Blitz++ User’s Guide

A C++ class library for scientific computing
for version 0.9, 24 March 2006

Todd Veldhuizen

The Blitz++ library is licensed under both the GPL and the more permissive “Blitz++ Artistic
License”. Take your pick. They are detailed in GPL and LICENSE, respectively. The artistic
license is more appropriate for commercial use, since it lacks the “viral” properties of the GPL.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WAR-
RANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
PARTICULAR PURPOSE. See the GNU General Public License for more details.

Copyright (©) 1996-2003 Free Software Foundation, Inc.

Table of Contents

1

Introduction i, 1
1.1 About this document 1
1.2 Platform/compiler NOESt 1

1.2.1 KAI C++ for Linux/Unix 1
1.2.2 Intel CH+ for X80 . . oo oo 1
1.2.3 Microsoft VS.NET 2003 for Windowsoieiiineeiiiinna.. 1
1.2.4 gee for Linux/Unix/Darwin. 2
1.2.5 PathScale for x86_64 2
1.2.6 PGI for Linux X806ot 2
1.2.7 Absoft for Mac OS X o 2
1.2.8 Metrowerks for Mac. 2
1.2.9 Compaq Alpha 2
1.2.10 IBM RS6000/IBM PowerPC 2
1.2.11 SGI MIPSPIO. . .ot e e e e e e 2
1.2.12 Sun SPARC . ..o 3
1.2.13 Cray T3E/Cray T90/Cray C90/Cray J9Ocoiiiiiiiiiii.. 3
1214 Fujitsu. ..o 3
1.3 How to download Blitz++ 3
1.4 Installation and porting.......... ... i 3
1.4.1 Installation. 3
1.4.2 The Blitz++ directory tree 4
1.4.3 Porting Blitz++ o 5
1.5 Compiling with Blitz++ 5
1.5.1 Header files. ... 5
1.5.2 Linking to the Blitz++ library 5
1.5.3 An example Makefile 5
1.5.4 Explicit instantiation........... .. 6
1.6 Licensing termasttt et et e e e e e 6
1.7 Mailing lists and SUPPOTtttt e 6
1.7.1 How to get help.o 6
1.7.2 How to subscribe to a mailing list 7
1.7.3 blitz-devel 7
1.7.4 DBItz-SUPDOTt . . oot 7

N = 2= 9

2.1 Getting started 9
2.1.1 Template parameters.ot 9
2.1.2 AT AY B PES « vttt e e e 9
2.1.3 A simple example 10
2,14 Storage Orderst 10

2.2 Public types . ..ot 11

2.3 CONSTIUCEOTS .« . . o ettt et et e e e e e e e e e e e e e e 11
2.3.1 Default constructor 11
2.3.2 Creating an array from an eXpression................eeuuneeiineeennnea.. 11
2.3.3 Constructors which take extent parameters 11
2.3.4 Constructors with Range arguments................. 12
2.3.5 Referencing another array i 12

2.3.6 Constructing an array from an expression.............. ... 13

ii

Blitz++

2.3.7 Creating an array from pre-existing data................................... 13
2.3.8 Interlacing arraysou it 14
2.3.9 A note about reference counting 14
2.4 Indexing, subarrays, and slCING. i 14
241 INdexingt 15
2,42 SUDATTAYS . o o oottt e e e e e e e 15
2.4.3 RectDomain and StridedDomain 16
2,44 SHCINEG . oot 17
2.4.5 More about Range objects. 17
2.4.6 A note about assignment 18
2.4.7 An example 19
2.5 Debug mode 20
2.6 Member functions 20
2.6.1 A note about dimension parameters.................. ..., 20
Why stop at eleven? 21

2.6.2 Member function descriptions. 21
2.7 Global functions. 25
2.8 Inputting and Outputting ATTaysttt 27
2.8.1 Output formatting 27
2.8.2 Inputbting ArTaYSo ottt e e e e 27
2.9 Array StOrage OTAETSttt ettt e e e e e 29
2.9.1 Fortran and C-style arrays.t 29
Row major vs. column major.t 29
Bases. .o 29

2.9.2 Creating custom storage ordersc.oiiiiiniiiini .. 30

In higher dimensions. 30
Reversed dimensions. ... 31
Setting the base vector. 31
Working simultaneously with different storage orders........................ ... 32
Debug dumps of storage order information, 32

A note about storage orders and initialization, 32

2.9.3 Storage orders example.o 33
Array EXpressions.coiiiiiininneennnnnnn. 35
3.1 Expression evaluation order 35
3.2 Expression operands. 35
3.3 Array operands 36
Using subarrays in an eXpresSiOnttt 36
Mixing arrays with different storage formats.......... 36
3.4 EXpPression operators 36
3.5 ASSIgNMENt OPETatorSottt ettt e 37
3.6 Index placeholders. 37
3.7 Type Promotionot 39
Type promotion for user-defined types 39
Manual CastS.ot 40
3.8 Single-argument math functions 40
ANSI C++ math functions. 40
IEEE/System V math functions........... 41
3.9 Two-argument math functions........... 43
ANSI C++ math functions. 43
IEEE/System V math functions........... 43
3.10 Declaring your own math functions on arrays.................... 44
3.11 Tensor notationot 45

3.12 Array reductions 47

3.13 Complete reductionsttt 47
3.14 Partial Reductions e 48
3.15 where statements. 50
Stencils.o i i e e 51
4.1 Motivation: a nicer notation for stencils.............., 51
4.2 Declaring stencil objects 51
4.3 Automatic determination of stencil extent 52
4.4 Stencil Operators 52
4.4.1 Central differences 53
4.4.2 Forward differences o 54
4.4.3 Backward differences....... 55
4.4.4 Laplacian (V?) 0peratorsoouiuiiiuai i 56
4.4.5 Gradient (V) OPerators.ouur ettt 56
4.4.6 Jacobian Operatorsttt 56
4.4.7 Grad-squared Operatorsttt 57
4.4.8 Curl (VX) Operatorsoouu e 57
4.4.9 Divergence (V-) OPEratorsoouiiuiiiuiiiiiaiiai .. 57
4.4.10 Mixed partial derivatives 58
4.5 Declaring your own stencil operators................. i 58
4.6 Applying a stencil object. 59
Multicomponent, complex, and user type Arrays........ 61
5.1 Multicomponent and complex arrayst 61
5.1.1 Extracting components.o it 61
5.1.2 Special support for complex arraysouueireiee e, 62
5.1.3 Zipping together expressions.o 63
5.2 Creating arrays of a USer tyPe . ..ottt e e 63
Indirection.t iiiiniee it ennnannns 65
6.1 Indirection using lists of array positions............. ... i 66
6.2 Cartesian-product indirection 67
6.3 Indirection with lists of Stripso 67
TinyVectorovitiiiiiiii it iiiiieeneeneennnns 69
7.1 Template parameters and tyPeS.ottt 69
7.2 COMSEIUCTOTS . . oottt et et e e e e e e e e e e e e e e e e e 69
7.3 Member functions 69
7.4 ASSIGNMENt OPETALOTS . . . oottt ettt e et e et e e e e e 70
7.5 EXPIessionsot 70
7.6 Global functions.ot 70
7.7 Arrays of TinyVector 70
7.8 INPUbt/OUbPULvv et 70
Parallel Computing with Blitz++ 71

8.1 Blitz++ and thread safety 71

iv Blitz++

9 Random Number Generators 73
9.1 OVEIVIEW . . ottt ettt e e e e e e e e e e e e 73
9.2 Note: Parallel random number generatorsc.oo .. 74
9.3 Seeding a random number generator 74
9.4 Detailed description of RNGS. 74
9.5 Template parameters 75
9.6 Member functions 75
9.7 Detailed listing of RNGS 75

9.7.1 ‘random/uniform.h’ 75
9.7.2 ‘random/mormal.h’ 75
9.7.3 ‘random/exponential.h’...... ... 76
9.7.4 ‘random/beta.h’. 76
9.7.5 ‘random/chisquare.h’....... 76
9.7.6 ‘random/gamma.h’. 76
9.7.7 ‘random/F 76
9.7.8 ‘random/discrete-uniform.h’ 76

10 Numeric properties.couuiiinennneneneenns 77
10.1 Introduction 7
10.2 Function descriptionst 77

11 Frequently Asked Questions 81
11.1 Questions about installation........ 81
11.2 Questions about Blitz++ functionality, 82

Blitz Keyword Index ittt 85

Concept Index ...ttt iiiiiieiinnnnnnn. 89

Short Contents

T Introduction « v v v v v oo v vt e oo ooeeeeesssossssssoseecssssss 1
D N 9
3 Array EXPressions & v v v e e e oo eeeeeeeesssessssnoonooosssssssss 35
4 Stencils. o oo ittt ittt i i e i i e i i e s 51
5 Multicomponent, complex, and USer type AITAYS . o o o e e e o oo oo o o oo oveees 61
6 INdirection « oo v v oo oo v v v e oo ooooosssoeosesssssssssssssssssss 65
I I 1 0 T 1) 69
8 Parallel Computing with Blitz++ttt 71
9 Random Number Generators « v o o v oo v vt e v v e eoeveeseseesoneesssns 73
10 NUMETIC PrOPertieS o v v v o v v v v v v oo o oo oo oo ooooooossssssssooneess 7
11 Frequently Asked QUEStIONS « v v v v v v v v v vt oo oo vvveuuoossssssssssss 81
Blitz Keyword IndeX « o v v v oot i ittt i ittt iiieeeeeeeeensnnsaessss 85

Concept Index v v v v v e ittt ittt i ittt e eennnnenooeooossssss 89

11

Blitz++

Chapter 1: Introduction 1

1 Introduction

1.1 About this document

To use the Blitz++ library, you will need a compiler with near-ISO/ANSI C++ syntax support
(see the following section for possible compilers). Information on what platforms are supported
is available from http://oonumerics.org/blitz/platforms/. To download Blitz++, please go
to the download page at http://oonumerics.org/blitz/download/.

If you need to do something that Blitz++ doesn’t support, see a possible improvement, or
notice an error in the documentation, please send a note to one of the Blitz++ mailing lists
(described later).

1.2 Platform/compiler notes
For up-to-date information on supported platforms, please consult the platforms area on the
Blitz++ home page:

http://oonumerics.org/blitz/platforms/

The information in this document may be out of date.

1.2.1 KAI C++ for Linux/Unix

Blitz++ was developed and tested using KAI C++ under AIX. It should (in theory) port to other
KAI C++ platforms (Cray, SGI, HP, Sun, Linux, Compaq) without difficulty. Since KAI C++
uses an EDG front end, other EDG front-ended compilers (e.g. Comeau) should be able to
compile Blitz++.

Recommended compile flags are:

+K3 -02 --restrict --abstract_pointer --abstract_float -tused

Note that you cannot compile with -tall (this will generate lots of errors).

Under Linux, you may need the flag -D__signed__=. You should omit -tused since this
template instantiation model is not supported by gcc, which is used as the back-end compiler.

Please note that since the purchase of KAI by Intel several years ago, the use of this compiler
has been gradually phased out, with most of the KAI compiler technology being transferred into
the Intel C/C++ compiler. Thus, Blitz++ is no longer being routinely tested under KCC.

1.2.2 Intel C++ for x86

Blitz++ compiles under fairly recent versions of the Intel C++ compiler (version 7.1, 8.x or 9.0)
for Linux platforms, as well as the comparable plug-in compiler for Windows that can be used
within the Microsoft Visual Studio IDE. We recommend use of the -ansi flag for compiler
adherence to the ANSI C++ standard. The -strict_ansi flag is not used, as this can lead to
many compiler error messages originating from code in the GNU C++ standard library header
files.

More information:
http://www.intel.com/software/products/compilers/clin

http://www.intel.com/software/products/compilers/cwin

1.2.3 Microsoft VS.NET 2003 for Windows

Blitz++ has been ported to the C++ compiler within the Microsoft VS.NET 2003 compiler and
IDE package. We provide a zip archive containing an appropriate configuration header file and
project files for building the Blitz library and all of the testsuite codes. Previous versions of the
Microsoft C++ compiler within Visual Studio do not have the required C++ features needed by

http://oonumerics.org/blitz/platforms/
http://oonumerics.org/blitz/download/
http://oonumerics.org/blitz/platforms/
http://www.intel.com/software/products/compilers/clin
http://www.intel.com/software/products/compilers/cwin

2 Blitz++

Blitz++ and are not supported. Blitz can be compiled under Visual Studio by using the Intel
plug-in C++ compiler for Windows.

1.2.4 gcc for Linux/Unix/Darwin

GCC (g++) is a free GNU C++ compiler. It compiles Blitz++ reliably on almost any platform
running Linux or another Unix variant (including the Darwin OS). In fact, most Blitz++ devel-
opment work is done with g++.

Work has been done in the latest Blitz++ release to ensure compatibility with the gee-4.x
release, which contains some key changes in enforcement of the C++ ANSI standard related to
the use of anonymous enums.

gce may be downloaded from http://www.gnu.org/software/gcc/gec.html.

If you are using gce under Solaris, SunOS, or OSF/1, please see the ‘README.binutils’ file
included in the distribution.

1.2.5 PathScale for x86_64

We have just added support for the PathScale pathCC compiler in blitz-0.9. This compiler is
being provided on many of the newer Opteron x86_64 systems. We welcome feedback on support
for this compiler.

1.2.6 PGI for Linux x86

The Portland Group PGI compiler is supported on Linux x86 platforms, and more recent versions
of pgCC such as 5.x are capable of compiling blitz. However, performance is not particularly
good and PGI support is not being actively tested or maintained.

1.2.7 Absoft for Mac OS X

Absoft markets a variant of the IBM xIC compiler called x1c++ that has been ported to the
Darwin operating system (Mac OS X). We are providing support for compiling blitz using this
compiler. Although we have noted and reported some bugs with this compiler, it is capable of
producing fairly high quality optimized code for the Darwin platform.

1.2.8 Metrowerks for Mac

Metrowerks is sort-of supported; see the platforms web page and the mailing lists for more
information. Support for Metrowerks is no longer being actively maintained.

1.2.9 Compaq Alpha

The Compaq C++ compiler version 6.x is supported, and we recommend use of the -model ansi
flag in order to obtain standard C++ compiler behavior and proper name mangling. We have
inserted a workaround for the lack of standard ostream support for the long double type. At
this point, performance of blitz code under the cxx compiler is somewhat disappointing.

1.2.10 IBM RS6000/IBM PowerPC

The IBM Visual Age C++ compiler is supported as of version 6.x. However, you may run into a
variety of annoying compiler bugs that prevent certain portions of the Blitz++ library code from
compiling. Therefore, it is strongly recommended that you obtain xIC version 7.0.0.3 or later,
in order to get all the necessary patches that IBM has produced in response to our bug reports.
Also note that compile times can be fairly long with full optimization enabled.

1.2.11 SGI MIPSpro

The SGI MIPSpro-7.x version CC compiler is supported, although active testing is no longer
being done.

http://www.gnu.org/software/gcc/gcc.html

Chapter 1: Introduction 3

1.2.12 Sun SPARC

As of version Sun Studio 10.x, the Sun CC compiler should be capable of compiling blitz.
However, no active support is being provided.

1.2.13 Cray T3E/Cray T90/Cray C90/Cray J90

As of Version 0.2-alpha-02 of Blitz++, Version 3.0.0.0 of the Cray C++ compiler is supported
(well, tolerated anyway). It seems to be based on an older version of the EDG front end, so
some kludges are required. It doesn’t support partial ordering of member templates, so slicing
arrays requires the workaround described in Section Section 2.4 [Array slicing], page 14. Portions
of the standard library are missing, such as <limits>, <complex>, and <set>. This means you
won’t be able to use complex numbers (well, not the ISO/ANSI C++ versions anyway), numeric
inquiry functions, or fast traversal orders.

These compilation flags are recommended:
-h instantiate=used

For optimization, you’ll want:
-03 -h aggress

The ability of the Cray C++ compiler to optimize away temporary objects is disappointing.
It’s not able to optimize away expression templates overhead or comma-delimited array initial-
izers. Please note that support for compiling Blitz++ under the Cray C++ compiler is no longer
being actively maintained.

1.2.14 Fujitsu

This platform and compiler are no longer being actively supported.

1.3 How to download Blitz++

The Blitz++ project is now being served via SourceForge. To download the Blitz++ library, go
to the blitz project web page, at http://sourceforge.net/projects/blitz.

More information about supported platforms and C++ compilers is available in this document
or on the official Blitz++ home page, at http://oonumerics.org/blitz.

1.4 Installation and porting

1.4.1 Installation

Blitz++ uses GNU Autoconf, which handles rewriting Makefiles for various platforms and com-
pilers. It has greatly simplified installation and porting. Many thanks to John W. Eaton and
Brendan Kehoe for their help with this.

To install blitz, unpack the ‘blitz-VERSION.tar.gz’ file (it will install into a subdirectory
‘blitz-VERSION’). For example:

[tveldhui@n2001:~] 32: 1ls -1 blitz*.gz

—IW-r--r-- 1 tveldhui users 480953 Jun 23 15:20 blitz-0.5.tar.gz
[tveldhui@n2001:7] 33: gunzip blitz-0.5.tar.gz

[tveldhui@n2001:"] 34: tar xvf blitz-0.5.tar

blitz-0.5/CHANGELOG

blitz-0.5/COPYING

blitz-0.5/INSTALL

blitz-0.5/Makefile.in

blitz-0.5/README

blitz-0.5/THANKS

http://sourceforge.net/projects/blitz
http://oonumerics.org/blitz

4 Blitz++

Then go into the ‘b1itz-VERSION’ directory, and type:
./configure CXX=[compiler]

where [compiler| is one of xlc++, icpc, pathCC, x1C, cxx, aCC, CC, g++, KCC, pgCC or FCC.
(If you do not choose a C++ compiler, the configure script will attempt to find an appropriate
compiler for the current platform.)

By default, the configure script will use a particular set of options with each C++ compiler.
You can disable these default settings and then substitute your own preferred compiler options
with the CXXFLAGS variable, using this syntax:

./configure CXX=g++ --disable-cxx-flags-preset CXXFLAGS="-ftemplate-depth-50"

If you are interested in benchmarking, you may want to use the option --with-blas=...
to specify the path where the blas library is found. Run the configure script with the option
—--help to see all the available options.

Once the configure script is done, you can do any of these things:
make 1ib Check the compiler and create ‘1ibblitz.a’.

make check-testsuite
Make the blitz library plus build and run the testsuite.

make check-examples
Make the blitz library plus build and run the examples.

make check-benchmarks
Make the blitz library plus build and run the benchmarks.

make all Do all of the above. This may take a long time.

make install
Build the blitz library and documentation and install, along with the blitz header
files, in prefix directory.

Building the benchmark programs requires both a Fortran 77 and Fortran 90 compiler.

1.4.2 The Blitz++ directory tree

The main Blitz++ directory contains these subdirectories:

blitz Blitz++ headers and source code files
random Random number generators

src Source code for ‘1libblitz.a’

lib Location of ‘1ibblitz.a’

doc Documentation in HTML and PostScript
testsuite

Testsuite programs
examples Example programs

benchmarks
Benchmark programs

Chapter 1: Introduction 5

1.4.3 Porting Blitz++

If you want to try porting Blitz++ to a new compiler or platform, I suggest the following approach:

e First check the Blitz++ web page to make sure you have the latest snapshot, and that
someone hasn’t already ported blitz to your platform.

e Install autoconf (from e.g. ftp://prep.ai.mit.edu/pub/gnu) if you don’t have it already.

e Run the configure script with CXX=[compiler]. This will exercise your compiler to see what
language features it supports. If it doesn’t have member templates and enum computations,
just give up. You may need to set CXXFLAGS to use compiler options that enable some
language features.

e Once you know what compiler options are needed, you can make these the default settings
for your C++ compiler. Make a backup of ‘m4/ac_cxx_flags_preset.m4’, and then edit
the file to add an appropriate case for your compiler. Invoke autoconf to regenerate the
configure script. Then try configure with your new preset flags.

1.5 Compiling with Blitz++

1.5.1 Header files

Blitz++ follows an X-windows style convention for header files. All headers are referred to
with a prefix of ‘blitz’. For example, to use the Array<T,N> class, one needs to include
<blitz/array.h> instead of just <array.h>. To make this work, the main Blitz++ directory
must be in your include path. For example, if Blitz++ was installed in ‘/software/Blitz++,
you will need to compile with -I /software/Blitz++.

If you have root privileges, you may want to put in a symbolic link from the standard include
path (e.g. ‘/usr/include/blitz/’) to the blitz directory of the distribution. This will allow
you to omit the -I ... option when compiling.

1.5.2 Linking to the Blitz++ library

The Blitz++ library file ‘1ibblitz.a’ contains a few pieces of global data. You should en-
sure that the ‘1lib’ subdirectory of the Blitz++ distribution is in your library path (e.g. -
L/usr/local/blitz-0.5/1ib) and include -1blitz on your command line. If you use math
functions, you should also compile with —1m.

1.5.3 An example Makefile

Here is a typical skeletal Makefile for compiling with Blitz++ under gcc:

Path where Blitz++ is installed
BZDIR = /usr/local/blitz

CXX = gt++

Flags for optimized executables
CXXFLAGS = -02 -I$(BZDIR) -ftemplate-depth-30

Flags for debugging
CXXFLAGS = -ftemplate-depth-30 -g -DBZ_DEBUG -I$(BZDIR)

LDFLAGS =
LIBS = -L$(BZDIR)/1lib -1blitz -Im

TARGETS = myprograml myprogram?2

.SUFFIXES: .o .cpp

.cpp.o:

ftp://prep.ai.mit.edu/pub/gnu

6 Blitz++

$(CXX) $(CXXFLAGS) -c $*.cpp

$ (TARGETS) :
$(CXX) $(LDFLAGS) $0.0 -o $@ $(LIBS)

all:

$ (TARGETS)
myprograml: myprograml.o
myprogram?2: myprogram2.o
clean:

-rm -f *.o0 $(TARGETS)

There are more example makefiles in the examples, testsuite, and benchmarks directories of
the distribution.

1.5.4 Explicit instantiation

It is not possible to do explicit instantiation of Blitz++ arrays. If you aren’t familiar with explicit
instantiation of templates, then this fact will never bother you.

