This repo is the output of the IITP AI Grand Challenge. It was released under Apache License 2.0, and anyone can use it freely within the scope of the license.
- Download this repo and build. (Build tutorial is here.)
- Make "./checkpoints" directory and download model below ./checkpoints.
- run
python ./demo.py
. - You can see result like below.
https://drive.google.com/file/d/1pbc1R4oIaKNTQ-R_kqx9QnBmziN9up6B/view?usp=sharing
(Download below ./checkpoints/)
-
데이터셋 수집 및 라벨링
AI HUB 실신 이상행동/동작 동영상 데이터셋 약 600GB 수집.
4차 2단계 대회의 샘플 실신 이미지 데이터셋 약 24,400개 수집.
구글링으로 찾은 실신 데이터셋 약 600개 수집.
기타 대학원, 연구소 등의 데이터셋 60,000개 수집(UMA fall dataset, SLP fall dataset, Human posture dataset 등등).
yolo/coco type으로 모든 데이터셋 필터링 및 라벨링. -
Data Augmentation
Mosaic, Mixup, Flip 등의 Augumentation 기법을 사용하여 학습데이터 증강 -
Hyper-Parameter와 Resolution을 변경 후 학습시도(아래 config 코드는 ./config/nas-fpn 아래의 .py 파일내에서 사용가능)
_base_ = [
'../_base_/models/my_retinanet_r50_fpn.py',
'../_base_/datasets/my_coco_detection.py', '../_base_/default_runtime.py'
]
cudnn_benchmark = True
# model settings
norm_cfg = dict(type='BN', requires_grad=True)
model = dict(
type='RetinaNet',
pretrained='torchvision://resnet50',
backbone=dict(
type='ResNet',
depth=50,
num_stages=4,
out_indices=(0, 1, 2, 3),
frozen_stages=1,
norm_cfg=norm_cfg,
norm_eval=False,
style='pytorch'),
neck=dict(type='NASFPN', stack_times=7, norm_cfg=norm_cfg),
bbox_head=dict(type='RetinaSepBNHead', num_ins=5, norm_cfg=norm_cfg))
# training and testing settings
train_cfg = dict(assigner=dict(neg_iou_thr=0.5))
# dataset settings
img_norm_cfg = dict(
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='LoadAnnotations', with_bbox=True),
dict(
type='Resize',
img_scale=(640, 640),
ratio_range=(0.8, 1.2),
keep_ratio=True),
dict(type='RandomCrop', crop_size=(640, 640)),
dict(type='RandomFlip', flip_ratio=0.5),
dict(type='Normalize', **img_norm_cfg),
dict(type='Pad', size=(640, 640)),
dict(type='DefaultFormatBundle'),
dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']),
]
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(
type='MultiScaleFlipAug',
img_scale=(640, 640),
flip=False,
transforms=[
dict(type='Resize', keep_ratio=True),
dict(type='RandomFlip'),
dict(type='Normalize', **img_norm_cfg),
dict(type='Pad', size_divisor=128),
dict(type='ImageToTensor', keys=['img']),
dict(type='Collect', keys=['img']),
])
]
data = dict(
samples_per_gpu=8,
workers_per_gpu=4,
train=dict(pipeline=train_pipeline),
val=dict(pipeline=test_pipeline),
test=dict(pipeline=test_pipeline))
# optimizer
optimizer = dict(
type='SGD',
# lr=0.08,#원본
lr=0.00325, #파인 튜닝용
momentum=0.9,
weight_decay=0.0001,
paramwise_cfg=dict(norm_decay_mult=0, bypass_duplicate=True))
optimizer_config = dict(grad_clip=None)
# learning policy
lr_config = dict(
policy='step',
warmup='linear',
warmup_iters=1000, #원본
warmup_ratio=0.1, #원본
# step=[30, 40]) #원본
step=[7]) #원본
# runtime settings
#total_epochs = 50 #원본
total_epochs = 8