-
Notifications
You must be signed in to change notification settings - Fork 4
/
main_linear.py
280 lines (218 loc) · 9.43 KB
/
main_linear.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
import json
import os
import time
import torch
import torch.backends.cudnn as cudnn
import torch.distributed as dist
import torch.nn.functional as F
from torch.nn.parallel import DistributedDataParallel
from torch.utils.data.distributed import DistributedSampler
from torch.utils.tensorboard import SummaryWriter
from contrast import resnet
from contrast.data import get_loader
from contrast.logger import setup_logger
from contrast.lr_scheduler import get_scheduler
from contrast.option import parse_option
from contrast.util import AverageMeter, accuracy, reduce_tensor
try:
# noinspection PyUnresolvedReferences
from apex import amp
except ImportError:
amp = None
def build_model(args, num_class):
# create model
model = resnet.__dict__[args.arch](low_dim=num_class).cuda()
# set requires_grad of parameters except last fc layer to False
for name, p in model.named_parameters():
if 'fc' not in name:
p.requires_grad = False
optimizer = torch.optim.SGD(model.fc.parameters(),
lr=args.learning_rate,
momentum=args.momentum,
weight_decay=args.weight_decay)
if args.amp_opt_level != "O0":
model, optimizer = amp.initialize(model, optimizer, opt_level=args.amp_opt_level)
model = DistributedDataParallel(model, device_ids=[args.local_rank], broadcast_buffers=False)
return model, optimizer
def load_pretrained(model, pretrained_model):
ckpt = torch.load(pretrained_model, map_location='cpu')
model_dict = model.state_dict()
state_dict = {k.replace("module.encoder.", "module."): v
for k, v in ckpt['model'].items()
if k.startswith('module.encoder.')}
state_dict = {k: v for k, v in state_dict.items()
if k in model_dict and v.size() == model_dict[k].size()}
model_dict.update(state_dict)
model.load_state_dict(model_dict)
logger.info(f"==> loaded checkpoint '{pretrained_model}' (epoch {ckpt['epoch']})")
def load_checkpoint(args, model, optimizer, scheduler):
logger.info("=> loading checkpoint '{args.resume'")
checkpoint = torch.load(args.resume, map_location='cpu')
global best_acc1
best_acc1 = checkpoint['best_acc1']
args.start_epoch = checkpoint['epoch'] + 1
model.load_state_dict(checkpoint['model'])
optimizer.load_state_dict(checkpoint['optimizer'])
scheduler.load_state_dict(checkpoint['scheduler'])
if args.amp_opt_level != "O0" and checkpoint['opt'].amp_opt_level != "O0":
amp.load_state_dict(checkpoint['amp'])
logger.info(f"=> loaded checkpoint '{args.resume}' (epoch {checkpoint['epoch']})")
def save_checkpoint(args, epoch, model, test_acc, optimizer, scheduler):
state = {
'args': args,
'epoch': epoch,
'model': model.state_dict(),
'best_acc1': test_acc,
'optimizer': optimizer.state_dict(),
'scheduler': scheduler.state_dict(),
}
if args.amp_opt_level != "O0":
state['amp'] = amp.state_dict()
torch.save(state, os.path.join(args.output_dir, f'ckpt_epoch_{epoch}.pth'))
torch.save(state, os.path.join(args.output_dir, f'current.pth'))
def main(args):
global best_acc1
args.batch_size = args.total_batch_size // dist.get_world_size()
train_loader = get_loader(args.aug, args, prefix='train')
val_loader = get_loader('val', args, prefix='val')
logger.info(f"length of training dataset: {len(train_loader.dataset)}")
model, optimizer = build_model(args, num_class=len(train_loader.dataset.classes))
scheduler = get_scheduler(optimizer, len(train_loader), args)
# load pre-trained model
load_pretrained(model, args.pretrained_model)
# optionally resume from a checkpoint
if args.auto_resume:
resume_file = os.path.join(args.output_dir, "current.pth")
if os.path.exists(resume_file):
logger.info(f'auto resume from {resume_file}')
args.resume = resume_file
else:
logger.info(f'no checkpoint found in {args.output_dir}, ignoring auto resume')
if args.resume:
assert os.path.isfile(args.resume), f"no checkpoint found at '{args.resume}'"
load_checkpoint(args, model, optimizer, scheduler)
if args.eval:
logger.info("==> testing...")
validate(val_loader, model, args)
return
# tensorboard
if dist.get_rank() == 0:
summary_writer = SummaryWriter(log_dir=args.output_dir)
else:
summary_writer = None
# routine
for epoch in range(args.start_epoch, args.epochs + 1):
if isinstance(train_loader.sampler, DistributedSampler):
train_loader.sampler.set_epoch(epoch)
tic = time.time()
train(epoch, train_loader, model, optimizer, scheduler, args)
logger.info(f'epoch {epoch}, total time {time.time() - tic:.2f}')
logger.info("==> testing...")