The reason is that explicit instantiation results in all members of a class template being
instantiated. This is not the case for implicit instantiation, in which only required members are
instantiated. The Array<T,N> class contains members which are not valid for all types T: for
example, the binary AND operation &= is nonsensical if T=float. If you attempt to explicitly
instantiate an array class, e.g.

template class Array<float,3>;

then you will be rewarded with many compile errors, due to methods such as &= which are
nonsensical for float.

As some consolation, explicit instantiation would not be much help with Blitz++ arrays. The
typical use for explicit instantiation is to instantiate all the templates you need in one compi-
lation unit, and turn off implicit instantiation in the others — to avoid duplicate instantiations
and reduce compile times. This is only possible if you can predict ahead of time what needs
instantiation. Easy for simple templates, but impossible for classes like Array. Almost every line
of code you write using Array will cause a different set of things to be implicitly instantiated.

1.6 Licensing terms

The Blitz++ library is licensed under both the GPL and the more permissive “Blitz++ Artistic
License”. Take your pick. They are detailed in GPL and LICENSE, respectively. The artistic
license is more appropriate for commercial use, since it lacks the “viral” properties of the GPL.
This program is distributed in the hope that it will be useful, but WITHOUT ANY WAR-
RANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
PARTICULAR PURPOSE. See the GNU General Public License for more details.

Copyright (© 19962003 Free Software Foundation, Inc.
1.7 Mailing lists and support

1.7.1 How to get help

The starting point for all bug reports, feature requests and support questions is the SourceForge
Blitz++ project web page, at http://sourceforge.net/projects/blitz. From this page, you
can click on the Support link to browse previous Blitz++ support requests or make your own
request.

There is also a Lists link that provides access to and lets you search the blitz mailing list
archives. This will often turn up answers to your question if it has been asked before. Finally,

http://sourceforge.net/projects/blitz

Chapter 1: Introduction 7

if you continue to experience a problem with using Blitz++, there is a Bugs link that allows you
to file a bug report and check the status of existing bug reports.

1.7.2 How to subscribe to a mailing list

The main mailing list for Blitz++ support questions and information is
blitz-support@lists.sourceforge.net. Anyone is free to post a question to this
list, although the list is moderated. You can subscribe to the list via the Lists link on the
SourceForge Blitz++ project page, http://sourceforge.net/projects/blitz. Besides the
main support list, there is also a blitz-devel list for comments or questions about future
development of Blitz++ and a blitz-cvs list that sends notification of changes to the Blitz++
cvs repository. These lists generally have far less traffic than the blitz-support list.

1.7.3 blitz-devel

Blitz++ is in open development: anyone can contribute features and code to the library. If you
are interested in helping out with coding or porting, you should start by subscribing to the
blitz-devel mailing list.

This list is also an appropriate place to send suggestions for features; just send email to
blitz-devel@lists.sourceforge.net. We can’t implement it if you don’t suggest it.

Archives of this list are available from the Blitz++ web site.

1.7.4 blitz-support

This mailing list is for posting and answering questions about using the Blitz++ library. Anyone
can post questions; anyone can answer.

mailto:blitz-support@lists.sourceforge.net
http://sourceforge.net/projects/blitz
mailto:blitz-devel@lists.sourceforge.net

Blitz++

Chapter 2: Arrays 9

2 Arrays

2.1 Getting started

Currently, Blitz++ provides a single array class, called Array<T_numtype,N_rank>. This array
class provides a dynamically allocated N-dimensional array, with reference counting, arbitrary
storage ordering, subarrays and slicing, flexible expression handling, and many other useful
features.

2.1.1 Template parameters
The Array class takes two template parameters:

e T_numtype is the numeric type to be stored in the array. T_numtype can be an integral
type (bool, char, unsigned char, short int, short unsigned int, int, unsigned int,
long, unsigned long), floating point type (float, double, long double), complex type
(complex<float>, complex<double>, complex<long double>) or any user-defined type
with appropriate numeric semantics.

e N_rank is the rank (or dimensionality) of the array. This should be a positive integer.

To use the Array class, include the header <blitz/array.h> and use the namespace blitz:

#include <blitz/array.h>
using namespace blitz;

Array<int,1> X; // A one-dimensional array of int
Array<double,2> y; // A two-dimensional array of double

Array<complex<float>, 12> z; // A twelve-dimensional array of complex<float>
When no constructor arguments are provided, the array is empty, and no memory is allocated.
To create an array which contains some data, provide the size of the array as constructor
arguments:
Array<double,2> y(4,4); // A 4x4 array of double
The contents of a newly-created array are garbage. To initialize the array, you can write:
y=0;
and all the elements of the array will be set to zero. If the contents of the array are known,
you can initialize it using a comma-delimited list of values. For example, this code excerpt sets
y equal to a 4x4 identity matrix:
y=1,20,0,0,
0,
0,
0

b

b 3 b

b 3 b

O O =
O - O
= O O

b b 3

2.1.2 Array types

The Array<T,N> class supports a variety of arrays:
e Arrays of scalar types, such as Array<int, 1> and Array<float,3>
e Complex arrays, such as Array<complex<float>,2>

e Arrays of wuser-defined types. If you have a class called Polynomial, then
Array<Polynomial,2> is an array of Polynomial objects.

10 Blitz++

e Nested homogeneous arrays using TinyVector and TinyMatrix, in which each element
is a fixed-size vector or array. For example, Array<TinyVector<float,3>,3> is a three-
dimensional vector field.

e Nested heterogeneous arrays, such as Array<Array<int,1>,1> in which each element is a
variable-length array.

2.1.3 A simple example

Here’s an example program which creates two 3x3 arrays, initializes them, and adds them:
ple prog YS, >
#include <blitz/array.h>

using namespace blitz;

int main()

{
Array<float,2> A(3,3), B(3,3), C(3,3);
A=1, 0, 0,
2, 2, 2,
1, 0, 0;
B=20, 0, 7,
0, 8, 0,
9, 9, 9;
C=A + B;
cout << "A = " << A << endl
<< "B = " << B << endl
<< "C = " << C << endl;
return O;
}

and the output:

A=3x3
[1 0 0
2 2 2
1 0 01
B=3x3
[0 0 7
0 8 0
9 9 9 1]
C=3x3
[1 0 7
2 10 2
10 9 9 1]

2.1.4 Storage orders

Blitz++ is very flexible about the way arrays are stored in memory.
The default storage format is row-major, C-style arrays whose indices start at zero.
Fortran-style arrays can also be created. Fortran arrays are stored in column-major order, and
have indices which start at one. To create a Fortran-style array, use this syntax: Array<int,2>
A(3, 3, fortranArray); The last parameter, fortranArray, tells the Array constructor to use
a fortran-style array format.

fortranArray is a global object which has an automatic conversion to type
GeneralArrayStorage<N>. GeneralArrayStorage<N> encapsulates information about how an

Chapter 2: Arrays 11

array is laid out in memory. By altering the contents of a GeneralArrayStorage<N> object,
you can lay out your arrays any way you want: the dimensions can be ordered arbitrarily and
stored in ascending or descending order, and the starting indices can be arbitrary.

Creating custom array storage formats is described in a later section (Section 2.9 [Array
storage|, page 29).

2.2 Public types
The Array class declares these public types:

e T_numtype is the element type stored in the array. For example, the type
Array<double,2>::T_numtype would be double.

e T_index is a vector index into the array. The class TinyVector is used for this purpose.
e T_array is the array type itself (Array<T_numtype,N_rank>)

e T_iterator is an iterator type. NB: this iterator is not yet fully implemented, and is NOT
STL compatible at the present time.

2.3 Constructors

2.3.1 Default constructor
Array();
Array(GeneralArrayStorage<N_rank> storage)

The default constructor creates a C-style array of zero size. Any attempt to access data in
the array may result in a run-time error, because there isn’t any data to access!

An optional argument specifies a storage order for the array.

Arrays created using the default constructor can subsequently be given data by the resize (),
resizeAndPreserve(), or reference () member functions.

2.3.2 Creating an array from an expression
Array(expression...)
You may create an array from an array expression. For example,

Array<float,2> A(4,3), B(4,3); //
Array<float,2> C(A*2.0+B);

This is an explicit constructor (it will not be used to perform implicit type conversions). The
newly constructed array will have the same storage format as the arrays in the expression. If
arrays with different storage formats appear in the expression, an error will result. (In this case,
you must first construct the array, then assign the expression to it).

2.3.3 Constructors which take extent parameters

Array(int extentl);
Array(int extentl, int extent2);
Array(int extentl, int extent2, int extent3);

Array(int extentl, int extent2, int extent3, ..., int extentll)

These constructors take arguments which specify the size of the array to be constructed. You
should provide as many arguments as there are dimensions in the array.!

An optional last parameter specifies a storage format:

Lgf you provide fewer than N_rank arguments, the missing arguments will be filled in using the last provided
argument. However, for code clarity, it makes sense to provide all N_rank parameters.

12 Blitz++

Array(int extentl, GeneralArrayStorage<N_rank> storage);
Array(int extentl, int extent2, GeneralArrayStorage<N_rank> storage);

For high-rank arrays, it may be convenient to use this constructor:

Array(const TinyVector<int, N_rank>& extent);
Array(const TinyVector<int, N_rank>& extent,
GeneralArrayStorage<N_rank> storage);

The argument extent is a vector containing the extent (length) of the array in each dimen-
sion. The optional second parameter indicates a storage format. Note that you can construct
TinyVector<int,N> objects on the fly with the shape(i1,i2,...) global function. For exam-
ple, Array<int,2> A(shape(3,5)) will create a 3x5 array.

A similar constructor lets you provide both a vector of base index values (Ibounds) and
extents:

Array(const TinyVector<int, N_rank>& lbound,
const TinyVector<int, N_rank>& extent);

Array(const TinyVector<int, N_rank>& lbound,
const TinyVector<int, N_rank>& extent,
GeneralArrayStorage<N_rank> storage);

The argument 1lbound is a vector containing the base index value (or lbound) of the array
in each dimension. The argument extent is a vector containing the extent (length) of the
array in each dimension. The optional third parameter indicates a storage format. As with the
above constructor, you can use the shape(il,i2,...) global function to create the 1bound and
extent parameters.

2.3.4 Constructors with Range arguments

These constructors allow arbitrary bases (starting indices) to be set:
Array(Range rl);
Array(Range rl, Range r2);
Array(Range rl, Range r2, Range r3);
Array(Range rl, Range r2, Range r3, ..., Range ril);
For example, this code:
Array<int,2> A(Range(10,20), Range(20,30));

will create an 11x11 array whose indices are 10..20 and 20..30. An optional last parameter
provides a storage order:

Array(Range rl, GeneralArrayStorage<N_rank> storage);
Array(Range rl, Range r2, GeneralArrayStorage<N_rank> storage);

2.3.5 Referencing another array
This constructor makes a shared view of another array’s data:
Array (Array<T_numtype, N_rank>& array);

After this constructor is used, both Array objects refer to the same data. Any changes made
to one array will appear in the other array. If you want to make a duplicate copy of an array,
use the copy () member function.

Chapter 2: Arrays 13

2.3.6 Constructing an array from an expression

Arrays may be constructed from expressions, which are described in Chapter 3 [Array Expres-
sions|, page 35. The syntax is:
Array(...array expression...);
For example, this code creates an array B which contains the square roots of the elements in
A:
Array<float,2> A(N,N); // ...
Array<float,2> B(sqrt(A));

2.3.7 Creating an array from pre-existing data

When creating an array using a pointer to already existing data, you have three choices
for how Blitz++ will handle the data. These choices are enumerated by the enum type
preexistingMemoryPolicy:
enum preexistingMemoryPolicy {
duplicateData,
deleteDataWhenDone,
neverDeleteData
};

If you choose duplicateData, Blitz++ will create an array object using a copy of the data
you provide. If you choose deleteDataWhenDone, Blitz++ will not create a copy of the data;
and when no array objects refer to the data anymore, it will deallocate the data using delete
[1. Note that to use deleteDataWhenDone, your array data must have been allocated using
the C++ new operator — for example, you cannot allocate array data using Fortran or malloc,
then create a Blitz++ array from it using the deleteDataWhenDone flag. The third option is
neverDeleteData, which means that Blitz++ will not never deallocate the array data. This
means it is your responsibility to determine when the array data is no longer needed, and
deallocate it. You should use this option for memory which has not been allocated using the
C++ new operator.

These constructors create array objects from pre-existing data:

Array(T_numtype* dataFirst, TinyVector<int, N_rank> shape,
preexistingMemoryPolicy deletePolicy);

Array(T_numtype* dataFirst, TinyVector<int, N_rank> shape,
preexistingMemoryPolicy deletePolicy,
GeneralArrayStorage<N_rank> storage);

The first argument is a pointer to the array data. It should point to the element of the array
which is stored first in memory. The second argument indicates the shape of the array. You can
create this argument using the shape () function. For example:

double datal]l = { 1, 2, 3, 4 };
Array<double,2> A(data, shape(2,2), neverDeleteData); // Make a 2x2 array

The shape () function takes N integer arguments and returns a TinyVector<int,N>.

By default, Blitz++ arrays are row-major. If you want to work with data which is stored in
column-major order (e.g. a Fortran array), use the second version of the constructor:

Array<double,2> B(data, shape(2,2), neverDeleteData,
FortranArray<2>());

This is a tad awkward, so Blitz++ provides the global object fortranArray which will convert
to an instance of GeneralArrayStorage<N_rank>:

Array<double,2> B(data, shape(2,2), neverDeleteData, fortranArray);

Another version of this constructor allows you to pass an arbitrary vector of strides:

14 Blitz++

Array(T_numtype* _bz_restrict dataFirst, TinyVector<int, N_rank> shape,
TinyVector<int, N_rank> stride,
preexistingMemoryPolicy deletePolicy,
GeneralArrayStorage<N_rank> storage = GeneralArrayStorage<N_rank>())

2.3.8 Interlacing arrays

For some platforms, it can be advantageous to store a set of arrays interlaced together in
memory. Blitz++ provides support for this through the routines interlaceArrays() and
allocateArrays(). An example:

Array<int,2> A, B;
interlaceArrays(shape(10,10), A, B);

The first parameter of interlaceArrays() is the shape for the arrays (10x10). The sub-
sequent arguments are the set of arrays to be interlaced together. Up to 11 arrays may be
interlaced. All arrays must store the same data type and be of the same rank. In the above
example, storage is allocated so that A(0,0) is followed immediately by B(0,0) in memory,
which is folloed by A(0,1) and B(0,1), and so on.

A related routine is allocateArrays (), which has identical syntax:

Array<int,2> A, B;
allocateArrays(shape(10,10), A, B);

Unlike interlaceArrays(), which always interlaces the arrays, the routine
allocateArrays() may or may not interlace them, depending on whether interlacing is
considered advantageous for your platform. If the tuning flag BZ_INTERLACE_ARRAYS is defined
in <blitz/tuning.h>, then the arrays are interlaced.

Note that the performance effects of interlacing are unpredictable: in some situations it can
be a benefit, and in most others it can slow your code down substantially. You should only
use interlaceArrays() after running some benchmarks to determine whether interlacing is
beneficial for your particular algorithm and architecture.

2.3.9 A note about reference counting

Blitz++ arrays use reference counting. When you create a new array, a memory block is allocated.
The Array object acts like a handle for this memory block. A memory block can be shared among
multiple Array objects — for example, when you take subarrays and slices. The memory block
keeps track of how many Array objects are referring to it. When a memory block is orphaned —
when no Array objects are referring to it — it automatically deletes itself and frees the allocated
memory.

2.4 Indexing, subarrays, and slicing

This section describes how to access the elements of an array. There are three main ways:
e Indexing obtains a single element
e Creating a subarray which refers to a smaller portion of an array

e Slicing to produce a smaller-dimensional view of a portion of an array

Indexing, subarrays and slicing all use the overloaded parenthesis operator ().

As a running example, we’ll consider the three dimensional array pictured below, which
has index ranges (0..7, 0..7, 0..7). Shaded portions of the array show regions which have been
obtained by indexing, creating a subarray, and slicing.

Chapter 2: Arrays 15

Declaration of the array object:

Array<int, 3> A(S8,8,38);

/A(Z, 7, Range::all())

A L — A(Range(5,7), Range(5,7), Range(0,2))
/A(Range: ;all(), 2, Range::all())
secondRank ~—— A(7,0,0)

thirdRank

firstRank

Examples of array indexing, subarrays, and slicing.

2.4.1 Indexing

There are two ways to get a single element from an array. The simplest is to provide a set of
integer operands to operator():

A(7,0,0) = 5;

cout << "A(7,0,0) = " << A(7,0,0) << endl;

This version of indexing is available for arrays of rank one through eleven. If the array object
isn’t const, the return type of operator () is a reference; if the array object is const, the return
type is a value.

You can also get an element by providing an operand of type TinyVector<int,N_rank>
where N_rank is the rank of the array object:

TinyVector<int,3> index;
index = 7, 0, O;
A(index) = 5;
cout << "A(7,0,0) = " << A(index) << endl;
This version of operator () is also available in a const-overloaded version.

It’s possible to use fewer than N_rank indices. However, missing indices are assumed to be
zero, which will cause bounds errors if the valid index range does not include zero (e.g. Fortran
arrays). For this reason, and for code clarity, it’s a bad idea to omit indices.

2.4.2 Subarrays
You can obtain a subarray by providing Range operands to operator (). A Range object repre-
sents a set of regularly spaced index values. For example,
Array<int,3> B = A(Range(5,7), Range(5,7), Range(0,2));
The object B now refers to elements (5..7,5..7,0..2) of the array A.

The returned subarray is of type Array<T_numtype,N_rank>. This means that subarrays
can be used wherever arrays can be: in expressions, as lvalues, etc. Some examples:
// A three-dimensional stencil (used in solving PDEs)
Range I(1,6), J(1,6), K(1,6);
B = (A(I,J,K) + A(I+1,J,K) + A(I-1,J,K) + A(I,J+1,K)
+ A(I,J-1,K) + A(I,J+1,K) + A(I,J,K+1) + A(I,J,K-1)) / 7.0;

// Set a subarray of A to zero
A(Range(5,7), Range(5,7), Range(5,7)) = 0.;
The bases of the subarray are equal to the bases of the original array:

16 Blitz++

Array<int,2> D(Range(1,5), Range(1,5)); // 1..5, 1..5
Array<int,2> E = D(Range(2,3), Range(2,3)); // 1..2, 1..2
An array can be used on both sides of an expression only if the subarrays don’t overlap. If
the arrays overlap, the result may depend on the order in which the array is traversed.

2.4.3 RectDomain and StridedDomain

The classes RectDomain and StridedDomain, defined in blitz/domain.h, offer a dimension-
independent notation for subarrays.

RectDomain and StridedDomain can be thought of as a TinyVector<Range,N>. Both have
a vector of lower- and upper-bounds; StridedDomain has a stride vector. For example, the
subarray:

Array<int,2> B = A(Range(4,7), Range(8,11)); // 4..7, 8..11
could be obtained using RectDomain this way:

TinyVector<int,2> lowerBounds(4, 8);
TinyVector<int,2> upperBounds(7, 11);
RectDomain<2> subdomain(lowerBounds, upperBounds);

Array<int,2> B = A(subdomain);
Here are the prototypes of RectDomain and StridedDomain.

template<int N_rank>
class RectDomain {

public:
RectDomain(const TinyVector<int,N_rank>& lbound,
const TinyVector<int,N_rank>& ubound);

const TinyVector<int,N_rank>& lbound() const;
int lbound(int i) const;

const TinyVector<int,N_rank>& ubound() const;
int ubound(int i) const;

Range operator[] (int rank) const;

void shrink(int amount);

void shrink(int dim, int amount);

void expand(int amount);

void expand(int dim, int amount);

};

template<int N_rank>
class StridedDomain {

public:
StridedDomain(const TinyVector<int,N_rank>& lbound,
const TinyVector<int,N_rank>& ubound,
const TinyVector<int,N_rank>& stride);

const TinyVector<int,N_rank>& lbound() const;
int lbound(int i) const;
const TinyVector<int,N_rank>& ubound() const;
int ubound(int i) const;
const TinyVector<int,N_rank>& stride() const;

Chapter 2: Arrays 17

int stride(int i) const;
Range operator[](int rank) const;
void shrink(int amount);
void shrink(int dim, int amount);
void expand(int amount) ;
void expand(int dim, int amount);

+;
2.4.4 Slicing

A combination of integer and Range operands produces a slice. Each integer operand reduces
the rank of the array by one. For example:
Array<int,2> F = A(Range::all(), 2, Range::all());
Array<int,1> G = A(2, 7, Range::all());
Range and integer operands can be used in any combination, for arrays up to rank 11.
NOTE: Using a combination of integer and Range operands requires a newer language feature
(partial ordering of member templates) which not all compilers support. If your compiler does
provide this feature, BZ_PARTIAL_ORDERING will be defined in <blitz/config.h>. If not, you
can use this workaround:
Array<int,3> F
Array<int,3> G

A(Range::all(), Range(2,2), Range::all());
A(Range(2,2), Range(7,7), Range::all());

2.4.5 More about Range objects

A Range object represents an ordered set of uniformly spaced integers. Here are some examples
of using Range objects to obtain subarrays:
#include <blitz/array.h>

using namespace blitz;

int main()

{
Array<int,1> A(7);
A=0,1, 2, 3, 4, 5, 6;
cout << A(Range::all()) << endl // 01234561
<< A(Range(3,5)) << endl // [345]
<< A(Range(3,toEnd)) << endl // 134561
<< A(Range(fromStart,3)) << endl // [0123]
<< A(Range(1,5,2)) << endl // [135]
<< A(Range(5,1,-2)) << endl // [531]
<< A(Range(fromStart,toEnd,2)) << endl; // [0246]
return O;
}

The optional third constructor argument specifies a stride. For example, Range (1,5,2) refers
to elements [1 3 5]. Strides can also be negative: Range(5,1,-2) refers to elements [5 3 1].

Note that if you use the same Range frequently, you can just construct one object and use it
multiple times. For example:
Range all = Range::all();
A(0,all,all) = A(N-1,all,all);
A(all,0,all) A(all,N-1,all);
A(all,all,O) A(all,all,N-1);
Here’s an example of using strides with a two-dimensional array:
#include <blitz/array.h>

18 Blitz++

using namespace blitz;

int main()

{
Array<int,2> A(8,8);
A =0;
Array<int,2> B = A(Range(1,7,3), Range(1,5,2));
B =1;
cout << "A = " << A << endl;
return O;
}

Here’s an illustration of the B subarray:
V] 1 2 3 4 5 b 14

=
=

=

/
o
—
 E—
[=

N

o
— 1
—
—
—

—

N

Using strides to create non-contiguous subarrays.

