-
Notifications
You must be signed in to change notification settings - Fork 0
/
CS_Net_plus_IFBN_readout.py
315 lines (247 loc) · 11.8 KB
/
CS_Net_plus_IFBN_readout.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
import torch
import torch.nn as nn
import numpy as np
from blocks3 import PHI, PHI_inv, reconblcok, make_sparse, ConvrelBlock
from gaussian_kernel import SpatialGaussianKernel
class AttributionBottleneck(nn.Module):
@staticmethod
def _sample_z(mu, log_noise_var):
""" return mu with additive noise """
log_noise_var = torch.clamp(log_noise_var, -10, 10)
noise_std = (log_noise_var / 2).exp()
eps = mu.data.new(mu.size()).normal_()
return mu + noise_std * eps
@staticmethod
def _calc_capacity(mu, log_var) -> torch.Tensor:
# KL[Q(z|x)||P(z)]
# 0.5 * (tr(noise_cov) + mu ^ T mu - k - log det(noise)
return -0.5 * (1 + log_var - mu**2 - log_var.exp())
class PerSampleBottleneck(AttributionBottleneck):
"""
The Attribution Bottleneck.
Is inserted in a existing model to suppress information, parametrized by a suppression mask alpha.
"""
def __init__(self, mean: np.ndarray, std: np.ndarray, sigma, device=None, relu=False):
"""
:param mean: The empirical mean of the activations of the layer
:param std: The empirical standard deviation of the activations of the layer
:param sigma: The standard deviation of the gaussian kernel to smooth the mask, or None for no smoothing
:param device: GPU/CPU
:param relu: True if output should be clamped at 0, to imitate a post-ReLU distribution
"""
super().__init__()
self.device = device
self.relu = relu
self.initial_value = 5.0
self.std = torch.tensor(std, dtype=torch.float, device=self.device, requires_grad=False)
self.mean = torch.tensor(mean, dtype=torch.float, device=self.device, requires_grad=False)
self.alpha = nn.Parameter(torch.full((1, *self.mean.shape), fill_value=self.initial_value, device=self.device))
self.sigmoid = nn.Sigmoid()
self.buffer_capacity = None # Filled on forward pass, used for loss
if sigma is not None and sigma > 0:
# Construct static conv layer with gaussian kernel
kernel_size = int(round(2 * sigma)) * 2 + 1 # Cover 2.5 stds in both directions
channels = self.mean.shape[0]
self.smooth = SpatialGaussianKernel(kernel_size, sigma, channels, device=self.device)
else:
self.smooth = None
self.reset_alpha()
def reset_alpha(self):
""" Used to reset the mask to train on another sample """
with torch.no_grad():
self.alpha.fill_(self.initial_value)
return self.alpha
def forward(self, r):
""" Remove information from r by performing a sampling step, parametrized by the mask alpha """
# Smoothen and expand a on batch dimension
lamb = self.sigmoid(self.alpha)
lamb = lamb.expand(r.shape[0], r.shape[1], -1, -1)
lamb = self.smooth(lamb) if self.smooth is not None else lamb
# We normalize r to simplify the computation of the KL-divergence
#
# The equation in the paper is:
# Z = λ * R + (1 - λ) * ε)
# where ε ~ N(μ_r, σ_r**2)
# and given R the distribution of Z ~ N(λ * R, ((1 - λ) σ_r)**2)
#
# In the code μ_r = self.mean and σ_r = self.std.
#
# To simplify the computation of the KL-divergence we normalize:
# R_norm = (R - μ_r) / σ_r
# ε ~ N(0, 1)
# Z_norm ~ N(λ * R_norm, (1 - λ))**2)
# Z = σ_r * Z_norm + μ_r
#
# We compute KL[ N(λ * R_norm, (1 - λ))**2) || N(0, 1) ].
#
# The KL-divergence is invariant to scaling, see:
# https://en.wikipedia.org/wiki/Kullback%E2%80%93Leibler_divergence#Properties
r_norm = (r - self.mean) / self.std
# Get sampling parameters
noise_var = (1-lamb)**2
scaled_signal = r_norm * lamb
noise_log_var = torch.log(noise_var)
# Sample new output values from p(z|r)
z_norm = self._sample_z(scaled_signal, noise_log_var)
self.buffer_capacity = self._calc_capacity(scaled_signal, noise_log_var)
# Denormalize z to match magnitude of r
z = z_norm * self.std + self.mean
# Clamp output, if input was post-relu
if self.relu:
z = torch.clamp(z, 0.0)
return z
class ZBottleneck(AttributionBottleneck):
"""
The Attribution Bottleneck.
