1,1)..x_(2,3)];
S = QQ[t_1..t_2, s_1..s_3];
F = map(S, R, {t_1*s_1, t_1*s_2, t_1*s_3, t_2*s_1, t_2*s_2, t_2*s_3})
peek componentsOfKernel(2, F)
Text
If a grading in which $\ker(F)$ is homogeneous is already known or a specific grading is desired then the option {\tt Grading} can be used to specify this.
In this case the columns of the matrix {\tt Grading} are automatically used to grade the source of $F$.
-- Code
-- todo
-- Pre
-- todo
-- todo
--SeeAlso
-- todo
///
doc ///
Key
componentOfKernel
(componentOfKernel, List, Ring, RingMap, Matrix)
(componentOfKernel, List, Ring, RingMap, MutableHashTable)
(componentOfKernel, List, Ring, RingMap)
[componentOfKernel, PreviousGens]
Headline
Finds all minimal generators of a given degree in the kernel of a ring map
Usage
componentOfKernel(deg, dom, F, M)
componentOfKernel(deg, dom, F, B)
componentOfKernel(deg, dom, F)
Inputs
deg:List
the degree of the homogeneous component to compute
dom:Ring
a graded ring which is the source of a homogeneous ring map $F$
F:RingMap
a map whose kernel is homogeneous in the grading of {\tt dom}
M:Matrix
a monomial basis for the homogeneous component of {\tt deg} with degree {\tt deg}
B:MutableHashTable
a mutable hashtable which contains all bases of homogeneous components which correspond to lower total degrees than {\tt deg}
PreviousGens => List
a list of generators of the kernel which have lower total degree
Outputs
:Matrix
A list of minimal generators for $\ker(F)$ which are in the homogeneous component of degree {\tt deg}
--Consequences
-- asd
Description
Text
Computes all minimal generators of $\ker(F)$ which are in the homogeneous component of degree {\tt deg}
Example
A = matrix {{1,1,1,0,0,0}, {0,0,0,1,1,1}, {1,0,0,1,0,0}, {0,1,0,0,1,0}, {0,0,1,0,0,1}}
R = QQ[x_(1,1)..x_(2,3)];
S = QQ[t_1..t_2, s_1..s_3];
F = map(S, R, {t_1*s_1, t_1*s_2, t_1*s_3, t_2*s_1, t_2*s_2, t_2*s_3})
dom = newRing(R, Degrees => A);
componentOfKernel({1,1,0,1,1}, dom, F)
Text
The option {\tt PreviousGens} can be used to specify a set of previously computed generators.
In the case that a monomial basis or hash table of monomial bases is not given then @TO2{trimBasisInDegree, "trimBasisInDegree"}@
will be used to compute a monomial basis and {\tt PreviousGens} will be used to trim this basis.
-- Code
-- todo
-- Pre
-- todo
-- todo
--SeeAlso
-- todo
///
doc ///
Key
Grading
Headline
optional argument
--Usage
--Inputs
--Outputs
--Consequences
-- Item
Description
Text
The option Grading is a @TO2{Matrix,"matrix"}@ that allows one to specify a specific multigrading in which a polynomial map is homogeneous in.
--
-- CannedExample
--Subnodes
--Caveat
--SeeAlso
///
doc ///
Key
UseMatroidSpeedup
Headline
optional argument
--Usage
--Inputs
--Outputs
--Consequences
-- Item
Description
Text
The option UseMatroidSpeedup is a boolean that allows one to specify if the matroid given by the jacobian should be used to automatically skip components. This option is true by default.
If it is set to false, then every homogeneous component will be checked, even if it is impossible for a polynomial with the necessary support to belong to the kernel.
For very small examples, it may be slightly faster to set this to false.
--
-- CannedExample
--Subnodes
--Caveat
--SeeAlso
///
doc ///
Key
ReturnTargetGrading
Headline
optional argument
--Usage
--Inputs
--Outputs
--Consequences
-- Item
Description
Text
The option ReturnTargetGrading is a @TO2{Boolean,"boolean"}@ which can be used with @TO2{maxGrading, "maxGrading"}@. This option is false by default. If it is set to true
then the full grading on the elimination ideal of a polynomial map $F$ will be returned instead of only returning the part of the grading which corresponds to the source of $F$.
--
-- CannedExample
--Subnodes
--Caveat
--SeeAlso
///
doc ///
Key
PreviousGens
Headline
optional argument
--Usage
--Inputs
--Outputs
--Consequences
-- Item
Description
Text
The option PreviousGens is a @TO2{List,"list"}@ of polynomials of total degree at most $d-1$ which can be used with @TO2{componentOfKernel, "componentOfKernel"}@
to trim the monomial basis for that multidegree.
--
-- CannedExample
--Subnodes
--Caveat
--SeeAlso
///