And the program output:

A=8x8

[0 0 0 0 0 0 0
0
0 1 0 1 0 1 0
0
0 0 0 0 0 0 0
0
0 0 0 0 0 0 0
0
0 1 0 1 0 1 0
0
0 0 0 0 0 0 0
0
0 0 0 0 0 0 0
0
0 1 0 1 0 1 0
01

2.4.6 A note about assignment

The assignment operator (=) always results in the expression on the right-hand side (rhs) being
copied to the lhs (i.e. the data on the lhs is overwritten with the result from the rhs). This is
different from some array packages in which the assignment operator makes the lhs a reference

Chapter 2: Arrays 19

(or alias) to the rhs. To further confuse the issue, the copy constructor for arrays does have
reference semantics. Here’s an example which should clarify things:

Array<int,1> A(5), B(10);

A = B(Range(0,4)); // Statement 1

Array<int,1> C = B(Range(0,4)); // Statement 2

Statement 1 results in a portion of B’s data being copied into A. After Statement 1, both
A and B have their own (nonoverlapping) blocks of data. Contrast this behaviour with that of
Statement 2, which is not an assignment (it uses the copy constructor). After Statement 2 is
executed, the array C is a reference (or alias) to B’s data.

So to summarize: If you want to copy the rhs, use an assignment operator. If you want to
reference (or alias) the rhs, use the copy constructor (or alternately, the reference() member
function in Section 2.6 [Array members|, page 20).

Very important: whenever you have an assignment operator (=, +=, -=, etc.) the lhs must
have the same shape as the rhs. If you want the array on the left hand side to be resized to the
proper shape, you must do so by calling the resize method, for example:

A.resize(B.shape()); // Make A the same size as B
A = B;

2.4.7 An example
#include <blitz/array.h>

using namespace blitz;

int main()

{
Array<int,2> A(6,6), B(3,3);
// Set the upper left quadrant of A to 5
A(Range(0,2), Range(0,2)) = 5;
// Set the upper right quadrant of A to an identity matrix
B=1,0, 0,
05 13 O,
0, 0, 1;
A(Range(0,2), Range(3,5)) = B;
// Set the fourth row to 1
A(3, Range::all()) = 1;
// Set the last two rows to O
A(Range (4, Range::toEnd), Range::all()) = O;
// Set the bottom right element to 8
A(5,5) = 8;
cout << "A = " << A << endl;
return O;
}
The output:
A=6x6
[5 5 5 1 0 0
5 5 5 0 1 0
5 5 5 0 0 1
1 1 1 1 1 1
0 0 0 0 0 0
0 0 0 0 0 81

20 Blitz++

2.5 Debug mode

The Blitz++ library has a debugging mode which is enabled by defining the preprocessor symbol
BZ_DEBUG. For most compilers, the command line argument -DBZ_DEBUG should work.

In debugging mode, your programs will run very slowly. This is because Blitz++ is doing lots
of precondition checking and bounds checking. When it detects something fishy, it will likely
halt your program and display an error message.

For example, this program attempts to access an element of a 4x4 array which doesn’t exist:

#include <blitz/array.h>
using namespace blitz;

int main()

¢ Array<complex<float>, 2> Z(4,4);
Z = complex<float>(0.0, 1.0);
Z(4,4) = complex<float>(1.0, 0.0);
return O;

}

When compiled with ~-DBZ_DEBUG, the out of bounds indices are detected and an error message
results:

[Blitz++] Precondition failure: Module ../../blitz/array-impl.h line 1282
Array index out of range: (4, 4)

Lower bounds: 2 [0 0]

Length: 2 [4 4]

debug: ../../blitz/array-impl.h:1282: bool blitz::Array<T,
N>::assertInRange(int, int) const [with P_numtype = std::complex<float>, int
N_rank = 2]: Assertion ‘0’ failed.

Precondition failures send their error messages to the standard error stream (cerr). After
displaying the error message, assert (0) is invoked.

2.6 Member functions

2.6.1 A note about dimension parameters

Several of the member functions take a dimension parameter which is an integer in the range
0 .. N_rank-1. For example, the method extent (int n) returns the extent (or length) of the
array in dimension n.

These parameters are problematic:
e They make the code cryptic. Someone unfamiliar with the reverse() member function
won’t stand a chance of understanding what A.reverse(2) does.

e Some users are used to dimensions being 1 .. N_rank, rather than 0 .. N_rank-1. This
makes dimension numbers inherently error-prone. Even though I'm a experienced C/C++
programmer, I still want to think of the first dimension as 1 — it doesn’t make sense to talk
about the “zeroth” dimension.

As a solution to this problem, Blitz++ provides a series of symbolic constants which you can
use to refer to dimensions:

Chapter 2: Arrays 21

const int firstDim = 0;
const int secondDim =1;
const int thirdDim = 2;

const int eleventhDim 10;

These symbols should be used in place of the numerals 0, 1, ... N_rank-1. For example:
A.reverse(thirdDim) ;

This code is clearer: you can see that the parameter refers to a dimension, and it isn’t much
of a leap to realize that it’s reversing the element ordering in the third dimension.

If you find firstDim, secondDim, ... aesthetically unpleasing, there are equivalent symbols
firstRank, secondRank, thirdRank, ..., eleventhRank.

Why stop at eleven?

The symbols had to stop somewhere, and eleven seemed an appropriate place to stop. Besides,
if you’re working in more than eleven dimensions your code is going to be confusing no matter
what help Blitz++ provides.

2.6.2 Member function descriptions

const TinyVector<int, N_rank>& base() const;
int base(int dimension) const;

The base of a dimension is the first valid index value. A typical C-style array will have
base of zero; a Fortran-style array will have base of one. The base can be different for each
dimension, but only if you deliberately use a Range-argument constructor or design a custom
storage ordering.

The first version returns a reference to the vector of base values. The second version returns
the base for just one dimension; it’s equivalent to the 1bound () member function. See the note
on dimension parameters such as firstDim above.

Array<T,N>::iterator begin();
Array<T,N>::const_iterator begin() const;

These functions return STL-style forward and input iterators, respectively, positioned at the
first element of the array. Note that the array data is traversed in memory order (i.e. by rows for
C-style arrays, and by columns for Fortran-style arrays). The Array<T,N>::const_iterator
has these methods:

const_iterator(const Array<T,N>&);

T operator*() const;

const T* [restrict] operator->() const;
const_iterator& operator++();

void operator++(int);

bool operator==(const const_iterator<T,N>&) const;
bool operator!=(const const_iterator<T,N>&) const;
const TinyVector<int,N>& position() const;

Note that postfix ++ returns void (this is not STL-compliant, but is done for efficiency).
The method position() returns a vector containing current index positions of the itera-
tor. The Array<T,N>::iterator has the same methods as const_iterator, with these
exceptions: iterator& operator++(); T& operator*(); T* [restrict] operator->(); The
iterator type may be used to modify array elements. To obtain iterator positioned at the end
of the array, use the end() methods.

22 Blitz++

int cols() const;
int columns () const;
Both of these functions return the extent of the array in the second dimension. Equivalent
to extent (secondDim). See also rows() and depth().
Array<T_numtype, N_rank> copy() const;
This method creates a copy of the array’s data, using the same storage ordering as the current

array. The returned array is guaranteed to be stored contiguously in memory, and to be the only
object referring to its memory block (i.e. the data isn’t shared with any other array object).

const T_numtypex [restrict] data() const;
T_numtype* [restrict] data();

const T_numtype* [restrict] dataZero() const;
T_numtype* [restrict] dataZero();

const T_numtypex [restrict] dataFirst() const;
T_numtype* [restrict] dataFirst();

These member functions all return pointers to the array data. The NCEG restrict qualifier
is used only if your compiler supports it. If you're working with the default storage order (C-style
arrays with base zero), youll only need to use data(). Otherwise, things get complicated:

data() returns a pointer to the element whose indices are equal to the array base. With
a C-style array, this means the element (0,0,...,0); with a Fortran-style array, this means the
element (1,1,...,1). If A is an array object, A.data() is equivalent to (&A(A.base(firstDim),
A.base(secondDim), ...)). If any of the dimensions are stored in reverse order, data() will not
refer to the element which comes first in memory.

dataZero() returns a pointer to the element (0,0,...,0), even if such an element does not exist
in the array. What’s the point of having such a pointer? Say you want to access the element
(i,j,k). If you add to the pointer the dot product of (i,j,k) with the stride vector (A.stride()),
you get a pointer to the element (i,j,k).

dataFirst() returns a pointer to the element of the array which comes first in memory.
Note however, that under some circumstances (e.g. subarrays), the data will not be stored
contiguously in memory. You have to be very careful when meddling directly with an array’s
data.

Other relevant functions are: isStorageContiguous() and zeroOffset().

int depth() const;

Returns the extent of the array in the third dimension. This function is equivalent to
extent (thirdDim). See also rows() and columns().

int dimensions() const;

Returns the number of dimensions (rank) of the array. The return value is the second
template parameter (N_rank) of the Array object. Same as rank().

RectDomain<N_rank> domain() const;

Returns the domain of the array. The domain consists of a vector of lower bounds and a
vector of upper bounds for the indices. NEEDS_WORK- need a section to explain methods of
RectDomain<N>.

Array<T,N>::iterator end () ;
Array<T,N>::const_iterator end() const;

Returns STL-style forward and input iterators (respectively) for the array, positioned at the

end of the array.
int extent (int dimension) const;

The first version the extent (length) of the array in the specified dimension. See the note

about dimension parameters such as firstDim in the previous section.

Chapter 2: Arrays 23

Array<T_numtype2,N_rank> extractComponent (T_numtype2,
int componentNumber, int numComponents);

This method returns an array view of a single component of a multicomponent array. In a
multicomponent array, each element is a tuple of fixed size. The components are numbered 0,
1, ..., numComponents-1. Example:

Array<TinyVector<int,3>,2> A(128,128); // A 128x128 array of int[3]

Array<int,2> B = A.extractComponent(int(), 1, 3);

Now the B array refers to the 2nd component of every element in A. Note: for complex
arrays, special global functions real (A) and imag(A) are provided to obtain real and imaginary
components of an array. See the Global Functions section.

void free();

This method resizes an array to zero size. If the array data is not being shared with another
array object, then it is freed.

bool isMajorRank(int dimension) const;

Returns true if the dimension has the largest stride. For C-style arrays (the default), the first
dimension always has the largest stride. For Fortran-style arrays, the last dimension has the
largest stride. See also isMinorRank () below and the note about dimension parameters such as
firstDim in the previous section.

bool isMinorRank(int dimension) const;
Returns true if the dimension does not have the largest stride. See also isMajorRank().
bool isRankStoredAscending(int dimension) const;

Returns true if the dimension is stored in ascending order in memory. This is the default.
It will only return false if you have reversed a dimension using reverse() or have created a
custom storage order with a descending dimension.

bool isStorageContiguous() const;

Returns true if the array data is stored contiguously in memory. If you slice the array or
work on subarrays, there can be skips — the array data is interspersed with other data not part
of the array. See also the various data. . () functions. If you need to ensure that the storage is
contiguous, try reference (copy()).

int lbound(int dimension) const;
TinyVector<int,N_rank> lbound() const;

The first version returns the lower bound of the valid index range for a dimension. The second
version returns a vector of lower bounds for all dimensions. The lower bound is the first valid
index value. If you're using a C-style array (the default), the Ibound will be zero; Fortran-style
arrays have Ibound equal to one. The Ibound can be different for each dimension, but only if you
deliberately set them that way using a Range constructor or a custom storage ordering. This
function is equivalent to base(dimension). See the note about dimension parameters such as
firstDim in the previous section.

void makeUnique () ;

If the array’s data is being shared with another Blitz++ array object, this member function
creates a copy so the array object has a unique view of the data.

int numElements() const;

Returns the total number of elements in the array, calculated by taking the product of the
extent in each dimension. Same as size().

const TinyVector<int, N_rank>& ordering() const;
int ordering(int storageRankIndex) const;

24 Blitz++

These member functions return information about how the data is ordered in memory. The
first version returns the complete ordering vector; the second version returns a single element
from the ordering vector. The argument for the second version must be in the range 0 .. N_
rank-1. The ordering vector is a list of dimensions in increasing order of stride; ordering(0)
will return the dimension number with the smallest stride, and ordering (N_rank-1) will return
the dimension number with largest stride. For a C-style array, the ordering vector contains the
elements (N_rank-1, N_rank-2, ..., 0). For a Fortran-style array, the ordering vector is (0, 1,
..., N_rank-1). See also the description of custom storage orders in section Section 2.9 [Array
storage|, page 29.

int rank() const;

Returns the rank (number of dimensions) of the array. The return value is equal to N_rank.
Equivalent to dimensions ().

void reference (Array<T_numtype,N_rank>& A);

This causes the array to adopt another array’s data as its own. After this member function
is used, the array object and the array A are indistinguishable — they have identical sizes, index
ranges, and data. The data is shared between the two arrays.

void reindexSelf (const TinyVector<int,N_rank>&);
Array<T,N> reindex(const TinyVector<int,N_rank>&) ;

These methods reindex an array to use a new base vector. The first version reindexes the
array, and the second just returns a reindexed view of the array, leaving the original array
unmodified.

void resize(int extentl, ...);
void resize(const TinyVector<int,N_rank>&);

These functions resize an array to the specified size. If the array is already the size specified,
then no memory is allocated. After resizing, the contents of the array are garbage. See also
resizeAndPreserve ().

void resizeAndPreserve(int extentl, ...);
void resizeAndPreserve(const TinyVector<int,N_rank>&);

These functions resize an array to the specified size. If the array is already the size specified,
then no change occurs (the array is not reallocated and copied). The contents of the array are
preserved whenever possible; if the new array size is smaller, then some data will be lost. Any
new elements created by resizing the array are left uninitialized.

Array<T,N> reverse(int dimension) ;
void reverseSelf (int dimension);
This method reverses the array in the specified dimension. For example, if

reverse(firstDim) is invoked on a 2-dimensional array, then the ordering of rows in the array
will be reversed; reverse(secondDim) would reverse the order of the columns. Note that this
is implemented by twiddling the strides of the array, and doesn’t cause any data copying. The
first version returns a reversed “view” of the array data; the second version applies the reversal
to the array itself.

int rows() const;

Returns the extent (length) of the array in the first dimension. This function is equivalent
to extent (firstDim). See also columns(), and depth().

int size() const;

Returns the total number of elements in the array, calculated by taking the product of the
extent in each dimension. Same as numElements ().

const TinyVector<int, N_rank>& shape() const;

Returns the vector of extents (lengths) of the array.

Chapter 2: Arrays 25

const TinyVector<int, N_rank>& stride() const;
int stride(int dimension) const;

The first version returns the stride vector; the second version returns the stride associated
with a dimension. A stride is the distance between pointers to two array elements which
are adjacent in a dimension. For example, A.stride(firstDim) is equal to &A(1,0,0) -
&A(0,0,0). The stride for the second dimension, A.stride (secondDim), is equal to &A(0,1,0)
- &A(0,0,0), and so on. For more information about strides, see the description of custom
storage formats in Section Section 2.9 [Array storage], page 29. See also the description of
parameters like firstDim and secondDim in the previous section.

Array<T,N> transpose(int dimensionl,
int dimension2, ...);
void transposeSelf (int dimensionl,
int dimension2, ...);

These methods permute the dimensions of the array. The dimensions of the array are re-
ordered so that the first dimension is dimensionl, the second is dimension2, and so on. The
arguments should be a permutation of the symbols firstDim, secondDim, Note that this
is implemented by twiddling the strides of the array, and doesn’t cause any data copying. The
first version returns a transposed “view” of the array data; the second version transposes the
array itself.

int ubound (int dimension) const;
TinyVector<int,N_rank> ubound () const;

The first version returns the upper bound of the valid index range for a dimension. The
second version returns a vector of upper bounds for all dimensions. The upper bound is the last
valid index value. If you're using a C-style array (the default), the ubound will be equal to the
extent (dimension)-1. Fortran-style arrays will have ubound equal to extent(dimension).
The ubound can be different for each dimension. The return value of ubound(dimension) will
always be equal to 1bound (dimension)+extent (dimension)-1. See the note about dimension
parameters such as firstDim in the previous section.

int zeroOffset() const;

This function has to do with the storage of arrays in memory. You may want to refer to the
description of the data. . () member functions and of custom storage orders in Section Section 2.9
[Array storage], page 29 for clarification. The return value of zeroOffset () is the distance from
the first element in the array to the (possibly nonexistant) element (0,0, ...,0). In this context,
“first element” returns to the element (base(firstDim) ,base(secondDim),...).

2.7 Global functions

void allocateArrays(TinyVector<int,N>& shape,
Array<T,N>& A,
Array<T,N>& B, ...);

This function will allocate interlaced arrays, but only if interlacing is desirable for your
architecture. This is controlled by the BZ_INTERLACE_ARRAYS flag in ‘blitz/tuning.h’. You
can provide up to 11 arrays as parameters. Any views currently associated with the array objects
are lost. Here is a typical use:

Array<int,2> A, B, C;
allocateArrays (shape(64,64),A,B,C);

If array interlacing is enabled, then the arrays are stored in memory like this: A(0,0), B(0,0),
€(0,0),A(0,1),B(0,1), ... If interlacing is disabled, then the arrays are allocated in the normal
fashion: each array has its own block of memory. Once interlaced arrays are allocated, they can
be used just like regular arrays.

26 Blitz++

#include <blitz/array/convolve.h>
Array<T, 1> convolve(const Array<T,1>& B,
const Array<T,1>& C);

This function computes the 1-D convolution of the arrays B and C:
Alil =) BJjICli - j]
J

If the array B has domain b;...b,, and array C has domain ¢ ...c;, then the resulting array
has domain a; .. .a;, with [= b; + ¢; and a;, = b, + ¢;,.

A new array is allocated to contain the result. To avoid copying the result array, you should
use it as a constructor argument. For example: Array<float,1> A = convolve(B,C); The
convolution is computed in the spatial domain. Frequency-domain transforms are not used. If
you are convolving two large arrays, then this will be slower than using a Fourier transform.

Note that if you need a cross-correlation, you can use the convolve function with one of the
arrays reversed. For example:

Array<float,1> A = convolve(B,C.reverse());

Autocorrelation can be performed using the same approach.

void cycleArrays (Array<T,N>& A, Array<T,N>& B);

void cycleArrays (Array<T,N>& A, Array<T,N>& B,
Array<T,N>& C);

void cycleArrays (Array<T,N>& A, Array<T,N>& B,
Array<T,N>& C, Array<T,N>& D);

void cycleArrays (Array<T,N>& A, Array<T,N>& B,

Array<T,N>& C, Array<T,N>& D,
Array<T,N>& E);

These routines are useful for time-stepping PDEs. They take a set of arrays such as [A,B,C,D]
and cyclically rotate them to [B,C,D,A]; i.e. the A array then refers to what was B’s data, the B
array refers to what was C’s data, and the D array refers to what was A’s data. These functions
operate in constant time, since only the handles change (i.e. no data is copied; only pointers
change).

void find(Array<TinyVector<int,Expr::rank>,1>& indices,
const _bz_ArrayExpr<Expr>& expr);
void find (Array<TinyVector<int,N>,1>& indices,

const Array<bool,N>& exprVals);

This is an analogue to the Matlab find () method, which takes a boolean array expression or
an array of bools and returns a 1d array of indices for all locations where the array or expression
is true.

Array<T,N> imag(Array<complex<T>,N>&) ;
This method returns a view of the imaginary portion of the array.

void interlaceArrays(TinyVector<int,N>& shape,
Array<T,N>& A,
Array<T,N>& B, ...);

This function is similar to allocateArrays() above, except that the arrays are always in-
terlaced, regardless of the setting of the BZ_INTERLACE_ARRAYS flag.

Array<T,N> real (Array<complex<T>,N>&) ;

This method returns a view of the real portion of the array.

Chapter 2: Arrays 27

TinyVector<int,1> shape (int L) ;

TinyVector<int,2> shape(int L, int M);
TinyVector<int,3> shape(int L, int M, int N);
TinyVector<int,4> shape(int L, int M, int N, int 0);

[up to 11 dimensions]

These functions may be used to create shape parameters. They package the set of integer
arguments as a TinyVector of appropriate length. For an example use, see allocateArrays ()
above.

void swap (Array<T,N>& A, Array<T,N>& B);

This function swaps the storage of two arrays, just like the std::swap() function does for
STL container types. This is a synonym for the two-argument version of cycleArrays() above.

2.8 Inputting and Outputting Arrays

2.8.1 Output formatting

The current version of Blitz++ includes rudimentary output formatting for arrays. Here’s an
example:
#include <blitz/array.h>

using namespace blitz;

int main()

{
Array<int,2> A(4,5,FortranArray<2>());
firstIndex 1i;
secondIndex j;
A = 10*%i + j;
cout << "A = " << A << endl;
Array<float,1> B(20);
B = exp(-i/100.);
cout << "B = " << endl << B << endl;
return O;

}

And the output:

A=4x5
[11 12 13 14 15
21 22 23 24 25
31 32 33 34 35
41 42 43 44 45]
B =
20
L 1 0.99005 0.980199 0.970446 0.960789 0.951229 0.941765

0.932394 0.923116 0.913931 0.904837 0.895834 0.88692 0.878095
0.869358 0.860708 0.852144 0.843665 0.83527 0.826959 1]

2.8.2 Inputting arrays

Arrays may be restored from an istream using the >> operator. NOTE: you must know the
dimensionality of the array being restored from the stream. The >> operator expects an array
in the same input format as generated by the << operator, namely:
e The size of the array, for example “32” for a 1-dimensional array of 32 elements, “12 x 64
x 128” for a 3-dimensional array of size 12x64x128.

28 Blitz++

e The symbol ’ [’ indicating the start of the array data
e The array elements, listed in memory storage order

e The symbol ’]’ indicating the end of the array data

The operator prototype is:

template<class T, int N>
istream& operator>>(istream&, Array<T,N>&);

Here is an example of saving and restoring arrays from files. You can find this example in
the Blitz++ distribution as ‘examples/io.cpp’.