Is inserted in a existing model to suppress information, parametrized by a suppression mask alpha.
"""
def __init__(self, patch_size, max_CS_ratio):
"""
:param mean: The empirical mean of the activations of the layer
:param std: The empirical standard deviation of the activations of the layer
:param sigma: The standard deviation of the gaussian kernel to smooth the mask, or None for no smoothing
:param device: GPU/CPU
:param relu: True if output should be clamped at 0, to imitate a post-ReLU distribution
"""
super().__init__()
phi_size = int(patch_size * patch_size * max_CS_ratio)
self.con_Z = nn.Conv2d(phi_size, phi_size, kernel_size=3, stride=1, padding=0, bias=False).cuda()
self.sigmoid = nn.Sigmoid()
self.lamb = torch.tensor([1.0,1.0])
self.buffer_capacity = None # Filled on forward pass, used for loss
sigma = 0
if sigma is not None and sigma > 0:
# Construct static conv layer with gaussian kernel
kernel_size = int(round(2 * sigma)) * 2 + 1 # Cover 2.5 stds in both directions
channels = self.mean.shape[0]
self.smooth = SpatialGaussianKernel(kernel_size, sigma, channels, device=self.device)
else:
self.smooth = None
def forward(self, r):
""" Remove information from r by performing a sampling step, parametrized by the mask alpha """
# Smoothen and expand a on batch dimension
self.alpha = self.con_Z(r)
self.lamb = self.sigmoid(self.alpha)
self.lamb = self.lamb.expand(r.shape[0], r.shape[1], -1, -1)
self.lamb = self.smooth(self.lamb) if self.smooth is not None else self.lamb
# We normalize r to simplify the computation of the KL-divergence
#
# The equation in the paper is:
# Z = λ * R + (1 - λ) * ε)
# where ε ~ N(μ_r, σ_r**2)
# and given R the distribution of Z ~ N(λ * R, ((1 - λ) σ_r)**2)
#
# In the code μ_r = self.mean and σ_r = self.std.
#
# To simplify the computation of the KL-divergence we normalize:
# R_norm = (R - μ_r) / σ_r
# ε ~ N(0, 1)
# Z_norm ~ N(λ * R_norm, (1 - λ))**2)
# Z = σ_r * Z_norm + μ_r
#
# We compute KL[ N(λ * R_norm, (1 - λ))**2) || N(0, 1) ].
#
# The KL-divergence is invariant to scaling, see:
# https://en.wikipedia.org/wiki/Kullback%E2%80%93Leibler_divergence#Properties
std, mean = torch.std_mean(r,dim=[1,2,3],keepdim=True)
r_norm = (r - mean) / std
# Get sampling parameters
noise_var = (1-self.lamb)**2 + 1e-9
scaled_signal = r_norm * self.lamb
noise_log_var = torch.log(noise_var)
# Sample new output values from p(z|r)
z_norm = self._sample_z(scaled_signal, noise_log_var)
self.buffer_capacity = self._calc_capacity(scaled_signal, noise_log_var)
# Denormalize z to match magnitude of r
z = z_norm * std + mean
return z
class Discriminator(nn.Module):
def __init__(self, patch_size, max_CS_ratio):
super(Discriminator, self).__init__()
phi_size = int(patch_size * patch_size * max_CS_ratio)
# # Discriminator
self.con_D1 = nn.Conv2d(phi_size, 1, kernel_size=3, stride=1, padding=0, bias=False).cuda()
#self.relu = nn.ReLU()
#self.lin_D2 = nn.Linear(phi_size, phi_size//2)
#self.lin_D2 = nn.Linear(phi_size, 1)
# self.lin_D3 = nn.Linear(phi_size//2, 1)
self.sigmoid = nn.Sigmoid()
