-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathexperiments.conf
98 lines (89 loc) · 2.07 KB
/
experiments.conf
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
# Word embeddings.
glove_300d {
path = glove.840B.300d.txt
size = 300
}
glove_300d_filtered {
path = glove.840B.300d.txt.filtered
size = 300
}
glove_300d_2w {
path = glove_50_300_2.txt
size = 300
}
# Distributed training configurations.
two_local_gpus {
addresses {
ps = [localhost:2222]
worker = [localhost:2223, localhost:2224, localhost:2225, localhost:2226]
}
gpus = [0, 1, 2, 3]
}
# Main configuration.
best {
# Computation limits.
max_top_antecedents = 50
max_training_sentences = 50
top_span_ratio = 0.4
# Model hyperparameters.
filter_widths = [3, 4, 5]
filter_size = 50
char_embedding_size = 8
char_vocab_path = "char_vocab.english.txt"
context_embeddings = ${glove_300d_filtered}
head_embeddings = ${glove_300d_2w}
contextualization_size = 200
contextualization_layers = 3
ffnn_size = 150
ffnn_depth = 2
feature_size = 20
max_span_width = 30
use_metadata = true
use_features = true
model_heads = true
coref_depth = 2
lm_layers = 4
lm_size = 1024
coarse_to_fine = true
refinement_sharing = false
# Learning hyperparameters.
max_gradient_norm = 5.0
lstm_dropout_rate = 0.4
lexical_dropout_rate = 0.5
dropout_rate = 0.2
optimizer = adam
learning_rate = 0.001
decay_rate = 1.0
decay_frequency = 100
ema_decay = 0.9999
# Other.
train_path = train.english.jsonlines
eval_path = dev.english.jsonlines
conll_eval_path = dev.english.v4_gold_conll
lm_path = bert_features.hdf5
genres = ["bc", "bn", "mz", "nw", "pt", "tc", "wb"]
eval_frequency = 5000
# eval_frequency = 1
report_frequency = 100
log_root = logs
cluster = ${two_local_gpus}
multi_gpu = false
gold_loss = false
b3_loss = false
mention_loss = false
antecedent_loss = true
# Entity Equalization
entity_equalization = true
antecedent_averaging = false
use_cluster_size = true
entity_average = false
}
entity_equalization = ${best}
baseline = ${best} {
decay_rate = 0.999
entity_equalization = false
antecedent_averaging = true
ema_decay = 1.0
refinement_sharing = true
}
antecedent_averaging = ${baseline}