#include <blitz/array.h>
#ifdef BZ_HAVE_STD
#include <fstream>

#else

#include <fstream.h>
#endif

BZ_USING_NAMESPACE(blitz)
const charx filename = "io.data";

void write_arrays()
{
ofstream ofs(filename);
if (ofs.bad())
{
cerr << "Unable to write to file: " << filename << endl;
exit(1);
}

Array<float,3> A(3,4,5);
A = 111 + temsor::i + 10 * temsor::j + 100 * tensor::k;
ofs << A << endl;

Array<float,2> B(3,4);
B = 11 + tensor::i + 10 * tensor::j;
ofs << B << endl;

Array<float,1> C(4);
C =1+ tensor::ij;
ofs << C << endl;

}

int main()
{

write_arrays();

ifstream ifs(filename);
if (ifs.bad())
{

cerr << "Unable to open file: " << filename << endl;
exit(1);

Array<float,3> A;
Array<float,2> B;
Array<float,1> C;
ifs >> A >> B >> C;

cout << "Arrays restored from file: " << A << B << C << endl;

return O;

Chapter 2: Arrays 29

NOTE: The storage order and starting indices are not restored from the input stream. If
you are restoring (for example) a Fortran-style array, you must create a Fortran-style array, and
then restore it. For example, this code restores a Fortran-style array from the standard input
stream:

Array<float,2> B(fortranArray);
cin >> B;

2.9 Array storage orders

Blitz++ is very flexible about the way arrays are stored in memory. Starting indices can be 0, 1,
or arbitrary numbers; arrays can be stored in row major, column major or an order based on any
permutation of the dimensions; each dimension can be stored in either ascending or descending
order. An N dimensional array can be stored in N!2V possible ways.

Before getting into the messy details, a review of array storage formats is useful. If you're
already familiar with strides and bases, you might want to skip on to the next section.

2.9.1 Fortran and C-style arrays

Suppose we want to store this two-dimensional array in memory:
[123]

[456]

[789]
Row major vs. column major
To lay the array out in memory, it’s necessary to map the indices (i,j) into a one-dimensional
block. Here are two ways the array might appear in memory:

[123456789]1

[1472583609]

The first order corresponds to a C or C++ style array, and is called row-major ordering: the
data is stored first by row, and then by column. The second order corresponds to a Fortran
style array, and is called column-major ordering: the data is stored first by column, and then
by row.

The simplest way of mapping the indices (i,j) into one-dimensional memory is to take a linear
combination.? Here’s the appropriate linear combination for row major ordering:
memory offset = 3*i + 1%j
And for column major ordering:
memory offset = 1*i + 3%j
The coefficients of the (i,j) indices are called strides. For a row major storage of this array,
the row stride is 3 — you have to skip three memory locations to move down a row. The column

stride is 1 — you move one memory location to move to the next column. This is also known as
unit stride. For column major ordering, the row and column strides are 1 and 3, respectively.

Bases

To throw another complication into this scheme, C-style arrays have indices which start at zero,
and Fortran-style arrays have indices which start at one. The first valid index value is called
the base. To account for a non-zero base, it’s necessary to include an offset term in addition to
the linear combination. Here’s the mapping for a C-style array with i=0..3 and j=0..3:

2 Taking a linear combination is sufficient for dense, asymmetric arrays, such as are provided by the Blitz++
Array class.

30 Blitz++

memory offset = 0 + 3%i + 1x%]j
No offset is necessary since the indices start at zero for C-style arrays. For a Fortran-style
array with i=1..4 and j=1..4, the mapping would be:
memory offset = -4 + 3*i + 1xj
By default, Blitz++ creates arrays in the C-style storage format (base zero, row major order-
ing). To create a Fortran-style array, you can use this syntax:
Array<int,2> A(3, 3, FortranArray<2>(Q));

The third parameter, FortranArray<2> (), tells the Array constructor to use a storage format
appropriate for two-dimensional Fortran arrays (base one, column major ordering).

A similar object, ColumnMajorArray<N>, tells the Array constructor to use column major
ordering, with base zero:

Array<int,2> B(3, 3, ColumnMajorArray<2>());

This creates a 3x3 array with indices i=0..2 and j=0..2.

In addition to supporting the 0 and 1 conventions for C and Fortran-style arrays, Blitz++
allows you to choose arbitrary bases, possibly different for each dimension. For example, this
declaration creates an array whose indices have ranges i=5..8 and j=2..5:

Array<int,2> A(Range(5,8), Range(2,5));

2.9.2 Creating custom storage orders

All Array constructors take an optional parameter of type GeneralArrayStorage<N_rank>.
This parameter encapsulates a complete description of the storage format. If you want a storage
format other than C or Fortran-style, you have two choices:

e You can create an object of type GeneralArrayStorage<N_rank>, customize the storage
format, and use the object as a argument for the Array constructor.

e You can create your own storage format object which inherits from
GeneralArrayStorage<N_rank>. This is useful if you will be using the storage
format many times. This approach (inheriting from GeneralArrayStorage<N_rank>) was
used to create the FortranArray<N_rank> objects. If you want to take this approach, you
can use the declaration of FortranArray<N_rank> in <blitz/array.h> as a guide.

The next sections describe how to modify a GeneralArrayStorage<N_rank> object to suit
your needs.

In higher dimensions

In more than two dimensions, the choice of storage order becomes more complicated. Suppose
we had a 3x3x3 array. To map the indices (i,j,k) into memory, we might choose one of these
mappings:

memory offset
memory offset

9%i + 3%j + 1xk
1%i + 3%j + Oxk

The first corresponds to a C-style array, and the second to a Fortran-style array. But there
are other choices; we can permute the strides (1,3,9) any which way:

memory offset = 1%i + 9xj + 3%k
memory offset = 3*i + 1xj + Oxk
memory offset = 3%i + 9%j + 1xk
memory offset = 9%i + 1xj + 3x*k

For an N dimensional array, there are N! such permutations. Blitz++ allows you to select any
permutation of the dimensions as a storage order. First you need to create an object of type
GeneralArrayStorage<N_rank>:

Chapter 2: Arrays 31

GeneralArrayStorage<3> storage;

GeneralArrayStorage<N_rank> contains a vector called ordering which controls the order
in which dimensions are stored in memory. The ordering vector will contain a permutation of
the numbers 0, 1, ..., N_rank-1. Since some people are used to the first dimension being 1 rather
than 0, a set of symbols (firstDim, secondDim, ..., eleventhDim) are provided which make the
code more legible.

The ordering vector lists the dimensions in increasing order of stride. You can access this
vector using the member function ordering(). A C-style array, the default, would have:

storage.ordering() = thirdDim, secondDim, firstDim;

meaning that the third index (k) is associated with the smallest stride, and the first index
(i) is associated with the largest stride. A Fortran-style array would have:

storage.ordering() = firstDim, secondDim, thirdDim;

Reversed dimensions
To add yet another wrinkle, there are some applications where the rows or columns need to be
stored in reverse order.?

Blitz++ allows you to store each dimension in either ascending or descending order. By de-
fault, arrays are always stored in ascending order. The GeneralArrayStorage<N_rank> object
contains a vector called ascendingFlag which indicates whether each dimension is stored ascend-
ing (true) or descending (false). To alter the contents of this vector, use the ascendingFlag()
method:

// Store the third dimension in descending order
storage.ascendingFlag() = true, true, false;

// Store all the dimensions in descending order
storage.ascendingFlag() = false, false, false;

Setting the base vector

GeneralArrayStorage<N_rank> also has a base vector which contains the base index value for
each dimension. By default, the base vector is set to zero. FortranArray<N_rank> sets the base
vector to one.

To set your own set of bases, you have two choices:

e You can modify the base vector inside the GeneralArrayStorage<N_rank> object. The
method base () returns a mutable reference to the base vector which you can use to set
the bases.

e You can provide a set of Range arguments to the Array constructor.

Here are some examples of the first approach:

// Set all bases equal to 5
storage.base() = 5;

// Set the bases to [1 0 1]
storage.base() = 1, 0, 1;
And of the second approach:

// Have bases of 5, but otherwise C-style storage
Array<int,3> A(Range(5,7), Range(5,7), Range(5,7));

// Have bases of [1 0 1] and use a custom storage
Array<int,3> B(Range(1,4), Range(0,3), Range(1,4), storage);

3 For example, certain bitmap formats store image rows from bottom to top rather than top to bottom.

32 Blitz++

Working simultaneously with different storage orders

Once you have created an array object, you will probably never have to worry about its storage
order. Blitz++ should handle arrays of different storage orders transparently. It’s possible to
mix arrays of different storage orders in one expression, and still get the correct result.

Note however, that mixing different storage orders in an expression may incur a performance
penalty, since Blitz++ will have to pay more attention to differences in indexing than it normally
would.

You may not mix arrays with different domains in the same expression. For example, adding a
base zero to a base one array is a no-no. The reason for this restriction is that certain expressions
become ambiguous, for example:

Array<int,1> A(Range(0,5)), B(Range(1,6));
A=0;

B=0;

using namespace blitz::tensor;

int result = sum(A+B+i);

Should the index i take its domain from array A or array B? To avoid such ambiguities, users
are forbidden from mixing arrays with different domains in an expression.

Debug dumps of storage order information

In debug mode (-DBZ_DEBUG), class Array provides a member function
dumpStructureInformation() which displays information about the array storage:

Array<float,4> A(3,7,8,2,FortranArray<4>Q));
A.dumpStructureInformation(cerr);

The optional argument is an ostream to dump information to. It defaults to cout. Here’s
the output:

Dump of Array<f, 4>:

ordering_ =4 [0 1 2 3]
ascendingFlag_ = 4 [1 1 1 1]
base_ =4 [1 1 1 11]
length_ =4 [3 7 8 2]
stride_ =4 [1 3 21 168 1
zeroOffset_ = -193

numElements() = 336

isStorageContiguous() = 1

A note about storage orders and initialization

When initializing arrays with comma delimited lists, note that the array is filled in storage order:
from the first memory location to the last memory location. This won’t cause any problems if
you stick with C-style arrays, but it can be confusing for Fortran-style arrays:

Array<int,2> A(3, 3, FortranArray<2>Q));

A=1, 2, 3,
4, 5, 6,
7, 8, 9;

cout << A << endl;

The output from this code excerpt will be:

A=3x3
1 4 7
2 5 8
3 6 9

This is because Fortran-style arrays are stored in column major order.

Chapter 2: Arrays

2.9.3 Storage orders example

#include <blitz/array.h>
BZ_USING_NAMESPACE(blitz)

int main()

{
// 3x3 C-style row major storage, base zero
Array<int,2> A(3, 3);

// 3x3 column major storage, base zero
Array<int,2> B(3, 3, ColumnMajorArray<2>());

// A custom storage format:

// Indices have range 0..3, 0..3

// Column major ordering

// Rows are stored ascending, columns stored descending
GeneralArrayStorage<2> storage;

storage.ordering() = firstRank, secondRank;
storage.base() = 0, 0;

storage.ascendingFlag() = true, false;

Array<int,2> C(3, 3, storage);

// Set each array equal to
/11
/L4

31]
6]
// L7891

o o1 N

A=1,
45
7

>

> 3,
] 6:
9.

>

o o1 N

>

cout << "A = " << A << endl;

// Comma-delimited lists initialize in memory-storage order only.
// Hence we list the values in column-major order to initialize B:

B=1, 4,7, 2, 5, 8, 3, 6, 9;
cout << "B = " << B << endl;

// Array C is stored in column major, plus the columns are stored
// in descending order!

c=3,6,9,2,5,8,1, 4, 7;
cout << "C = " << C << endl;

Array<int,2> D(3,3);
D=A+B+C;

#ifdef BZ_DEBUG
A.dumpStructureInformation() ;
B.dumpStructureInformation() ;
C.dumpStructureInformation();
D.dumpStructureInformation() ;

#endif

cout << "D = " << D << endl;

return O;

33

34

And the output:

A=3x3

[1 2 3
4 5 6
7 8 91

B=3x3

[1 2 3
4 5 6
7 8 91

C=3x3

[1 2 3
4 5 6
7 8 9 1]

Dump of Array<i, 2>:

ordering_ =2 [1

ascendingFlag_ = 2 [1

base_ =2 [0

length_ 2 [3

stride_ =2 [3

zeroOffset_ =0

numElements() = 9

isStorageContiguous() = 1

Dump of Array<i, 2>:

ordering_ =2 [0

ascendingFlag_ = 2 [1

base_ =2 [0

length_ 2 [3

stride_ =2 [1

zeroOffset_ =0

numElements() = 9

isStorageContiguous() = 1
Dump of Array<i, 2>:

ordering_ =2 [0
ascendingFlag_ = 2 [1
base_ =2 [0
length_ =2 [3
stride_ =2 [1
zeroOffset_ =6

numElements() = 9

isStorageContiguous() = 1
Dump of Array<i, 2>:

ordering_ =2 [1
ascendingFlag_ = 2 [1
base_ =2 [0
length_ 2 [3
stride_ =2 [3
zeroOffset_ =0
numElements() = 9
isStorageContiguous() = 1
D=3x3
[3 6 9
12 15 18

21 24 27 1

= W o - O
—_ e e e

w O O W wo =
Iy N [y N Ny W—

— e

= W o~ O
—_ e e

Blitz++

Chapter 3: Array Expressions 35

3 Array Expressions

Array expressions in Blitz++ are implemented using the expression templates technique. Unless
otherwise noted, expression evaluation will never generate temporaries or multiple loops; an
expression such as

Array<int,1> A, B, C, D; // ...

A=B+C+D;
will result in code similar to

for (int i=A.lbound(firstDim); i <= A.ubound(firstDim); ++i)
A[i] = B[i] + c[i] + DI[il;

3.1 Expression evaluation order
A commonly asked question about Blitz++ is what order it uses to evaluate array expressions.
For example, in code such as

A(Range(2,10)) = A(Range(1,9))

does the expression get evaluated at indices 1, 2, ..., 9 or at 9, 8, ..., 1?7 This makes a big
difference to the result: in one case, the array will be shifted to the right by one element; in the
other case, most of the array elements will be set to the value in A(1).

Blitz always selects the traversal order it thinks will be fastest. For 1D arrays, this means it
will go from beginning to the end of the array in memory (see notes below). For multidimensional
arrays, it will do one of two things:

e try to go through the destination array in the order it is laid out in memory (i.e. row-major
for row-major arrays, column-major for column-major arrays).

e if the expression is a stencil, Blitz will do tiling to improve cache use. Under some circum-
stances blitz will even use a traversal based on a hilbert curve (a fractal) for 3D arrays.

Because the traversal order is not always predictable, it is safest to put the result in a new
array if you are doing a stencil-style expression. Blitz guarantees this will always work correctly.
If you try to put the result in one of the operands, you have to guess correctly which traversal
order blitz will choose. This is easy for the 1D case, but hard for the multidimensional case.

Some special notes about 1D array traversals:

e if your array is stored in reverse order, i.e. because of a A.reverse(firstDim) or funny storage
order, blitz will go through the array from end to beginning in array coordinates, but from
beginning to end in memory locations.

e many compilers/architecture combinations are equally fast at reverse order. But blitz has
a specialized version for stride = +1, and it would be wasteful to also specialize for the case
stride = -1. So 1D arrays are traversed from beginning to end (in memory storage order).

3.2 Expression operands

An expression can contain any mix of these operands:

e An array of any type, so long as it is of the same rank. Expressions which contain a mixture
of array types are handled through the type promotion mechanism described below.

e Scalars of type int, float, double, long double, or complex<T>
e Index placeholders, described below

e Other expressions (e.g. A+(B+C))

36 Blitz++

3.3 Array operands

Using subarrays in an expression

Subarrays may be used in an expression. For example, this code example performs a 5-point
average on a two-dimensional array:

Array<float,2> A(64,64), B(64,64); //
Range I(1,62), J(1,62);

A(I,J) = (B(I,J) + B(I+1,)) + B(I-1,J)
+ B(I,J+1) + B(I,J-1)) / 5;

Mixing arrays with different storage formats

Arrays with different storage formats (for example, C-style and Fortran-style) can be mixed in
the same expression. Blitz++ will handle the different storage formats automatically. However:

e Evaluation may be slower, since a different traversal order may be used.

e If you are using index placeholders (see below) or reductions in the expression, you may
not mix array objects with different starting bases.

3.4 Expression operators
These binary operators are supported:
& |l - & |

NOTE: operator << and >> are reserved for use in input/output. If you need a bit-shift
operation on arrays, you may define one yourself; see Section 3.10 [User et], page 44.

+ - %/} > < >= <= ==

These unary operators are supported:

-
The operators > < >= <= == 1= && || ! result in a bool-valued expression.
All operators are applied elementwise.

You can only use operators which are well-defined for the number type stored in the arrays.
For example, bitwise XOR (~) is meaningful for integers, so this code is all right:

Array<int,3> A, B, C; // ...
A =B "~ C;
Bitwise XOR is not meaningful on floating point types, so this code will generate a compiler
error:
Array<float,1> A, B, C; // ...
C=B "~ C;

Here’s the compiler error generated by KAI C++ for the above code:

"../../blitz/ops.h", line 85: error: expression must have integral or enum type

BZ_DEFINE_OP(BitwiseXor, ") ;

detected during:
instantiation of "blitz::BitwiseXor<float, float>::T_numtype

blitz::BitwiseXor<float, float>::apply(float, float)" at

line 210 of "../../blitz/arrayexpr.h"
instantiation of

Chapter 3: Array Expressions 37

If you are creating arrays using a type you have created yourself, you will need to overload
whatever operators you want to use on arrays. For example, if I create a class Polynomial, and
want to write code such as:

Array<Polynomial,2> A, B, C; // ...
C =A x B;

I would have to provide operator* for Polynomial by implementing
Polynomial Polynomial::operator*(Polynomial) ;)
or

Polynomial operator*(Polynomial, Polynomial);)

3.5 Assignment operators

These assignment operators are supported:
= += —= x= [= Y= "= &= |= >>= <<=
An array object should appear on the left side of the operator. The right side can be:
e A constant (or literal) of type T_numtype
e An array of appropriate rank, possibly of a different numeric type

e An array expression, with appropriate rank and shape

3.6 Index placeholders

Blitz++ provides objects called index placeholders which represent array indices. They can be
used directly in expressions.

There is a distinct index placeholder type associated with each dimension of an array.
The types are called firstIndex, secondIndex, thirdIndex, ..., tenthIndex, eleventhIndex.
Here’s an example of using an index placeholder:

Array<float,1> A(10);
firstIndex 1i;
A =1
This generates code which is similar to:
for (int i=0; i < A.length(); ++i)
A(Qd) = i
Here’s an example which fills an array with a sampled sine wave:
Array<float,1> A(16);
firstIndex 1i;

A = sin(2 * M_PI *x i / 16.);
If your destination array has rank greater than 1, you may use multiple index placeholders:

// Fill a two-dimensional array with a radially
// symmetric, decaying sinusoid

// Create the array
int N = 64;
Array<float,2> F(N,N);

// Some parameters

float midpoint = (N-1)/2.;

int cycles = 3;

float omega = 2.0 * M_PI * cycles / double(N);

38 Blitz++

float tau = - 10.0 / N;

// Index placeholders
firstIndex i;
secondIndex j;

// Fill the array
F = cos(omega * sqrt(pow2(i-midpoint) + pow2(j-midpoint)))
*x exp(tau * sqrt(pow2(i-midpoint) + pow2(j-midpoint)));

Here’s a plot of the resulting array:

1<
0.8 -
0.6 -
0.4 -
0.2 /
04 < /" “\
= S KOOI
s o
-0.2 *““““V‘ w%ﬂh4Wm”
7 N7
-Ln."“A‘.“‘.;\\t"l = ::\
-0.4~ SesmaaaaaTaa e

80

0 o

Array filled using an index placeholder expression.

You can use index placeholder expressions in up to 11 dimensions. Here’s a three dimensional
example:

// Fill a three-dimensional array with a Gaussian function
Array<float,3> A(16,16,16);
firstIndex 1i;
secondIndex j;
thirdIndex k;
float midpoint = 15/2.;
float ¢ = - 1/3.0;
A = exp(c * (sqr(i-midpoint) + sqr(j-midpoint)
+ sqr(k-midpoint)));

Chapter 3: Array Expressions 39

You can mix array operands and index placeholders:

Array<int,1> A(5), B(5);
firstIndex i;

A =
B

|
S
=
=
S
“k\)

i * A; // Results in [0, 1, 2, 0, 8]

For your convenience, there is a namespace within blitz called tensor which declares all the
index placeholders:

namespace blitz {
namespace tensor {
firstIndex i;
secondIndex j;
thirdIndex k;

eleventhIndex t;
}
}

So instead of declaring your own index placeholder objects, you can just say
namespace blitz::tensor;

when you would like to use them. Alternately, you can just preface all the index placeholders
with tensor: :, for example:

A = sin(2 * M_PI * temnsor::i / 16.);

This will make your code more readable, since it is immediately clear that i is an index
placeholder, rather than a scalar value.

3.7 Type promotion

When operands of different numeric types are used in an expression, the result gets promoted
according to the usual C-style type promotion. For example, the result of adding an Array<int>
to an Arrray<float> will be promoted to float. Generally, the result is promoted to whichever
type has greater precision.

Type promotion for user-defined types

The rules for type promotion of user-defined types (or types from another library) are a bit
complicated. Here’s how a pair of operand types are promoted:

e If both types are intrinsic (e.g. bool, int, float) then type promotion follows the standard C
rules. This generally means that the result will be promoted to whichever type has greater
precision. In Blitz++, these rules have been extended to incorporate complex<float>,
complex<double>, and complex<long double>.

e If one of the types is intrinsic (or complex), and the other is a user-defined type, then the
result is promoted to the user-defined type.

e If both types are user-defined, then the result is promoted to whichever type requires more
storage space (as determined by sizeof()). The rationale is that more storage space
probably indicates more precision.

If you wish to alter the default type promotion rules above, you have two choices:

e If the type promotion behaviour isn’t dependent on the type of operation performed, then
you can provide appropriate specializations for the class promote_trait<A,B> which is
declared in <blitz/promote.h>.