def forward(self, y):
out = self.con_D1(y)
#out = self.relu(out)
#out = self.lin_D2(out.view(out.shape[0],out.shape[1]))
# out = self.relu(out)
# out = self.lin_D3(out)
out = self.sigmoid(out.view(out.shape[0],out.shape[1]))
return out
class Encoder(nn.Module):
def __init__(self, patch_size, max_CS_ratio):
super(Encoder, self).__init__()
phi_size = int(patch_size * patch_size * max_CS_ratio)
# Generator
self.con_E1 = nn.Conv2d(1, phi_size, kernel_size=patch_size, stride=patch_size, padding=0, bias=False).cuda()
def forward(self, x, C):
out = self.con_E1(x)
out[:, C:, :, :] = torch.zeros_like(out[:, C:, :, :]).cuda()
return out
class CS_reconstruction(nn.Module):
def __init__(self, num_features, patch_size, phase, G, Z, max_CS_ratio, act_type='relu', norm_type=None):
super(CS_reconstruction, self).__init__()
self.patch_size = patch_size
self.F = num_features
kernel_size1 = 3
act_type = 'relu'
self.l = 1
self.n = 5
self.phi_size = int(self.patch_size * self.patch_size * max_CS_ratio)
# Sampling
self.phi = G
#self.phi = nn.Conv2d(1, self.phi_size, kernel_size=patch_size, stride=patch_size, padding=0, bias=False).cuda()
# Information bottleneck
self.IFBN = Z
# Initial Reconstruction
self.phi_inv = nn.Conv2d(self.phi_size, self.patch_size*self.patch_size*self.l, kernel_size=1, stride=1, padding=0, bias=False).cuda()
# Deep Reconstruction
self.D_e = ConvrelBlock(self.l, self.F, kernel_size1, stride=1, bias=True, pad_type='zero', act_type=act_type)
self.D_m1 = nn.ModuleList()
self.D_m2 = nn.ModuleList()
for i in range(self.n):
self.D_m1.append(ConvrelBlock(self.F, self.F, kernel_size1, stride=1, bias=True, pad_type='zero', act_type=act_type))
self.D_m2.append(ConvrelBlock(self.F, self.F, kernel_size1, stride=1, bias=True, pad_type='zero', act_type=act_type))
self.D_a = ConvrelBlock(self.F, self.l, kernel_size1, stride=1, bias=True, pad_type='zero', act_type=act_type)
def forward(self, HR, CS_ratio, IFBN_s):
self.b = HR.shape[0]
self.c = HR.shape[1]
self.h = HR.shape[2]
self.w = HR.shape[3]
C = int(self.patch_size * self.patch_size * CS_ratio)
# input normalization
std_i, mean_i = torch.std_mean(HR, dim=[1,2,3], keepdim=True)
#HR = (HR - mean_i) / std_i
# Sampling
y = self.phi(HR, C)
if IFBN_s == 1:
y = self.IFBN(y)
else :
y = y
# y[:,C:,:,:] = torch.zeros_like(y[:,C:,:,:]).cuda()
# Initial Reconstruction
x_init = self.phi_inv(y)
x_init = self.Reshape_Concat(x_init, HR.shape)
# inverse normalization
#x_init = x_init * std_i + mean_i
# Deep Reconstruction
x_f = self.D_e(x_init)
for i in range(self.n):
x_f1 = self.D_m1[i](x_f) + x_f
x_f = self.D_m2[i](x_f1)
x_f = self.D_a(x_f) + x_init
return x_f, y[:,:C,:,:], x_init
def Reshape_Concat(self,x_, shape):
z = torch.zeros(shape).cuda()
for i in range(shape[3]//self.patch_size):
for j in range(shape[3]//self.patch_size):
z[:,:,i*self.patch_size:(i+1)*self.patch_size,j*self.patch_size:(j+1)*self.patch_size] = torch.reshape(x_[:,:,i,j],[self.b,self.c,self.patch_size,self.patch_size])
return z
def _reset_state(self):
self.block.reset_state()