test_acc, test_acc5, test_loss = validate(val_loader, model, args)
if summary_writer is not None:
summary_writer.add_scalar('test_acc', test_acc, epoch)
summary_writer.add_scalar('test_acc5', test_acc5, epoch)
summary_writer.add_scalar('test_loss', test_loss, epoch)
# save model
if dist.get_rank() == 0 and epoch % args.save_freq == 0:
logger.info('==> Saving...')
save_checkpoint(args, epoch, model, test_acc, optimizer, scheduler)
def train(epoch, train_loader, model, optimizer, scheduler, args):
"""
one epoch training
"""
model.train()
batch_time = AverageMeter()
data_time = AverageMeter()
loss_meter = AverageMeter()
acc1_meter = AverageMeter()
acc5_meter = AverageMeter()
end = time.time()
for idx, (x, _, y) in enumerate(train_loader):
x = x.cuda(non_blocking=True)
y = y.cuda(non_blocking=True)
# measure data loading time
data_time.update(time.time() - end)
# forward
output = model(x)
loss = F.cross_entropy(output, y)
# backward
optimizer.zero_grad()
if args.amp_opt_level != "O0":
with amp.scale_loss(loss, optimizer) as scaled_loss:
scaled_loss.backward()
else:
loss.backward()
optimizer.step()
scheduler.step()
# update meters
acc1, acc5 = accuracy(output, y, topk=(1, 5))
loss_meter.update(loss.item(), x.size(0))
acc1_meter.update(acc1[0], x.size(0))
acc5_meter.update(acc5[0], x.size(0))
batch_time.update(time.time() - end)
end = time.time()
# print info
if idx % args.print_freq == 0:
logger.info(
f'Epoch: [{epoch}][{idx}/{len(train_loader)}]\t'
f'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
f'Data {data_time.val:.3f} ({data_time.avg:.3f})\t'
f'Lr {optimizer.param_groups[0]["lr"]:.3f} \t'
f'Loss {loss_meter.val:.4f} ({loss_meter.avg:.4f})\t'
f'Acc@1 {acc1_meter.val:.3f} ({acc1_meter.avg:.3f})\t'
f'Acc@5 {acc5_meter.val:.3f} ({acc5_meter.avg:.3f})')
return acc1_meter.avg, acc5_meter.avg, loss_meter.avg
def validate(val_loader, model, args):
batch_time = AverageMeter()
loss_meter = AverageMeter()
acc1_meter = AverageMeter()
acc5_meter = AverageMeter()
# switch to evaluate mode
model.eval()
with torch.no_grad():
end = time.time()
for idx, (x, _, y) in enumerate(val_loader):
x = x.cuda(non_blocking=True)
y = y.cuda(non_blocking=True)
# compute output
output = model(x)
loss = F.cross_entropy(output, y)
# measure accuracy and record loss
acc1, acc5 = accuracy(output, y, topk=(1, 5))
acc1 = reduce_tensor(acc1)
acc5 = reduce_tensor(acc5)
loss = reduce_tensor(loss)
loss_meter.update(loss.item(), x.size(0))
acc1_meter.update(acc1[0], x.size(0))
acc5_meter.update(acc5[0], x.size(0))
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if idx % args.print_freq == 0:
logger.info(
f'Test: [{idx}/{len(val_loader)}]\t'
f'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
f'Loss {loss_meter.val:.4f} ({loss_meter.avg:.4f})\t'
f'Acc@1 {acc1_meter.val:.3f} ({acc1_meter.avg:.3f})\t'
f'Acc@5 {acc5_meter.val:.3f} ({acc5_meter.avg:.3f})')
logger.info(f' * Acc@1 {acc1_meter.avg:.3f} Acc@5 {acc5_meter.avg:.3f}')
return acc1_meter.avg, acc5_meter.avg, loss_meter.avg
if __name__ == '__main__':
opt = parse_option(stage='linear')
if opt.amp_opt_level != "O0":
assert amp is not None, "amp not installed!"
torch.cuda.set_device(opt.local_rank)
torch.distributed.init_process_group(backend='nccl', init_method='env://')
cudnn.benchmark = True
best_acc1 = 0
os.makedirs(opt.output_dir, exist_ok=True)
logger = setup_logger(output=opt.output_dir, distributed_rank=dist.get_rank(), name="contrast")
if dist.get_rank() == 0:
path = os.path.join(opt.output_dir, "config.json")
with open(path, "w") as f:
json.dump(vars(opt), f, indent=2)
logger.info("Full config saved to {}".format(path))
# print args
logger.info(vars(opt))
main(opt)