40 Blitz++

e If type promotion does depend on the type of operation, then you will need to specialize
the appropriate function objects in <blitz/ops.h>.

Note that you can do these specializations in your own header files (you don’t have to edit
‘promote.h’ or ‘ops.h’).

Manual casts

There are some inconvenient aspects of C-style type promotion. For example, when you divide
two integers in C, the result gets truncated. The same problem occurs when dividing two integer
arrays in Blitz++:

Array<int,1> A(4), B(4);
Array<float,1> C(4);

A=1, 2, 3, b;
B=2, 2, 2, 7;
C=4A/ B; // Result: [0 1 1 0]

The usual solution to this problem is to cast one of the operands to a floating type. For
this purpose, Blitz++ provides a function cast (expr,type) which will cast the result of expr as

type:
C=A/ cast(B, float()); // Result: [0.5 1 1.5 0.714]

The first argument to cast() is an array or expression. The second argument is a dummy
object of the type to which you want to cast. Once compilers support templates more thoroughly,
it will be possible to use this cast syntax:

C = A / cast<float>(B);
But this is not yet supported.

3.8 Single-argument math functions

All of the functions described in this section are element-wise. For example, this code—

Array<float,2> A, B; //
A = sin(B);

results in A(i,j) = sin(B(i,j)) for all (i,j).

ANSI C++ math functions

These math functions are available on all platforms:

abs () Absolute value

acos() Inverse cosine. For real arguments, the return value is in the range [0, 7].

arg() Argument of a complex number (atan2(Im,Re)).

asin() Inverse sine. For real arguments, the return value is in the range [—m/2,7/2].
atan() Inverse tangent. For real arguments, the return value is in the range [—m/2,7/2].

See also atan2() in section Section 3.9 [Math functions 2|, page 43.

ceil() Ceiling function: smallest floating-point integer value not less than the argument.
cexp() Complex exponential; same as exp().
conj() Conjugate of a complex number.

cos() Cosine. Works for complex<T>.

Chapter 3: Array Expressions 41

cosh() Hyperbolic cosine. Works for complex<T>.

csqrt O Complex square root; same as sqrt ().

exp () Exponential. Works for complex<T>.

fabs() Same as abs ().

floor() Floor function: largest floating-point integer value not greater than the argument.
log() Natural logarithm. Works for complex<T>.

log10() Base 10 logarithm. Works for complex<T>.

pow2(), pow3d(), powd (), pows5(), pow6(), pow7 (), powd()
These functions compute an integer power. They expand to a series of multiplica-
tions, so they can be used on any type for which multiplication is well-defined.

sin() Sine. Works for complex<T>.

sinh () Hyperbolic sine. Works for complex<T>.

sqr() Same as pow2 (). Computes x*x. Works for complex<T>.
sqrt () Square root. Works for complex<T>.
tan() Tangent. Works for complex<T>.

tanh () Hyperbolic tangent. Works for complex<T>.

IEEE/System V math functions

These functions are only available on platforms which provide the IEEE Math library (libm.a)
and/or System V Math Library (libmsaa.a). Apparently not all platforms provide all of these
functions, so what you can use on your platform may be a subset of these. If you choose to use
one of these functions, be aware that you may be limiting the portability of your code.

On some platforms, the preprocessor symbols _XOPEN_SOURCE and/or _XOPEN_SOURCE_
EXTENDED need to be defined to use these functions. These symbols can be enabled by compiling
with ~-DBZ_ENABLE_XOPEN_SOURCE. (In previous version of Blitz++, _XOPEN_SOURCE and _XOPEN_
SOURCE_EXTENDED were declared by default. This was found to cause too many problems, so
users must manually enable them with -DBZ_ENABLE_XOPEN_SOURCE.).

In the current version, Blitz++ divides these functions into two groups: IEEE and Sys-
tem V. This distinction is probably artificial. If one of the functions in a group is missing,
Blitz++ won’t allow you to use any of them. You can see the division of these functions in
the files ‘Blitz++/compiler/ieeemath.cpp’ and ‘Blitz++/compiler/sysvmath.cpp’. This ar-
rangement is unsatisfactory and will probably change in a future version.

You may have to link with -1m and/or -1msaa to use these functions.

None of these functions are available for complex<T>.
acosh() Inverse hyperbolic cosine
asinh () Inverse hyperbolic sine
atanh() Inverse hyperbolic tangent
_class() Classification of floating point values. The return type is integer and will be one of:

FP_PLUS_NORM
Positive normalized, nonzero

FP_MINUS_NORM
Negative normalized, nonzero

42

cbrt ()
expml ()
erf ()

erfc()

finite()

ilogb()

Blitz++

FP_PLUS_DENORM
Positive denormalized, nonzero

FP_MINUS_DENORM
Negative denormalized, nonzero

FP_PLUS_ZERO

+0.0
FP_MINUS_ZERO

-0.0
FP_PLUS_INF

Positive infinity

FP_MINUS_INF
Negative infinity

FP_NANS Signalling Not a Number (NaNS)
FP_NANQ Quiet Not a Number (NaNQ)
Cubic root

Computes exp(x)-1

Computes the error function:

2 T
erf(:v) = \/7?/0 e_t dt

Note that for large values of the parameter, calculating can result in extreme loss
of accuracy. Instead, use erfc().

Computes the complementary error function erfc(z) = 1 — erf(z).

Returns a nonzero integer if the parameter is a finite number (i.e. not +INF, -INF,
NaNQ or NaN§).

Returns an integer which is equal to the unbiased exponent of the parameter.

blitz_isnan()

itrunc()

joO
j10
lgamma ()

logb()

logip(O

nearest ()

Returns a nonzero integer if the parameter is NaNQ or NaNS (quiet or signalling
Not a Number).

Round a floating-point number to a signed integer. Returns the nearest signed
integer to the parameter in the direction of 0.

Bessel function of the first kind, order 0.
Bessel function of the first kind, order 1.

Natural logarithm of the gamma function. The gamma function is defined as:
Gamma(z) = / e "t dt
0

Returns a floating-point double that is equal to the unbiased exponent of the pa-
rameter.

Calculates log(1+x), where x is the parameter.

Returns the nearest floating-point integer value to the parameter. If the parameter
is exactly halfway between two integer values, an even value is returned.

Chapter 3: Array Expressions 43

rint () Rounds the parameter and returns a floating-point integer value. Whether rint ()
rounds up or down or to the nearest integer depends on the current floating-point
rounding mode. If you haven’t altered the rounding mode, rint () should be equiv-
alent to nearest(). If rounding mode is set to round towards +INF, rint() is
equivalent to ceil(). If the mode is round toward -INF, rint () is equivalent to
floor (). If the mode is round toward zero, rint () is equivalent to trunc().

rsqrt () Reciprocal square root.

uitrunc()

Returns the nearest unsigned integer to the parameter in the direction of zero.
yo O Bessel function of the second kind, order 0.
y10 Bessel function of the second kind, order 1.

There may be better descriptions of these functions in your system man pages.

3.9 Two-argument math functions
The math functions described in this section take two arguments. Most combinations of these
types may be used as arguments:

e An Array object

e An Array expression

e An index placeholder

e A scalar of type float, double, long double, or complex<T>

ANSI C++ math functions
These math functions are available on all platforms, and work for complex numbers.

atan2(x,y)
Inverse tangent of (y/x). The signs of both parameters are used to determine the
quadrant of the return value, which is in the range [—m, 7]. Works for complex<T>.

blitz::polar(r,t)
Computes ; i.e. converts polar-form to Cartesian form complex numbers. The
blitz:: scope qualifier is needed to disambiguate the ANSI C++ function template
polar(T,T). This qualifier will hopefully disappear in a future version.

pow(x,y) Computes x to the exponent y. Works for complex<T>.

IEEE/System V math functions

See the notes about IEEE/System V math functions in the previous section. None of these
functions work for complex numbers. They will all cast their arguments to double precision.

copysign(x,y)
Returns the x parameter with the same sign as the y parameter.

drem(x,y)
Computes a floating point remainder. The return value r is equal tor = x - n * y,
where n is equal to nearest (x/y) (the nearest integer to x/y). The return value will
lie in the range [-y/2, +y/2]. If y is zero or x is +INF or -INF, NaNQ is returned.

fmod (x,y)
Computes a floating point modulo remainder. The return value r is equal to r = x -
n * y, where n is selected so that r has the same sign as x and magnitude less than
abs(y). In order words, if x > 0, r is in the range [0, |y|], and if x < 0, r is in the
range [-yl, 0].

44 Blitz++

hypot (x,y)
Computes so that underflow does not occur and overflow occurs only if the final
result warrants it.

nextafter(x,y)
Returns the next representable number after x in the direction of y.

remainder (x,y)
Equivalent to drem(x,y).

scalb(x,y)
Calculates.

unordered(x,y)
Returns a nonzero value if a floating-point comparison between x and y would be
unordered. Otherwise, it returns zero.

3.10 Declaring your own math functions on arrays

There are four macros which make it easy to turn your own scalar functions into functions
defined on arrays. They are

BZ_DECLARE_FUNCTION (f) /] 1
BZ_DECLARE_FUNCTION_RET(f,return_type) // 2
BZ_DECLARE_FUNCTION2 (f) // 3

BZ_DECLARE_FUNCTION2_RET(f,return_type) // 4

Use version 1 when you have a function which takes one argument and returns a result of
the same type. For example:

#include <blitz/array.h>
using namespace blitz;

double myFunction(double x)

{
return 1.0 / (1 + x);

BZ_DECLARE_FUNCTION (myFunction)

int main()

{
Array<double,2> A(4,4), B(4,4); // ...
B = myFunction(A);

}

Use version 2 when you have a one argument function whose return type is different than
the argument type, such as

int g(double x);

Use version 3 for a function which takes two arguments and returns a result of the same type,
such as:

double g(double x, double y);
Use version 4 for a function of two arguments which returns a different type, such as:

int g(double x, double y);

Chapter 3: Array Expressions 45

3.11 Tensor notation

Blitz++ arrays support a tensor-like notation. Here’s an example of real-world tensor notation:
Aijk — szck

A is a rank 3 tensor (a three dimensional array), B is a rank 2 tensor (a two dimensional
array), and C'is a rank 1 tensor (a one dimensional array). The above expression sets A(i, j,k)
=B(i,j) * C(k).

To implement this product using Blitz++, we’ll need the arrays and some index placeholders:

Array<float,3> A(4,4,4);
Array<float,2> B(4,4);
Array<float,1> C(4);

firstIndex ij; // Alternately, could just say
secondIndex j; // using namespace blitz::tensor;
thirdIndex k;

Here’s the Blitz++ code which is equivalent to the tensor expression:
A =B(i,j) * C(k);
The index placeholder arguments tell an array how to map its dimensions onto the dimensions
of the destination array. For example, here’s some real-world tensor notation:

ik — Aid gk _Ajkyi

In Blitz++, this would be coded as:

using namespace blitz::tensor;

C=A3,j) * x(k) - A(J,k) * y(i);
This tensor expression can be visualized in the following way:

ey

L [1]

c = A(Lj) * x(k) + A(j. k) " y(i)
Examples of array indexing, subarrays, and slicing.

Here’s an example which computes an outer product of two one-dimensional arrays:
#include <blitz/array.h>

using namespace blitz;

int main()

{
Array<float,1> x(4), y(4);
Array<float,2> A(4,4);

X
y

15 2) 3) 4;
1, 0, 0, 1;
firstIndex 1i;
secondIndex j;
A=x@E) *xy(3);

cout << A << endl;

46 Blitz++

return O;

And the output:

4 x 4
[

W N e
o O OO
o O OO
W N -

Index placeholders can not be used on the left-hand side of an expression. If you need to
reorder the indices, you must do this on the right-hand side.

In real-world tensor notation, repeated indices imply a contraction (or summation). For
example, this tensor expression computes a matrix-matrix product:
Cii — Ak gk
The repeated k index is interpreted as meaning

Cij = E aixby;
k

In Blitz++, repeated indices do not imply contraction. If you want to contract (sum along)
an index, you must use the sum() function:

Array<float,2> A, B, C; // ...
firstIndex i;
secondIndex j;
thirdIndex k;

C = sum(A(i,k) * B(k,j), k);
The sum() function is an example of an array reduction, described in the next section.

Index placeholders can be used in any order in an expression. This example computes a
kronecker product of a pair of two-dimensional arrays, and permutes the indices along the way:

Array<float,2> A, B; // ...
Array<float,4> C; // ...
fourthIndex 1;

C = A(,j) * B(k,i);
This is equivalent to the tensor notation

Cijkl — AljBki

Tensor-like notation can be mixed with other array notations:

Array<float,2> A, B; // ...
Array<double,4> C; // ...

C = cos(A(1,j)) * sin(B(k,1i)) + 1./(i+j+k+1);
An important efficiency note about tensor-like notation: the right-hand side of an expression
is completely evaluated for every element in the destination array. For example, in this code:

Array<float,1> x(4), y(4);
Array<float,2> A(4,4):

A = cos(x(1)) * sin(y(j));
The resulting implementation will look something like this:

Chapter 3: Array Expressions 47

for (int n=0; n < 4; ++n)
for (int m=0; m < 4; ++m)
A(n,m) = cos(x(n)) * sin(y(m));

The functions cos and sin will be invoked sixteen times each. It’s possible that a good
optimizing compiler could hoist the cos evaluation out of the inner loop, but don’t hold your
breath — there’s a lot of complicated machinery behind the scenes to handle tensor notation, and
most optimizing compilers are easily confused. In a situation like the above, you are probably
best off manually creating temporaries for cos(x) and sin(y) first.

3.12 Array reductions

Currently, Blitz++ arrays support two forms of reduction:

e Reductions which transform an array into a scalar (for example, summing the elements).
These are referred to as complete reductions.

e Reducing an N dimensional array (or array expression) to an N-1 dimensional array expres-
sion. These are called partial reductions.

3.13 Complete reductions

Complete reductions transform an array (or array expression) into a scalar. Here are some
examples:

Array<float,2> A(3,3);

A=0, 1, 2,

3, 4, 5,

6, 7, 8;
cout << sum(A) << endl // 36
<< min(A) << endl // 0

<< count(A >= 4) << endl; // 5

Here are the available complete reductions:

sum() Summation (may be promoted to a higher-precision type)
product ()

Product
mean () Arithmetic mean (promoted to floating-point type if necessary)
min() Minimum value
max () Maximum value
minIndex ()

Index of the minimum value (TinyVector<int,N_rank>)

maxIndex ()
Index of the maximum value (TinyVector<int,N_rank>)

count() Counts the number of times the expression is logical true (int)
any () True if the expression is true anywhere (bool)
all(Q) True if the expression is true everywhere (bool)

Note: minIndex () and maxIndex () return TinyVectors, even when the rank of the array (or
array expression) is 1.

Reductions can be combined with where expressions (Section 3.15 [Where expr|, page 50)
to reduce over some part of an array. For example, sum(where(A > 0, A, 0)) sums only the
positive elements in an array.

48 Blitz++

3.14 Partial Reductions

Here’s an example which computes the sum of each row of a two-dimensional array:

Array<float,2> A; // ...
Array<float,1> rs; /] ...
firstIndex 1i;
secondIndex j;

rs = sum(A, j);
The reduction sum() takes two arguments:
e The first argument is an array or array expression.

e The second argument is an index placeholder indicating the dimension over which the
reduction is to occur.

Reductions have an important restriction: It is currently only possible to reduce over the
last dimension of an array or array expression. Reducing a dimension other than the last would
require Blitz++ to reorder the dimensions to fill the hole left behind. For example, in order for
this reduction to work:

Array<float,3> A; // ...
Array<float,2> B; // ...
secondIndex j;

// Reduce over dimension 2 of a 3-D array?
B = sum(4A, j);
Blitz++ would have to remap the dimensions so that the third dimension became the second.
It’s not currently smart enough to do this.

However, there is a simple workaround which solves some of the problems created by this
limitation: you can do the reordering manually, prior to the reduction:
B = sum(A(i,k,j), k);
Writing A(i,k, j) interchanges the second and third dimensions, permitting you to reduce
over the second dimension. Here’s a list of the reduction operations currently supported:

sum() Summation
product ()
Product
mean () Arithmetic mean (promoted to floating-point type if necessary)
min() Minimum value
max () Maximum value
minIndex ()

Index of the minimum value (int)

maxIndex()
Index of the maximum value (int)

count() Counts the number of times the expression is logical true (int)
any () True if the expression is true anywhere (bool)
allQ) True if the expression is true everywhere (bool)

first() First index at which the expression is logical true (int); if the expression is logical
true nowhere, then tiny(int()) (INT_MIN) is returned.

Chapter 3: Array Expressions 49

last () Last index at which the expression is logical true (int); if the expression is logical
true nowhere, then huge (int ()) (INT_MAX) is returned.

The reductions any (), al1(), and first() have short-circuit semantics: the reduction will
halt as soon as the answer is known. For example, if you use any (), scanning of the expression
will stop as soon as the first true value is encountered.

To illustrate, here’s an example:
Array<int, 2> A(4,4);

A= 3, 8, 0, 1,
1, -1, 9, 3,
2, -5, -1, 1,
4, 3, 4, 2;

Array<float, 1> z;
firstIndex i;
secondIndex j;

z = sum(A(j,1), j);
The array z now contains the sum of A along each column:
[10 5 12 7 1]

This table shows what the result stored in z would be if sum() were replaced with other
reductions:

sum L 10 5 12 7]
mean [2.5 1.25 3 1.75 1]
min [1 -5 -1 1]
minIndex [1 2 2 0]
max [4 8 9 3]
maxIndex L 3 0 1 1]
first((A < 0), j) [-2147483648 1 2 -2147483648]
product [24 120 0 6]
count ((A(j,i) > 0), j) [4 2 2 4]
any (abs(A(§,1)) > 4, §) [0 1 1 01
all(A(§,i) > 0, 3) [1 0 0 1]

Note: the odd numbers for first() are tiny(int()) i.e. the smallest number representable by
an int. The exact value is machine-dependent.

The result of a reduction is an array expression, so reductions can be used as operands in an
array expression:

Array<int,3> A;
Array<int,2> B;
Array<int,1> C; // ...

secondIndex j;
thirdIndex k;

B = sqrt(sum(sqr(d), k));

// Do two reductions in a row
C = sum(sum(A, k), j);

Note that this is not allowed:

50 Blitz++

Array<int,2> A;
firstIndex i;
secondIndex j;

// Completely sum the array?
int result = sum(sum(4, j), i);

You cannot reduce an array to zero dimensions! Instead, use one of the global functions
described in the previous section.

3.15 where statements
Blitz++ provides the where function as an array expression version of the (7 :) operator. The
syntax is:

where (array-exprl, array-expr2, array-expr3)

Wherever array-exprl is true, array-expr2 is returned. Where array-exprl is false,
array-expr3 is returned. For example, suppose we wanted to sum the squares of only the
positive elements of an array. This can be implemented using a where function:

double posSquareSum = sum(where(A > 0, pow2(A), 0));

Chapter 4: Stencils 51

4 Stencils

Blitz++ provides an implementation of stencil objects which is currently experimental. This
means that the exact details of how they are declared and used may change in future releases.
Use at your own risk.

4.1 Motivation: a nicer notation for stencils

Suppose we wanted to implement the 3-D acoustic wave equation using finite differencing. Here
is how a single iteration would look using subarray syntax:

Range I(1,N-2), J(1,N-2), K(1,N-2);

P3(I,J,K) = (2-6%c(I,J,K)) * P2(I,J,K)
+ ¢(I,J,K)*x(P2(I-1,J,K) + P2(I+1,J,K) + P2(I,J-1,K) + P2(I,J+1,K)
+ P2(I,J,K-1) + P2(I,J,K+1)) - P1(I,J,K);
This syntax is a bit klunky. With stencil objects, the implementation becomes:

BZ_DECLARE_STENCIL4 (acoustic3D_stencil,P1,P2,P3,c)
P3 = 2 * P2 + ¢ * Laplacian3D(P2) - P1;
BZ_END_STENCIL

applyStencil (acoustic3D_stencil(), P1, P2, P3, c);

4.2 Declaring stencil objects

A stencil declaration may not be inside a function. It can appear inside a class declaration (in
which case the stencil object is a nested type).

Stencil objects are declared using the macros BZ_DECLARE_STENCIL1, BZ_DECLARE_STENCIL2,
etc. The number suffix is how many arrays are involved in the stencil (in the above example, 4
arrays— P1, P2, P3, ¢ — are used, so the macro BZ_DECLARE_STENCIL4 is invoked).

The first argument is a name for the stencil object. Subsequent arguments are names for the
arrays on which the stencil operates.

After the stencil declaration, the macro BZ_END_STENCIL must appear (or the macro BZ_
END_STENCIL_WITH_SHAPE, described in the next section).

In between the two macros, you can have multiple assignment statements, if /else/elseif con-
structs, function calls, loops, etc.

Here are some simple examples:

BZ_DECLARE_STENCIL2(smooth2D,A,B)
A = (B(0,0) + B(0,1) + B(0,-1) + B(1,0) + B(-1,0)) / 5.0;
BZ_END_STENCIL

BZ_DECLARE_STENCIL4 (acoustic2D,P1,P2,P3,c)
A=2x%P2+ c* (-4 x P2(0,0) + P2(0,1) + P2(0,-1) + P2(1,0) + P2(-1,0))
- P1;
BZ_END_STENCIL

BZ_DECLARE_STENCIL8(prop2D,E1,E2,E3,M1,M2,M3,cE,cM)
E3 = 2 % E2 + cE * Laplacian2D(E2) - E1;
M3 = 2 * M2 + cM * Laplacian2D(M2) - M1;

52 Blitz++

BZ_END_STENCIL

BZ_DECLARE_STENCIL3(smooth2Db,A,B,c)
if ((c > 0.0) && (c < 1.0))
A =c * (B(0,0) + B(0,1) + B(0,-1) + B(1,0) + B(-1,0)) / 5.0
+ (1-c)*B;
else
A = 0;
BZ_END_STENCIL
Currently, a stencil can take up to 11 array parameters.

You can use the notation A(i, j,k) to read the element at an offset (i,j,k) from the current
element. If you omit the parentheses (i.e. as in “A” then the current element is read.

You can invoke stencil operators which calculate finite differences and laplacians.

4.3 Automatic determination of stencil extent

In stencil declarations such as

BZ_DECLARE_STENCIL2(smooth2D,A,B)
A = (B(0,0) + B(0,1) + B(0,-1) + B(1,0) + B(-1,0)) / 5.0;
BZ_END_STENCIL

Blitz++ will try to automatically determine the spatial extent of the stencil. This will usually
work for stencils defined on integer or float arrays. However, the mechanism does not work well
for complex-valued arrays, or arrays of user-defined types. If you get a peculiar error when you
try to use a stencil, you probably need to tell Blitz++ the special extent of the stencil manually.

You do this by ending a stencil declaration with BZ_END_STENCIL_WITH_SHAPE:

BZ_DECLARE_STENCIL2(smooth2D,A,B)
A = (B(0,0) + B(0,1) + B(0,-1) + B(1,0) + B(-1,0)) / 5.0;
BZ_END_STENCIL_WITH_SHAPE(shape(-1,-1),shape(+1,+1))

The parameters of this macro are: a TinyVector (constructed by the shape() function)
containing the lower bounds of the stencil offsets, and a TinyVector containing the upper
bounds. You can determine this by looking at the the terms in the stencil and finding the
minimum and maximum value of each index:

A= (B(O, 0
+ B(0, +1)
+ B(0, -1)
+ B(+1, 0)
+ B(-1, 0)) / 5.0;
min indices -1, -1
max indices +1, +1

4.4 Stencil operators

This section lists all the stencil operators provided by Blitz++. They assume that an array
represents evenly spaced data points separated by a distance of h. A 2nd-order accurate operator
has error term O(h?); a 4th-order accurate operator has error term O(h*).

All of the stencils have factors associated with them. For example, the centrall2 operator
is a discrete first derivative which is 2nd-order accurate. Its factor is 2h; this means that to
get the first derivative of an array A, you need to use centrall2(A,firstDim) /(2h). Typically
when designing stencils, one factors out all of the h terms for efficiency.

Chapter 4: Stencils 53

The factor terms always consist of an integer multiplier (often 1) and a power of h. For
ease of use, all of the operators listed below are provided in a second “normalized” version in
which the integer multiplier is 1. The normalized versions have an n appended to the name, for
example centrall2n is the normalized version of centrall2, and has factor h instead of 2h.

These operators are defined in blitz/array/stencilops.h if you wish to see the implemen-
tation.

4.4.1 Central differences

centrall2(A,dimension)
1st derivative, 2nd order accurate. Factor: 2h

central22(A,dimension)
2nd derivative, 2nd order accurate. Factor: h?

| -1 0 1
1 -2 1

central32(A,dimension)
3rd derivative, 2nd order accurate. Factor: 2h?

| 2 -1 0 1
-1 2 2 1

central42(A,dimension)
4th derivative, 2nd order accurate. Factor: h*

centrall4(A,dimension)
1st derivative, 4th order accurate. Factor: 12h

1 -8 8 -1

central24 (A,dimension)
2nd derivative, 4th order accurate. Factor: 12h>

|2 -1 0 1 2
| -1 16 -30 16 -1

central34(A,dimension)
3rd derivative, 4th order accurate. Factor: 8h3

| 2 -1 0 1 2
| -8 13 13 8

central44 (A,dimension)
4th derivative, 4th order accurate. Factor: 6h*

| 2 -1 0 1 2
| 12 -39 56 -39 12

Note that the above are available in normalized versions centrall2n, central22n, ...
central44n which have factors of h, h?, h3, or h* as appropriate.

54 Blitz++

These are available in multicomponent versions: for example,
centrall2(A, component,dimension) gives the centrall2 operator for the specified
component (Components are numbered 0, 1, ... N-1).

4.4.2 Forward differences

forwardl1(A,dimension)
1st derivative, 1st order accurate. Factor: h

-1 1

forward21(A,dimension)
2nd derivative, 1st order accurate. Factor: h?

forward31(A,dimension)
3rd derivative, 1st order accurate. Factor: h3

0O 1 2
1 -2 1

forward41(A,dimension)
4th derivative, 1st order accurate. Factor: h*

|0 1 2 3 4

forward12(A,dimension)
1st derivative, 2nd order accurate. Factor: 2h

forward22(A,dimension)
2nd derivative, 2nd order accurate. Factor: h?

0 1 2 3
2 5 4 -1

forward32(A,dimension)
3rd derivative, 2nd order accurate. Factor: 2h3

0 1 2 3 4
| -5 18 24 14 -3

forward42(A,dimension)
4th derivative, 2nd order accurate. Factor: h*

0o 1 2 3 4 5
| 3 -14 26 -24 11 -2

Note that the above are available in normalized versions forwardlln, forward2inm, ...,
forward42n which have factors of h, h%, h3, or h* as appropriate.

These are available in multicomponent versions: for example,
forward11(A,component,dimension) gives the forwardll operator for the specified
component (Components are numbered 0, 1, ... N-1).

Chapter 4: Stencils 55

4.4.3 Backward differences

backward11l(A,dimension)
1st derivative, 1st order accurate. Factor: h

backward21 (A,dimension)
2nd derivative, 1st order accurate. Factor: h?

backward31(A,dimension)
3rd derivative, 1st order accurate. Factor: h3

| 3 2 -1 0
-1 3 -3 1

backward41(A,dimension)
4th derivative, 1st order accurate. Factor: h*

| 4 -3 2 -1 0
|1 4 6 -4 1

backward12(A,dimension)
1st derivative, 2nd order accurate. Factor: 2h

| 2 -1 0
| 1 -4 3

backward22(A,dimension)
2nd derivative, 2nd order accurate. Factor: h?

| 3 -2 -1 0
| -1 4 -5 2

backward32(A,dimension)
3rd derivative, 2nd order accurate. Factor: 2h*

| 4 3 2 -1 0
| 3 -14 24 -18 5

backward42(A,dimension)
4th derivative, 2nd order accurate. Factor: h*

| 5 4 3 2 -1 0
| 2 11 24 26 -14 3

Note that the above are available in normalized versions backwardlin, backward2in, ...,
backward42n which have factors of h, h?, h3, or h* as appropriate.

These are available in multicomponent versions: for example,
backward42 (A, component,dimension) gives the backward42 operator for the speci-
fied component (Components are numbered 0, 1, ... N-1).

56 Blitz++

4.4.4 Laplacian (V?) operators

Laplacian2D(A)
2nd order accurate, 2-dimensional laplacian. Factor: h?
| -1 0 1
-1 1
0 1 -4 1
1 1
Laplacian3D(A)
2nd order accurate, 3-dimensional laplacian. Factor: h?
Laplacian2D4(A)

4th order accurate, 2-dimensional laplacian. Factor: 12h?

-2 -1 0 1 2
-2 -1
-1 16
0 -1 16 -60 16 -1
1 16
2 -1
Laplacian3D4(A)

4th order accurate, 3-dimensional laplacian. Factor: 12h?

Note that the above are available in normalized versions Laplacian2D4n, Laplacian3D4n
which have factors h?.

4.4.5 Gradient (V) operators

These return TinyVectors of the appropriate numeric type and length:

grad2D(A)
2nd order, 2-dimensional gradient (vector of first derivatives), generated using the
centrall2 operator. Factor: 2h

grad2D4 (A)
4th order, 2-dimensional gradient, using centrall4 operator. Factor: 12h

grad3D(A)
2nd order, 3-dimensional gradient, using centrall2 operator. Factor: 2h

grad3D4 (A)
4th order, 3-dimensional gradient, using centrall4 operator. Factor: 12h

These are available in normalized versions grad2Dn, grad2D4n, grad3Dn and grad3D4n which
have factors h.
4.4.6 Jacobian operators

The Jacobian operators are defined over 3D vector fields only (e.g.

Array<TinyVector<double,3>,3>). They return a TinyMatrix<T,3,3> where T is
the numeric type of the vector field.
Jacobian3D(A)

2nd order, 3-dimensional Jacobian using the centrall2 operator. Factor: 2h.
Jacobian3D4 (A)

4th order, 3-dimensional Jacobian using the centrall4 operator. Factor: 12h.

These are also available in normalized versions Jacobian3Dn and Jacobain3D4n which have
factors h.

Chapter 4: Stencils 57

4.4.7 Grad-squared operators

There are also grad-squared operators, which return TinyVectors of second derivatives:

gradSqr2D(A)
2nd order, 2-dimensional grad-squared (vector of second derivatives), generated us-
ing the central22 operator. Factor: h?

gradSqr2D4 (A)
4th order, 2-dimensional grad-squared, using central24 operator. Factor: 12h?

gradSqr3D(A)
2nd order, 3-dimensional grad-squared, using the central22 operator. Factor: h?

gradSqr3D4 (A)
4th order, 3-dimensional grad-squared, using central24 operator. Factor: 12h?

Note that the above are available in normalized versions gradSqr2Dn, gradSqr2D4n,
gradSqr3Dn, gradSqr3D4n which have factors h?.

4.4.8 Curl (Vx) operators

These curl operators return scalar values:

curl(Vx,Vy)
2nd order curl operator using the centrall2 operator. Factor: 2h

curl4 (Vx,Vy)
4th order curl operator using the centrall4 operator. Factor: 12h

curl2D (V)
2nd order curl operator on a 2D vector field (e.g. Array<TinyVector<float,2>,2>),
using the centrall2 operator. Factor: 2h

curl2D4 (V)
4th order curl operator on a 2D vector field, using the centrall2 operator. Factor:
12h

Available in normalized forms curln, curl4n, curl2Dn, curl2D4n.

These curl operators return three-dimensional TinyVectors of the appropriate numeric type:

curl (Vx,Vy,Vz)
2nd order curl operator using the centrall2 operator. Factor: 2h

curld (Vx,Vy,Vz)
4th order curl operator using the centrall4 operator. Factor: 12A

curl(V) 2nd order curl operator on a 3D vector field (e.g. Array<TinyVector<double,3>,3>,
using the centrall2 operator. Factor: 2h

curld (V) 4th order curl operator on a 3D vector field, using the centrall4 operator. Factor:
12h

Note that the above are available in normalized versions curln and curl4n, which have
factors of h.
4.4.9 Divergence (V-) operators

The divergence operators return a scalar value.

div(Vx,Vy)
2nd order div operator using the centrall2 operator. Factor: 2h

58 Blitz++

div4 (Vx,Vy)

4th order div operator using the centrall4 operator. Factor: 12h
div(Vx,Vy,Vz)

2nd order div operator using the centrall2 operator. Factor: 2h

div4 (Vx,Vy,Vz)
4th order div operator using the centrall4 operator. Factor: 12h

div2D(V) 2nd order div operator on a 2D vector field, using the centrall2 operator. Factor:
2h

div2D4 (V)
2nd order div operator on a 2D vector field, using the centrall4 operator. Factor:
12h

div3D(V) 2nd order div operator on a 3D vector field, using the centrall2 operator. Factor:
2h

div3D4 (V)
2nd order div operator on a 3D vector field using the centrall4 operator. Factor:
12h

These are available in normalized versions divn, div4n, div2Dn, div2D4n, div3Dn, and
div3D4n which have factors of h.

4.4.10 Mixed partial derivatives

mixed22(A,diml,dim2)
2nd order accurate, 2nd mixed partial derivative. Factor: 4h?

mixed24(A,diml,dim2)
4th order accurate, 2nd mixed partial derivative. Factor: 144h?

There are also normalized versions of the above, mixed22n and mixed24n which have factors
h?.

4.5 Declaring your own stencil operators

You can declare your own stencil operators using the macro BZ_DECLARE_STENCIL_OPERATOR1.
For example, here is the declaration of Laplacian2D:

BZ_DECLARE_STENCIL_OPERATOR1(Laplacian2D, A)
return -4*xA(0,0) + A(-1,0) + A(1,0) + ACO0,-1) + A(0,1);
BZ_END_STENCIL_OPERATOR
To declare a stencil operator on 3 operands, use the macro BZ_DECLARE_STENCIL_OPERATORS.
Here is the declaration of div:

BZ_DECLARE_STENCIL_QPERATOR3(div,vx,vy,vz)
return centrall2(vx,firstDim) + centrall2(vy,secondDim)
+ centrall2(vz,thirdDim);
BZ_END_STENCIL_OPERATOR

The macros aren’t magical; they just declare an inline template function with the names and
arguments you specify. For example, the declaration of div could also be written

template<class T>
inline typename T::T_numtype div(T& vx, T& vy, T& vz)
{
return centrall2(vx,firstDim) + centrall2(vy,secondDim)
+ centrall2(vz,thirdDim) ;

Chapter 4: Stencils 59

}
The template parameter T is an iterator type for arrays.

You are encouraged to use the macros when possible, because it is possible the implementation
could be changed in the future.

To declare a difference operator, use this syntax:

BZ_DECLARE_DIFF (centrall2,A) {
return A.shift(1,dim) - A.shift(-1,dim);
}

The method shift (offset,dim) retrieves the element at offset in dimension dim.

Stencil operator declarations cannot occur inside a function. If declared inside a class, they
are scoped by the class.

4.6 Applying a stencil object

The syntax for applying a stencil is:
applyStencil(stencilname(),A,B,C...,F);

Where stencilname is the name of the stencil, and A,B,C,...,F are the arrays on which
the stencil operates.

For examples, see ‘examples/stencil.cpp’ and ‘examples/stencil2.cpp’.

Blitz++ interrogates the stencil object to find out how large its footprint is. It only applies
the stencil over the region of the arrays where it won’t overrun the boundaries.

60

Blitz++

Chapter 5: Multicomponent, complex, and user type Arrays 61

5 Multicomponent, complex, and user type Arrays

5.1 Multicomponent and complex arrays

Multicomponent arrays have elements which are vectors. Examples of such arrays are vector
fields, colour images (which contain, say, RGB tuples), and multispectral images. Complex-
valued arrays can also be regarded as multicomponent arrays, since each element is a 2-tuple of
real values.

Here are some examples of multicomponent arrays:

// A 3-dimensional array; each element is a length 3 vector of float
Array<TinyVector<float,3>,3> A;

// A complex 2-dimensional array
Array<complex<double>,2> B;

// A 2-dimensional image containing RGB tuples
struct RGB24 {
unsigned char r, g, b;

}s
Array<RGB24,2> C;

5.1.1 Extracting components

Blitz++ provides some special support for such arrays. The most important is the ability to
extract a single component. For example:

Array<TinyVector<float,3>,2> A(128,128);

Array<float,2> B = A.extractComponent(float(), 1, 3);

B = 0;

The call to extractComponent returns an array of floats; this array is a view of the second
component of each element of A. The arguments of extractComponent are: (1) the type of the
component (in this example, float); (2) the component number to extract (numbered 0, 1, ...
N-1); and (3) the number of components in the array.

This is a little bit messy, so Blitz++ provides a handy shortcut using operator[]:

Array<TinyVector<float,3>,2> A(128,128);
A[1] = 0;

The number inside the square brackets is the component number. However, for this operation
to work, Blitz++ has to already know how many components there are, and what type they are.
It knows this already for TinyVector and complex<T>. If you use your own type, though, you
will have to tell Blitz++ this information using the macro BZ_DECLARE_MULTICOMPONENT_TYPE().
This macro has three arguments:

BZ_DECLARE_MULTICOMPONENT_TYPE(T_element, T_componentType, numComponents)

T_element is the element type of the array. T_componentType is the type of the components
of that element. numComponents is the number of components in each element.

An example will clarify this. Suppose we wanted to make a colour image, stored in 24-bit
HSV (hue-saturation-value) format. We can make a class HSV24 which represents a single pixel:

#include <blitz/array.h>

using namespace blitz;

62 Blitz++

class HSV24 {

public:
// These constants will makes the code below cleaner; we can
// refer to the components by name, rather than number.

static const int hue=0, saturation=1, value=2;

HSV24() { }
HSV24 (int hue, int saturation, int value)
: h_(hue), s_(saturation), v_(value)

{1}
// Some other stuff here, obviously

private:
unsigned char h_, s_, v_;

};

Right after the class declaration, we will invoke the macro BZ_DECLARE_MULTICOMPONENT_
TYPE to tell Blitz++ about HSV24:

// HSV24 has 3 components of type unsigned char
BZ_DECLARE_MULTICOMPONENT_TYPE(HSV24, unsigned char, 3);

Now we can create HSV images and modify the individual components:

int main()

{
Array<HSV24,2> A(128,128); // A 128x128 HSV image
// Extract a greyscale version of the image
Array<unsigned char,2> A_greyscale = A[HSV24::valuel;
// Bump up the saturation component to get a
// pastel effect
A[HSV24: :saturation] *= 1.3;
// Brighten up the middle of the image
Range middle(32,96);
A[HSV24: :value] (middle,middle) *= 1.2;

}

5.1.2 Special support for complex arrays

Since complex arrays are used frequently, Blitz++ provides two special methods for getting the
real and imaginary components:

Array<complex<float>,2> A(32,32);

3

real(A) 1.0
0.0;

imag(A)

The function real (A) returns an array view of the real component; imag(A) returns a view
of the imaginary component.

Chapter 5: Multicomponent, complex, and user type Arrays 63

Note: Blitz++ provides numerous math functions defined over complex-valued arrays, such
as conj, polar, arg, abs, cos, pow, etc. See the section on math functions (Section 3.8 [Math
functions 1], page 40) for details.

5.1.3 Zipping together expressions

Blitz++ provides a function zip() which lets you combine two or more expressions into a single
component. For example, you can combine two real expressions into a complex expression, or
three integer expressions into an HSV24 expression. The function has this syntax:

resultexpr zip(exprl, expr2, T_element)

resultexpr zip(exprl, expr2, expr3, T_element) ** not available yet
resultexpr zip(exprl, expr2, expr3, expr4, T_element) ** not available yet

The types resultexpr, exprl and expr2 are array expressions. The third argument is the
type you want to create. For example:
int N = 16;
Array<complex<float>,1> A(N);
Array<float,1> theta(N);

A = zip(cos(theta), sin(theta), complex<float>());
The above line is equivalent to:
for (int i=0; i < N; ++i)
A[i] = complex<float>(cos(thetal[i]), sin(thetalil));

5.2 Creating arrays of a user type

You can use the Array class with types you have created yourself, or types from another library.
If you want to do arithmetic on the array, whatever operators you use on the arrays have to be
defined on the underlying type.

For example, here’s a simple class for doing fixed point computations in the interval [0,1]:

#include <blitz/array.h>
#include <blitz/numinquire.h> // for huge()

using namespace blitz;

// A simple fixed point arithmetic class which represents a point
// in the interval [0,1].
class FixedPoint {

public:
// The type to use for the mantissa
typedef unsigned int T_mantissa;

FixedPoint() { }

FixedPoint (T_mantissa mantissa)
{
mantissa_ = mantissa;

}

FixedPoint (double value)
{
assert((value >= 0.0) && (value <= 1.0));
mantissa_ = static_cast<T_mantissa>(value * huge(T_mantissa()));

64 Blitz++

FixedPoint operator+(FixedPoint x)
{ return FixedPoint(mantissa_ + x.mantissa_); }

double value() const
{ return mantissa_ / double(huge(T_mantissa())); }

private:
T_mantissa mantissa_;

};

ostream& operator<<(ostream& os, const FixedPoint& a)
{

os << a.value();

return os;

The function huge(T) returns the largest representable value for type T; in the example
above, it’s equal to UINT_MAX.

The FixedPoint class declares three useful operations: conversion from double, addition,
and outputing to an ostream. We can use all of these operations on an Array<FixedPoint>
object:

#include <fixed-point.h> // FixedPoint class
int main()
{
// Create an array using the FixedPoint class:

Array<FixedPoint, 2> A(4,4), B(4,4);

A=

>

B

>

-

o O OO
N O = O,
O = OO
0 N N o
o O OO
o O N

M

W o ww
o O OO

B = A+ 0.05;
cout << "B = " << B << endl;
return O;

}

Note that the array A is initialized using a comma-delimited list of double; this
makes use of the constructor FixedPoint(double). The assignment B = A+ 0.05 uses
FixedPoint::operator+(FixedPoint), with an implicit conversion from double to
FixedPoint. Formatting the array B onto the standard output stream is done using the output
operator defined for FixedPoint.

Here’s the program output:

B=4x4
[0.55 0.35 0.85 0.25
0.15 0.35 0.25 0.95
0.05 0.05 0.75 0.45

Chapter 6: Indirection 65

6 Indirection

Indirection is the ability to modify or access an array at a set of selected index values. Blitz++
provides several forms of indirection:

e Using a list of array positions: this approach is useful if you need to modify an array at a
set of scattered points.

e Cartesian-product indirection: as an example, for a two-dimensional array you might have
a list I of rows and a list J of columns, and you want to modify the array at all (i,j) positions
where i is in I and j is in J. This is a cartesian product of the index sets I and J.

e Over a set of strips: for efficiency, you can represent an arbitrarily-shaped subset of an array
as a list of one-dimensional strips. This is a useful way of handling Regions Of Interest

(ROIs).
=
u

|| | i st <TinyVector<int,2>> |;

Alll = 0;
H

ﬁ [ist<int> 1, J;

AlindexSet(1,J)] = 0;

1IN .

| i st <Rect Donmai n<2>> RO :

Mm] = 0;

Three styles of indirection.!

In all cases, Blitz++ expects a Standard Template Library container. Some useful
STL containers are list<>, vector<>, deque<> and set<> Documentation of these
classes is often provided with your compiler, or see also the good documentation at
http://www.sgi.com/Technology/STL/. STL containers are used because they are widely
available and provide easier manipulation of “sets” than Blitz++ arrays. For example, you can
easily expand and merge sets which are stored in STL containers; doing this is not so easy with
Blitz++ arrays, which are designed for numerical work.

STL containers are generally included by writing

1 From top to bottom: (1) using a list of array positions; (2) Cartesian-product indirection; (3) using a set of
strips to represent an arbitrarily-shaped subset of an array.

http://www.sgi.com/Technology/STL/

66 Blitz++

#include <list> // for list<>
#include <vector> // for vector<>
#include <deque> // for deque<>
#include <set> // for set<>

The [] operator is overloaded on arrays so that the syntax array[container] provides an
indirect view of the array. So far, this indirect view may only be used as an lvalue (i.e. on the
left-hand side of an assignment statement).

The examples in the next sections are available in the Blitz++ distribution in
‘<examples/indirect.cpp>’.

6.1 Indirection using lists of array positions

The simplest kind of indirection uses a list of points. For one-dimensional arrays, you can just
use an STL container of integers. Example:

Array<int,1> A(5), B(5);
A = 0;
B=1, 2, 3, 4, 5;

vector<int> I;
I.push_back(2);
I.push_back(4);
I.push_back(1);

A[I] = B;
After this code, the array A contains [023 05].

Note that arrays on the right-hand-side of the assignment must have the same shape as the
array on the left-hand-side (before indirection). In the statement A[I] = B, A and B must have
the same shape, not I and B.

For multidimensional arrays, you can use an STL container of TinyVector<int,N_rank>
objects. Example:

Array<int,2> A(4,4), B(4,4);
A = 0;
B = 10*tensor::i + tensor::j;

typedef TinyVector<int,2> coord;

list<coord> I;
I.push_back(coord(1,1));
I.push_back(coord(2,2));

A[I] = B;
After this code, the array A contains:

0o o o0 ©
o 11 0 O
0O 0 22 O
O o o0 ©

(The tensor: :i notation is explained in the section on index placeholders Section 3.6 [Index
placeholders|, page 37).

Chapter 6: Indirection 67

6.2 Cartesian-product indirection

The Cartesian product of the sets I, J and K is the set of (i,j,k) tuples for which i is in I, j is in
J, and k is in K.

Blitz++ implements cartesian-product indirection using an adaptor which takes a set of STL
containers and iterates through their Cartesian product. Note that the cartesian product is
never explicitly created. You create the Cartesian-product adaptor by calling the function:

template<class T_container>
indexSet(T_container& c1, T_container& c2, ...)

The returned adaptor can then be used in the [] operator of an array object.
Here is a two-dimensional example:

Array<int,2> A(6,6), B(6,6);

A = 0;

B = 10*tensor::i + tensor::j;

vector<int> I, J;
I.push_back(1);
I.push_back(2);
I.push_back(4);

J.push_back(0) ;
J.push_back(2);
J.push_back(5);

AlindexSet(I,J)] = B;
After this code, the A array contains:
0 0 0 0 0 0

10 0 12 0 0 15
20 0 22 0 O 25
0o o o0 o0 o0 ©O
40 O 42 0 O 45
o o o0 o0 o0 o

All the containers used in a cartesian product must be the same type (e.g. all vector<int> or
all set<TinyVector<int,2> >), but they may be different sizes. Singleton containers (containers
containing a single value) are fine.

6.3 Indirection with lists of strips

You can also do indirection with a container of one-dimensional strips. This is useful when
you want to manipulate some arbitrarily-shaped, well-connected subdomain of an array. By
representing the subdomain as a list of strips, you allow Blitz++ to operate on vectors, rather
than scattered points; this is much more efficient.

Strips are represented by objects of type RectDomain<N>, where N is the dimensionality of
the array. The RectDomain<N> class can be used to represent any rectangular subdomain, but
for indirection it is only used to represent strips.

You create a strip by using this function:

RectDomain<N> strip(TinyVector<int,N> start,
int stripDimension, int ubound) ;

The start parameter is where the strip starts; stripDimension is the dimension in which the
strip runs; ubound is the last index value for the strip. For example, to create a 2-dimensional
strip from (2,5) to (2,9), one would write:

68 Blitz++

TinyVector<int,2> start(2,5);
RectDomain<2> myStrip = strip(start,secondDim,9);
Here is a more substantial example which creates a list of strips representing a circle subset
of an array:
const int N = 7;
Array<int,2> A(N,N), B(N,N);
typedef TinyVector<int,2> coord;

A = 0;
B =1;
double centre_i = (N-1)/2.0;
double centre_j = (N-1)/2.0;

double radius = 0.8 * N/2.0;

// circle will contain a list of strips which represent a circular
// subdomain.

list<RectDomain<2> > circle;
for (int i=0; i < N; ++i)
{
double jdist2 = pow2(radius) - pow2(i-centre_i);
if (jdist2 < 0.0)
continue;

int jdist = int(sqrt(jdist2));
coord startPos(i, int(centre_j - jdist));
circle.push_back(strip(startPos, secondDim, int(centre_j + jdist)));

}

// Set only those points in the circle subdomain to 1
A[circle] = B;

After this code, the A array contains:

0 0 00 0 0 O
0 01 1 1 00
o1 1 1 1 1 O
61 1 1 1 1 O
601 1 1 1 10
0 01 1 1 0O
0 0 00 0 0 O

Chapter 7: TinyVector 69

7 TinyVector

The TinyVector class provides a small, lightweight vector object whose size is known at compile
time. It is included via the header <blitz/tinyvec.h>.

Note that TinyVector lives in the blitz namespace, so you will need to refer to it as
blitz::TinyVector, or use the directive using namespace blitz;.

The Blitz++ Array object uses TinyVector internally, so if you include <blitz/array.h>,
the TinyVector header is automatically included. However, to use TinyVector expressions, you
will need to include <blitz/tinyvec-et.h>.

7.1 Template parameters and types
The TinyVector<T,N> class has two template parameters:
T is the numeric type of the vector (float, double, int, complex<float>, etc.;
N is the number of elements in the vector.
Inside the TinyVector class, these types are declared:

T_numtype
is the numeric type stored in the vector (the template parameter T)

T_vector is the vector type TinyVector<T,N>.
iterator is an STL-style iterator.

constIterator
is an STL-style const iterator.

7.2 Constructors

TinyVector();

The elements of the vector are left uninitialized.
TinyVector(const TinyVector<T,N>& x);

The elements of vector x are copied.
TinyVector (T value);

All elements are initialized to value.
TinyVector(T valuel, T value2, ...);

The vector is initialized with the list of values given. These constructors are provided for up
to N=11.

7.3 Member functions
TinyVector<T,N>::iterator begin();
TinyVector<T,N>::const_iterator begin() const;
Returns an STL-style iterator for the vector, positioned at the beginning of the data.

TinyVector<T,N>::iterator end () ;
TinyVector<T,N>::const_iterator end() const;

Returns an STL-style iterator for the vector, positioned at the end of the data.

T_numtype* [restrict] data();
const T_numtype* [restrict] data() const;

Returns a pointer to the first element in the vector.

70 Blitz++

int length() const;

Returns the length of the vector (the template parameter N).
T_numtype operator() (int i) const;
T_numtype& operator() (int i);
T_numtype operator[] (int i) const;
T_numtype& operator[] (int i);

Returns the ith element of the vector. If the code is compiled with debugging enabled
(-DBZ_DEBUG), bounds checking is performed.

7.4 Assignment operators

The assignment operators =, +=, -=, *= /= %=, "= &=, |=, >>= and <<= are all provided.
The right hand side of an assignment may be a scalar of type T_numtype, a TinyVector of any
type but the same size, or a vector expression.

7.5 Expressions

Expressions involving tiny vectors may contain any combination of the operators
+ =% /% T & | > <
with operands of type TinyVector, scalar, or vector expressions. The usual math functions

(see the Array documentation) are supported on TinyVector. Please note that to use TinyVector
expressions, you will need to include header <blitz/tinyvec-et.h> in your code.

7.6 Global functions

dot (TinyVector, TinyVector);
dot (vector-expr, TinyVector);
dot(TinyVector, vector-expr);
dot (vector-expr, vector-expr);

These functions calculate a dot product between TinyVectors (or vector expressions). The
result is a scalar; the type of the scalar follows the usual type promotion rules.

product (TinyVector) ;
Returns the product of all the elements in the vector.
sum(TinyVector) ;
Returns the sum of the elements in the vector.
TinyVector<T,3> cross(TinyVector<T,3> x, TinyVector<T,3> y);

Returns the cross product of x and y.

7.7 Arrays of TinyVector

TinyVectors may be used as an Array element type, just like any other concrete numerical data
type such as the built-in type double. Such an Array of TinyVector elements constitutes a
multicomponent Array, with the number of Array components being equal to the length of the
TinyVectors. Please see Section 5.1 [Array multi], page 61 for further information.

7.8 Input/output

ostream& operator<<(ostream&, const TinyVector<T,N>& x);

This function outputs a TinyVector onto a stream. Here’s an illustration of the format for
a length 3 vector:

[0.5 0.2 0.9 1]

Chapter 8: Parallel Computing with Blitz++ 71

8 Parallel Computing with Blitz++

While Blitz++ can be used for parallel computing, it was not designed primarily for this purpose.
For this reason, you may want to investigate some other available libraries, such as POOMA,
before choosing to implement a parallel code using Blitz++.

8.1 Blitz++ and thread safety

To enable thread-safety in Blitz++, you need to do one of these things:

e Compile with gcc -pthread, or CC -mt under Solaris. (These options define _REENTRANT,
which tells Blitz++ to generate thread-safe code).

e Compile with ~-DBZ_THREADSAFE, or #define BZ_THREADSAFE before including any Blitz++
headers.

In threadsafe mode, Blitz++ array reference counts are safeguarded by a mutex. By default,
pthread mutexes are used. If you would prefer a different mutex implementation, add the appro-
priate BZ_MUTEX macros to <blitz/blitz.h> and send them to blitz-dev@oonumerics.org
for incorporation.

Blitz++ does not do locking for every array element access; this would result in terrible
performance. It is the job of the library user to ensure that appropriate synchronization is used.

72

Blitz++

Chapter 9: Random Number Generators 73

9 Random Number Generators

9.1 Overview

These are the basic random number generators (RNGs):
Uniform Uniform reals on [0,1)

Normal Normal with specified mean and variance

Exponential
Exponential with specified mean

DiscreteUniform
Integers uniformly distributed over a specified range.

Beta Beta distribution
Gamma Gamma distribution
F F distribution

To use these generators, you need to include some subset of these headers:

#include <random/uniform.h>

#include <random/normal.h>

#include <random/exponential.h>
#include <random/discrete-uniform.h>
#include <random/beta.h>

#include <random/gamma.h>

#include <random/chisquare.h>
#include <random/F.h>

using namespace ranlib;

All the generators are inside the namespace ranlib, so a using namespace ranlib directive is
required (alternately, you can write e.g. ranlib: :Uniform<>).

These generators are all class templates. The first template parameter is the number type
you want to generate: float, double or long double for continuous distributions, and integer
for discrete distributions. This parameter defaults to float for continuous distributions, and
unsigned int for discrete distributions.

The constructors are:

Uniform();

Normal(T mean, T standardDeviation);
Exponential (T mean);

DiscreteUniform(T n); // range is O .. n-1
Beta(T a, T b);

Gamma (T mean) ;

ChiSquare(T df);

F(T dfn, T dfd);

where T is the first template parameter (float, double, or long double). To obtain a
random number, use the method random(). Here is an example of constructing and using a
Normal generator:

#include <random/normal.h>

using namespace ranlib;

74 Blitz++

void foo()
{

Normal<double> normalGen;
double x = normalGen.random() ; // x is a normal random number

9.2 Note: Parallel random number generators

The generators which Blitz++ provides are not suitable for parallel programs. If you need parallel
RNGs, you may find http://www.ncsa.uiuc.edu/Apps/SPRNG useful.

9.3 Seeding a random number generator

You may seed a random number generator using the member function seed(unsigned int).
By default, all random number generators share the same underlying integer random number
generator. So seeding one generator will seed them all. (Note: you can create generators with
their own internal state; see the sections below). You should generally only seed a random
number generator once, at the beginning of a program run.

Here is an example of seeding with the system clock:

#include <random/uniform.h>
#include <time.h>

using namespace ranlib;

int main()

{
// At start of program, seed with the system time so we get
// a different stream of random numbers each run.
Uniform<float> x;
x.seed((unsigned int)time(0));
// Rest of program

+

Note: you may be tempted to seed the random number generator from a static initializer.
Don’t do it! Due to an oddity of C++, there is no guarantee on the order of static initialization
when templates are involved. Hence, you may seed the RNG before its constructor is invoked,
in which case your program will crash. If you don’t know what a static initializer is, don’t worry
— you're safe!

9.4 Detailed description of RNGs
There are really two types of RNGs:

Integer RNGs provide uniformly distributed, unsigned 32 bit integers.
RNGs use Integer RNGs to provide other kinds of random numbers.

By default, the Integer RNG used is a faithful adaptation of the Mersenne Twister
MT19937 Nishimura (see ACM Transactions on Modeling and Computer Simulation,
Vol. 8, No. 1, January 1998, pp 3-30, http://www.math.keio.ac.jp/ matumoto/emt.html,
http://www.acm.org/pubs/citations/journals/tomacs/1998-8-1/p3-matsumoto/). This
generator has a period of 2'997 — 1 | passed several stringent statistical tests (including the

http://www.ncsa.uiuc.edu/Apps/SPRNG
http://www.math.keio.ac.jp/~matumoto/emt.html
http://www.acm.org/pubs/citations/journals/tomacs/1998-8-1/p3-matsumoto/

Chapter 9: Random Number Generators 75

http://stat.fsu.edu/ geo/diehard.html tests), and has speed comparable to other modern
generators.

9.5 Template parameters

RNGs take three template parameters, all of which have default values. Using the Uniform
RNG as an example, the template parameters of Uniform<T, IRNG, stateTag> are:

T is the type of random number to generate (one of float, double, or long double
for continuous distributions; an integer type for discrete distributions). Note that
generating double and long double RNGs takes longer, because filling the entire
mantissa with random bits requires several random integers. The default parameter
for most generators is float.

IRNG is the underlying Integer RNG to use. The default is MersenneTwister.

stateTag is either sharedState or independentState. If sharedState, the IRNG is shared
with other generators. If independentState, the RNG contains its own IRNG. The
default is sharedState.

9.6 Member functions
RNGs have these methods:

T random();
Returns a random number.
void seed(unsigned int);

Seeds the underlying IRNG. See above for an example of seeding with the system timer.

9.7 Detailed listing of RNGs

To save space in the below list, template parameters have been omitted and only constructors
are listed. The notation [a,b] means an interval which includes the endpoints a and b; (a,b) is
an interval which does not include the endpoints.

9.7.1 ‘random/uniform.h’

Uniform<>()

Continuous uniform distribution on [0,1).
UniformClosedOpen<>()

Continuous uniform distribution on [0,1). Same as Uniform<>.
UniformClosed<>()

Continuous uniform distribution on [0,1].
UniformOpen<>()

Continuous uniform distribution on (0,1).
UniformOpenClosed<>()

Continuous uniform distribution on (0,1].

9.7.2 ‘random/normal.h’
NormalUnit<>()
Continuous normal distribution with mean 0 and variance 1.
Normal<>(T mean, T standardDeviation)

Continuous normal distribution with specified mean and standard deviation.

http://stat.fsu.edu/~geo/diehard.html

76 Blitz++

9.7.3 ‘random/exponential.h’
ExponentialUnit<>()
Continuous exponential distribution with mean 1.
Exponential<>(T mean)

Continuous exponential distribution with specified mean.

9.7.4 ‘random/beta.h’
Beta<>(T a, T b)

Beta distribution with parameters a and b. The mean of the distribution is a/(a + b) and its
variance is ab/((a + b)*(a + b+ 1)). Use the method setParameters(T a, T b) to change the
parameters.

9.7.5 ‘random/chisquare.h’
ChiSquare<>(T df)

x? distribution with df degrees of freedom. The parameter df must be positive. Use the
method setDF (T df) to change the degrees of freedom.

9.7.6 ‘random/gamma.h’

Gamma<> (T mean)

Gamma distribution with specified mean. The mean must be positive. Use the method
setMean (T mean) to change the mean.

9.7.7 ‘random/F.h’
F<>(T numeratorDF, T denominatorDF)

F distribution with numerator and denominator degrees of freedom specified. Both these
parameters must be positive. Use setDF(T dfn, T dfd) to change the degrees of freedom.

9.7.8 ‘random/discrete-uniform.h’

DiscreteUniform<>(T n)

Discrete uniform distribution over 0,1,...,n — 1.

Chapter 10: Numeric properties 7

10 Numeric properties

10.1 Introduction

Blitz++ provides a set of functions to access numeric properties of intrinsic types. They are
provided as an alternative to the somewhat klunky numeric_limits<T>::yadda_yadda syntax
provided by the ISO/ANSI C++ standard. Where a similar Fortran 90 function exists, the same
name has been used.

The argument in all cases is a dummy of the appropriate type.

All functions described in this section assume that numeric_limits<T> has been specialized
for the appropriate case. If not, the results are not useful. The standard requires that numeric_
1limits<T> be specialized for all the intrinsic numeric types (float, double, int, bool, unsigned
int, etc.).

To use these functions, you must first include the header <blitz/numinquire.h>. Also,
note that these functions may be unavailable if your compiler is non-ANSI compliant. If the
preprocessor symbol BZ_HAVE_NUMERIC_LIMITS is false, then these functions are unavailable.

10.2 Function descriptions

T denorm_min(T) throw;
Minimum positive denormalized value. Available for floating-point types only.

int digits(T);
The number of radix digits (read: bits) in the mantissa. Also works for integer
types. The official definition is “number of radix digits that can be represented
without change”.

int digits10(T);
The number of base-10 digits that can be represented without change.

T epsilon(T);
The smallest amount which can be added to 1 to produce a result which is not 1.
Floating-point types only.

bool has_denorm(T) ;
True if the representation allows denormalized values (floating-point only).

bool has_denorm_loss(T);
True if a loss of precision is detected as a denormalization loss, rather than as an
inexact result (floating-point only).

bool has_infinity(T);
True if there is a special representation for the value “infinity”. If true, the repre-
sentation can be obtained by calling infinity(T).

bool has_quiet_NaN(T);
True if there is a special representation for a quiet (non-signalling) Not A Number
(NaN). If so, use the function quiet_NaN(T) to obtain it.

bool has_signaling_ NaN(T);
True if there is a special representation for a signalling Not A Number (NaN). If so,
use the function signalling NaN(T) to obtain it.

bool has_signalling_ NaN(T);
Same as has_signaling_NaN().

78 Blitz++

T huge (T) throw;
Returns the maximum finite representable value. Equivalent to CHAR_MAX, SHRT_
MAX, FLT_MAX, etc. For floating types with denormalization, the maximum positive
normalized value is returned.

T infinity(T) throw;
Returns the representation of positive infinity, if available. Note that you should
check availability with has_infinity(T) before calling this function.

bool is_bounded(T);
True if the set of values represented by the type is finite. All built-in types are
bounded. (This function was provided so that e.g. arbitrary precision types could
be distinguished).

bool is_exact(T);
True if the representation is exact. All integer types are exact; floating-point types
generally aren’t. A rational arithmetic type could be exact.

bool is_iec559(T);
True if the type conforms to the IEC 559 standard. IEC is the International Elec-
trotechnical Commission. Note that IEC 559 is the same as IEEE 754. Only relevant
for floating types.

bool is_integer(T);
True if the type is integer.

bool is_modulo(T);
True if the type is modulo. Integer types are usually modulo: if you add two integers,
they might wrap around and give you a small result. (Some special kinds of integers
don’t wrap around, but stop at an upper or lower bound; this is called saturating
arithmetic). This is false for floating types.

bool is_signed(T);
True if the type is signed (i.e. can handle both positive and negative values).

int max_exponent (T) ;
The maximum exponent (Max_exp) is the maximum positive integer such that the
radix (read: 2) raised to the power Max_exp-1 is a representable, finite floating point
number. Floating types only.

int max_exponent10(T) ;
The maximum base-10 exponent (Max_exp10) is the maximum positive integer such
that 10 raised to the power Max_exp10 is a representable, finite floating point num-
ber. Floating types only.

int min_exponent(T);
The minimum exponent (Min_exp) is the minimum negative integer such that the
radix (read: 2) raised to the power Min_exp-1 is a normalized floating point number.
Floating types only.

int min_exponent10(T);
The minimum base-10 exponent (Min_exp10) is the minimum negative integer such
that 10 raised to the power Min_exp10 is in the range of normalized floating point
numbers.

T neghuge (T) ;
This returns the maximally negative value for a type. For integers, this is the same
as min(). For floating-point types, it is ~huge(T()).

Chapter 10: Numeric properties 79

T one(T); Returns a representation for “1”

int precision(T);
Same as digits10().

T quiet_NaN(T) throw;
Returns the representation for a quiet (non-signalling) Not A Number (NaN), if
available. You should check availability using the has_quiet_NaN(T) function first.

int radix(T);
For floating-point types, this returns the radix (base) of the exponent. For integers,
it specifies the base of the representation.

Range range(T) ;
Returns Range (min_exponent10(T()), max_exponent10(T())), i.e. the range of
representable base-10 exponents.

T round_error(T) throw;
Returns a measure of the maximum rounding error for floating-point types. This
will typically be 0.5.

std::float_round_style round_style(T);
Returns the current rounding style for floating-point arithmetic. The possibilities
are: round_indeterminate (i.e. don’t have a clue), round_toward_zero, round_
to_nearest (round to nearest representable value), round_toward_infinity
(round toward positive infinity), and round_neg_infinity (round toward negative
infinity).

T signaling NaN(T) throw;
Returns the representation for a signalling Not A Number (NaN), if available. You
should check availability by calling has_signalling_ NaN(T) first.

T signalling NaN(T) throw;
Same as signaling NaN().

T tiny(T);
For integer types, this returns the minimum finite value, which may be negative.
For floating types, it returns the minimum positive value. For floating types with
denormalization, the function returns the minimum positive normalized value.

T tinyness_before(T);
True if tinyness is detected before rounding. Other than this description, I don’t
have a clue what this means; anyone have a copy of IEC 559/IEEE 754 floating
around?

T traps(T);
True if trapping is implemented for this type.

T zero(T);
Returns a representation for zero.

80

Blitz++

Chapter 11: Frequently Asked Questions 81

11 Frequently Asked Questions

11.1 Questions about installation

e I downloaded Blitz++, but when I try to gunzip it, I get “invalid compressed data—crc error”
You forgot to set binary download mode in ftp. Do so with the “binary” command.

e After accessing blitz from the cvs repository, the “autoreconf -fiv’ command seems to fail
mysteriously.

The current blitz autoconf build system uses libtool to manage building either static or shared
versions of the library. Mac OS X systems have their own version of libtool and libtoolize that
conflict with the GNU versions, so these have been renamed glibtool and glibtoolize. You must
set environment variables to indicate the right tools to use. Try this:

export LIBTOOL=/usr/bin/glibtool
export LIBTOOLIZE=/usr/bin/glibtoolize

e The blitz configure script fails to find a valid Fortran compiler. Why the heck do I need a
Fortran compiler for Blitz++ anyway?

A Fortran compiler is only needed to compile the Fortran portions of the blitz benchmark
codes in the banchmarks subdirectory, which compare the speed of blitz code to that of raw
Fortran 77 or Fortran 90 arrays. Many Darwin systems do not come with a Fortran compiler
installed by default, and it can be difficult to obtain a GNU Fortran compiler for Mac OS X that
is completely compatible with the default C/C++ compiler. Therefore, the blitz configure script
now provides the option —disable-fortran, which will skip over Fortran configuration. This will
render the benchmark codes unusable, but will allow you to build and install the blitz library.

e The linker complains about undefined references when compiling my blitz application code.

Although almost all of blitz consists of inlined templated code provided in header files via
<blitz/array.h>, there are a few static global objects whose definitions are provided in a
compiled blitz library. So always remember to include the appropriate -L flag and -lblitz on
your linker command line in order to link your code against the blitz library.

e The compiler complains that there is no match for the TinyVector unary or binary math
operator I have invoked, even though I’ve included <blitz/tinyvec.h>.

In versions prior to blitz 0.8, the tinyvec.h header automatically included all of the blitz
support for expressions involving TinyVectors. Because this code is intimately linked with the
expression template support for Vector, VectorPick and other Vector-like classes, this turns out
to be a large amount of code. The blitz Array class uses TinyVector to represent Array shapes,
and thus array.h must include tinyvec.h. This was creating a large amount of compile-time
overhead, so it was decided to separate the TinyVector expression template support and put this
in a new header file tinyvec-et.h. Therefore, your code must include <blitz/tinyvec-et.h>
explicitly if it uses expressions with TinyVectors.

e The compiler complains that there is no Array class, even though I’ve included <blitz.h>.
You need to have the line:
using namespace blitz;
after including <blitz.h>.
e I can’t use gcc on my elderly PC because it requires 45-150 Mb to compile with Blitz++

Unfortunately this is true. If this problem is ever fixed, it will be by the gcc developers, so
my best suggestion is to post a bug report to the gce-bugs list.

e I am using gcc under Solaris, and I get errors about “relocation against external symbol”

82 Blitz++

This problem can be fixed by installing the gnu linker and binutils. Peter Nordlund found that
by using gnu-binutils-2.9.1, this problem disappeared. You can read a detailed discussion
at http://oonumerics.org/blitz/support/blitz-support/archive/0029.html.

e I am using gcc under Solaris, and the assembler gives me an error that a symbol is too
long.

This problem can also be fixed by installing the gnu linker and binutils. See the above
question.

e DECcxx reports problems about “templates with C linkage”

This problem was caused by a problem in some versions of DECcxx’s ‘math.h’ header:
XOPEN_SOURCE_EXTENDED was causing an extern "C" { ... } section to have no closing
brace. There is a kludge which is included in recent versions of Blitz++.

e On some platforms (especially SGI) the testsuite program minsumpow fails with the error:
Template instantiation resulted in an unexpected function type of...

This is a known bug in the older versions of the EDG front end, which many C++ compilers
use. There is no known fix. Most of Blitz++ will work, but you won’t be able to use some array
reductions.

11.2 Questions about Blitz++ functionality
e For my problem, I need SVD, FFTs, QMRES, PLU, QR,

Blitz++ does not currently provide any of these. However, there are numerous C++ and C
packages out there which do, and it is easy to move data back and forth between Blitz++ and
other libraries. See these terms in the index: creating an array from pre-existing data, data(),
stride(), extent (), fortranArray. For a list of other numerical C++ libraries, see the Object
Oriented Numerics Page at http://oonumerics.org/oon/.

e Can Blitz++ be interfaced with Python?

Phil Austin has done so successfully. See a description of his setup in
http://oonumerics.org/blitz/support/blitz-support/archive/0053.html.

Also see Harry Zuzan’s Python/Blitz image processing example code at
http://wuw.stat.duke.edu/ hz/blitz_py/index.html.

e If I try to allocate an array which is too big, my program just crashes or goes into an
infinite loop. Is there some way I can handle this more elegantly?

Blitz++ uses new to allocate memory for arrays. In theory, your compiler should be throwing
a bad_alloc exception when you run out of memory. If it does, you can use a try/catch block
to handle the out of memory exception. If your compiler does not throw bad_alloc, you can
install your own new handler to handle out of memory.

Here is an excerpt from the ISO/ANSI C++ standard which describes the behaviour of new:

e Executes a loop: Within the loop, the function first attempts to allocate the requested
storage. Whether the attempt involves a call to the Standard C library function malloc is
unspecified.

e Returns a pointer to the allocated storage if the attempt is successful. Otherwise, if the
last argument to set_new_handler () was a null pointer, throw bad_alloc.

e Otherwise, the function calls the current new_handler (lib.new.handler). If the called
function returns, the loop repeats.

e The loop terminates when an attempt to allocate the requested storage is successful or when
a called new_handler function does not return.

You can use set_new_handler to create a new handler which will issue an error message or
throw an exception. For example:

http://oonumerics.org/blitz/support/blitz-support/archive/0029.html
http://oonumerics.org/oon/
http://oonumerics.org/blitz/support/blitz-support/archive/0053.html
http://www.stat.duke.edu/~hz/blitz_py/index.html

Chapter 11: Frequently Asked Questions 83

void my_new_handler ()

{

cerr << "QOut of memory" << endl;
cerr.flush();

abort();

}

// First line in main():
set_new_handler (my_new_handler);
e When I pass arrays by value, the function which receives them can modify the array data.
Why?
It’s a result of reference-counting. You have to think of array objects as being “handles”
to underlying arrays. The function doesn’t receive a copy of the array data, but rather a copy

of the handle. The alternative would be to copy the array data when passing by value, which
would be grossly inefficient.

e Why can’t I use e.g. A >> 3 to do bitshifting on arrays?

The operators << and >> are used for input/ouput of arrays. It would cause problems with
the expression templates implementation to also use them for bitshifting. However, it is easy
enough to define your own bitshifting function — see Section 3.10 [User et], page 44.

e When I write TinyMatrix * TinyVector I get an error.

Try product(d2,d1). This works for matrix-matrix and matrix-vector products.

84

Blitz++

Chapter 11: Blitz Keyword Index

Blitz Keyword Index

_class() oo 41
A

AbsS () o 40
ACOS() .o 40
acosh() 41
allocateArrays() 14, 25
Arg() oo 40
Array ... 9
asin() ... 40
asinh() 41
atan() ... 40
atan2() ... 43
atanh()o 41
B

bad_alloC 82
base() ..o 21
begin() 21
blitz::tensor namespace...................... 39
blitz_disnan() ..., 42
BZ_DECLARE_FUNCTIONoviin.... 44
BZ_DECLARE_MULTICOMPONENT_TYPE 61
BZ_DECLARE_STENCILciiiennn.. 51
BZ _MUTEX ... e 71
BZ_THREADSAFE. e 71
C

cast() ..o 40
Cbrt () .o 42
ceil() .o 40
Cexp() oo 40
Cols() o 21
columns () . ..ot 21
conj() oo 40
const_iterator 21
convolve () ..o 25
COPYT () ot 22
copysign() ... 43
COS() it 40
cosh() ..o 41
CSQrt() oot 41
cycleArrays() ... 26
D

data() ... 22
dataFirst() ... 22
dataZero() ...t 22
deleteDataWhenDonecounun... 13
denorm_min() i 77
depth() ..o 22
AAGILS () oo 7
digits10() ... 7
dimensions() 22
domain() ... 22

85
drem() 43
duplicateData................ 13
E
end () ... 22
epsilon()l T
erf () o 42
erfc() .. 42
exXP() o 41
expml() ..o 42
extent () 22
extractComponent () 22
F
fabs() .o 41
find() .o 26
finite() ... 42
firstDim. 20
firstIndeXot 37
£100T () oo 41
fmod() ..o 43
fortranArray............... 10
fourthDim......., 20
fourthIndex......... i, 37
FP_MINUS_DENORMot 42
FP_MINUS_INF 42
FP_MINUS_NORM.oi e, 41
FP_MINUS_ZERO.co i, 42
FP_NANQ - . o oo e e e e 42
FP _NANS . .o 42
FP_PLUS_DENORM0iiinnnn. 42
FP_PLUS_INF 42
FP_PLUS_NORM.ctit e 41
FP_PLUS_ZERO.ot 42
free() ..o 23
H
has_denorm()co i 77
has_denorm_loss()couiiinininnon.. 77
has_infinity() ..., 77
has_quiet_NaN(Q) 7
has_signaling NaN() 7
has_signalling NaNQ) 7
huge() .o 78
hypot () oo 44
I
11ogb() o 42
imag() ... 26
infinity) ..o 78
interlaceArrays() 14, 26
is_bounded() 78
is_exact() ..o 78
is_1ecBb59() ..t 78
is_integer() 78

is_modulo() 78

86

is_signed() ... 78
isMajorRank()................ 23
isMinorRank() 23
isnan() ... 42
isRankStoredAscending() 23
isStorageContiguous() 23
itrunc() ... 42

1bound () .o 23
Tgamma() . ..o 42
libblitz.a.o 5
) o3 T 41
LADMSAA . @ . o v et ettt 41
108 () oo 41
10g100) ottt 41
10gIP () o 42
108D0) 42

M

makeUnique() 23
max_exponent () i 78
max_exponent10() 78
min_exponent() 78
min_exponent10() 78

N

namespace blitz.................. 9
nearest () ...t 42
neghuge() 78
neverDeleteData, 13
nextafter() 44
numElements() i 23
numinquire.h........... L "

O

one() oo 79

polar() 43
POW() e 43
POWT () oo 41
POW2() oottt 41
POW3() oo 41
precision().......... i 79
preexistingMemoryPolicy...................... 13
promote_trait......... i 39

Blitz++

R

radix () ..o 79
random()t 75
random/uniform.h 75
range() ... i 79
rank () ..o 24
real () ..o 26
RectDomain.............couuiiiinnnnnnn. 16
RectDomain<N>.................ccuiririrninon... 67
REENTRANT e 71
reference() 24
reindex(), reindexSelf() 24
remainder() 44
resize() ... 24
resizeAndPreserve() 24
reverse(), reverseSelf() 24
rint () ..o 43
round_error()t 79
round_style() ...t 79
TOWS () oot 24
rsqrt() oo 43

scalb() ... 44
secondDim. 20
secondIndeXouiii i 37
seed () ... 75
set_new_handler() 82
shape() 13, 27
signaling NaN() 79
signalling NaN()ciii... 79
SIn() .o 41
sinh() ... 41
Size() oot 24
SAT() oot 41
SATE() oo 41
stride() ... 24
StridedDomain...............iiiiii... 16
SETAP() ot 67
SWapP() oo 27

tan() ... 41
tanh() ... 41
thirdDim......... 20
thirdIndex............ 37
tiny () oo 79
tinyness_before() 79
TinyVector......... 69
transpose(), transposeSelf()................. 25
traps() .. 79

U

ubound () 25
uitrunc() 43
unordered() i 44
using namespace blitz.......................... 9

Chapter 11: Blitz Keyword Index 87

X FLO e 43
XOPEN_SOURCE. e 41
XOPEN_SOURCE_EXTENDED 41
y/
Y ZeTO() oo 79

88

Blitz++

Chapter 11: Concept Index

Concept Index

<
<< operator, bitshift, 83
=, meaning of 18
>
>> operator, bitshift 83
[] operator, for indirection 66
¢
‘Array’ undeclared 81

A

Absoft xle++ compiler L. 2
all() reduction..............c.ooiiiiiiii... 47
any () reduction.............. 47
ATTAY oo 9
Array =, meaning of 18
Array arrays of user type 36
Array assignment operators..................... 37
Array bounds checking 20
ATTay Casts . ..ot 40
Array column major.................... 10
Array complex......... e 62
Array complex arrays. ... 9
Array convolution................ 25
Array COPYIng ... 22
Array correlation......... oo 26
Array creating a reference of another array ... 12, 13
Array creating from Fortran arrays.............. 13
Array creating from pre-existing data............ 13
Array ctor with Range args..................... 12
Array ctors with extent parameters.............. 11
Array declaring your own math functions on 44
Array default ctor.............................. 11
Array dimension parameters 20
Array explicit instantiation 6
Array expression evaluation order 35
Array expression operands 35
Array expression operators...................... 36
Array eXpressions 35
Array expressions which mix arrays of different
storage formats............. 36
Array extracting components................ 22,61
Array fortran-style oo 10
Array freeing ano i 23
Array getting pointer to array data.............. 22
Array high-rank......... 12
Array index placeholders 37
Array indexing.............c i 15
Array indirection............. 65

Array indirection Cartesian-product 67

89
Array indirection list of positions................ 66
Array indirection list of strips................... 67
Array inputting from istream 27
Array interlacing 14, 25
Array IHerators.t 21
Array making unique copy 23
Array member functions........................ 21
Array member functions base() 21
Array member functions begin() 21
Array member functions cols() 21
Array member functions columns().............. 21
Array member functions copy () 22
Array member functions data() 22
Array member functions dataFirst() 22
Array member functions dataZero() 22
Array member functions depth() 22
Array member functions dimensions() 22
Array member functions domain() 22
Array member functions end() 22
Array member functions extent() 22
Array member functions extractComponent() 22
Array member functions free() 23
Array member functions isMajorRank() 23
Array member functions isMinorRank() 23
Array member functions isRankStoredAscending()
.. 23
Array member functions isStorageContiguous ()
.. 23
Array member functions 1bound() 23
Array member functions makeUnique() 23
Array member functions numElements() 23
Array member functions ordering() 23
Array member functions rank() 24
Array member functions reference() 24
Array member functions reindex().............. 24
Array member functions reindexSelf() 24
Array member functions resize()............... 24
Array member functions resizeAndPreserve() ... 24
Array member functions reverse().............. 24
Array member functions reverseSelf() 24
Array member functions rows() 24
Array member functions shape() 24
Array member functions size() 24
Array member functions stride()............... 24
Array member functions transpose() 25
Array member functions transposeSelf() 25
Array member functions ubound() 25
Array member functions zeroOffset() 25
Array multicomponent. 61
Array nested......... ... i 9
Array nested heterogeneous...................... 9
Array nested homogeneous. 9
Array no temporaries. o0 35
Array number of elements in.................... 23
Array obtaining domain of 22
Array of Array 9
Array of TinyMatrixoooveee... 9
Array of TinyVector............................. 9
Array of user-defined types 9
Array of your own types.............. 63
Array operators. ... 36

90

Array operators applied elementwise............. 36
Array output formatting........................ 27
Array Overview. ... 9
Array persistenceiiiiiii 27
Array persistence format............ 27
Array rank parameter, 9
Array reductionscoiiiiii 47
Array reductions chaining.................... ... 49
Array reductions complete 47
Array reductions partial 48
Array reference counting.................. 14
Array referencing another....................... 24
Array referencing another array 12
Array reindexing i 24
Array requirements for using operators 36
Array resizing. ... 24
Array restoring from istream.................... 27
Array reversing 24
ATTay TOW MAJOT . o ottt et e et e e e 10
Array saving to output stream 27
Array scalar arrays. ..., 9
Array shapeof......... 24
Array slicing.o.oooviiiin 17
Array stencils. ... o 51
Array storage formats 29
Array storage order 10
Array storage order, creating your own 30
Array storage ordering of 23
Array strides of 24
Array subarrays. 15
Array template parameters 9
Array temporaries. o 35
Array tensor notation 45
Array transposing 25
Array type promotion ..., 39
Array type promotion for user-defined types...... 39
ATTay tYPeS. o oot 9
Array using subarrays in expressions............. 36
Array writing to output stream 27
Array zipping expressions. 63
assignment operator................. 18
autoconf..... 3

B

backward differences 55
Bessel functions............. 42
Beta RNG......... ... 76
bitshift operators.............. 83
‘plitz’ header files.............................. 5
blitz namespace ... 9
blitz-devel list.............. 7
blitz-support list 7
bounds checking o ool 20

CaStS .o 40
central differences............. 53
ChiSquare RNG 76
column major.eueenee.. 10
Compaq cxx compiler 2
complete reductions 47

COMPIEX ATTAYS .+« v vov et e e 9, 62

Blitz++

complex math functions..................... 40, 43
Configuration/Install errors under Mac OS X. 81
configure SCript ... 4
constness problems........... 83
contraction i 46
contributing to Blitz++ 7
convolution, 1-D 25
correlation........... ... 26
count () reduction............... 47
Cray CC compiler.............. 3
CRC errorin .tar.gz............oovveeeuuninn... 81
curl operator 57

D

debugging mode L. 20
denormalization loss............................ 77
denormalized values 77
dimension parameters 20
DiscreteUniform RNG.......................... 76
divergence operator 57

E

eigenvector decomposition 82
eleven, end of the universe at 21
explicit instantiation, 6
Exponential RNG.............................. 76
ExponentialUnit RNG.......................... 76
expression evaluation order 35
expression templates 35
external symbol relocation, Solaris............... 81
extracting components. 61

F

F distribution RNG 76
FAQ 81
Fortran compiler requirement 81
forward differences o L 54
Fujitsu 3
functional if (where)............................ 50

G

gr+rcompiler..... 2
Gamma function............... 42
Gamma RNG...... 76
gecec memory hog 81
Grad-squared operators......................... 57
gradient operators.............. ... 56

H

handling out of memory 82
header files, convention 5
help, obtaining L 6
HSV24 example...............o ... 61

I

i (index placeholder) 39
IBM xIC compiler............... 2

Chapter 11: Concept Index

TEC 559 .o 78
IEEE math functions........................... 41
if (where)............ .. 50
image Processingoouuiiiinain... 82
index placeholders.............. 37
index placeholders multiple 37
index placeholders used for tensor notation....... 45
indexing an arrayiiiia.... 15
indirection.......... 65
indirection Cartesian-product 67
indirection list of positions...................... 66
indirection list of strips......................... 67
infinity — has_infinity() 7
inputting arrays from an input stream 27
installation 3
Integer RNGs..... 74
Intel C++ compiler 1
interlacing 25
invalid compressed data 81
TRNGS . oot 74
iterators for arrays i 21

J

j (index placeholder) 39
Jacobian operators L 56

K

k (index placeholder) 39
KCC compiler 1
kronecker product........... 45

L

1 (index placeholder) 39
Laplacian operators 56
library (‘libblitz.a’)........................... 5
linear algebra........... 82
locking (thread safety).......................... 71

M

m (index placeholder) 39
mailing lists 7
makefile, example 5
makefiles 3
math functions 40, 43
math functions declaring your own 44
matrix inversiono 82
matrix multiply 83
max() reduction........... 47
maximally negative value — neghuge() 78
maximum value of a type....................... 78
maxIndex() reduction 47
mean() reduction.............. 47
memory hog, gcc....... ... 81
MersenneTwister due to Matsumoto and......... 74
Metrowerks compiler 2
Microsoft VS.NET 2003 C++ compiler 1
min() reduction........... 47
minimum finite value — tiny () 79
minIndex() reduction 47

mixed partial operators......................... 58

91
modulo, floating point fmod () 43
multicomponent arrays 61
N
n (index placeholder) 39
NaN — has_quiet_NaN(Q) 7
NaN — has_signaling NaN() 77
NaN — quiet_NaNQ) 79
nested arrays 9
nested arrays heterogeneous...................... 9
nested arrays homogeneous 9
new handler 82
No match for TinyVector operators.............. 81
Normal RNG 75
NormalUnit RNG 75
numeric imits s
O
operator <<, bitshift 83
operator >>, bitshift 83
operators, array expressions. 36
order of expression evaluation................... 35
out of Mmemoryoo i 82
out of virtual memory, gcc...................... 81
outer product 45
output formatting............. 27
P
parallel computing 71
partial reductions 48
partial reductions chaining...................... 49
passing arrays by value.............. 83
PathScale pathCC compiler...................... 2
persistence 27
PGI pgCC compiler ..., 2
porting Blitz++. o 5
product () reduction 47
Python...... 82
R
Random Number Generators.................... 73
Random Number Generators details............. 74
Random Number Generators list of 75
Random Number Generators member functions. .. 75
Random Number Generators overview 73
Random Number Generators seeding 74
Range objects L 15, 17
rank parameter of arrays......................... 9
rank-1 update................... 67
ranlib 73
RectDomain 16
reductions i 47
reductions chaining................. oo L 49
reductions complete 47
reductions partial L 48
reference counting.............................. 14
remainder, floating point drem() 43
restoring arrays from an input stream............ 27
RGB24 example ... 61
RNGS ..o 73

92
TOUNAING .« o v vttt et 43
TOW INAJOT « o v ettt et e e e e e et 10

S

SAVING AITAYS .« o oo ettt e e 27
seedinga RNG.......... 74
SGI CC compiler..................... ..o ... 2
shallow copies, see also reference()............... 18
shape () (Array method)........................ 24
signed — is_signed() 78
slicing arraysvii 17
solving linear systems 82
stateTag (RNGs) 75
stencil objects il 51
stencil objects applying......................... 59
stencil objects declaring 51
stencil operators 52
stencil operators declaring your own 58
STL iterators for arrays 21
STL, for indirection 65
storage of arrays 29
storage order, creating your own 30
storage orders for arrays........................ 10
StridedDomain. 16
SUDAITAYS . . . oottt 15
sum() reduction........... 47
Sun Studio CC compiler 3
support, obtaining 6
symbol too long, Solaris as...................... 82
System V math functions....................... 41

T

template instantiation resulted in an unexpected...

Blitz++

temporaries. 35
tensor contraction............... 46
tensor namespace 39
tensor notation L Lo L il 45
tensor notation efficiency issues 46
tensor product 45
thread safety 71
time-stepping i 26
TinyVector 69
TinyVector of Range (use RectDomain)........... 16
transposing arrays.eiiiiaiiii... 25
traversal order 35
type promotion 39
type promotion for user-defined types............ 39

U

Undefined references 81
Uniform RNG 75
UniformClosed RNG 75
UniformClosedOpen RNG 75
UniformOpen RNG 75
UniformOpenClosed RNG 75

\'%

vector field 9
virtual memory problems, gcc................... 81

A%

where statements o 50
writing arrays to output streams 27

Z

ZIPPING €XPreSsSiONS . ..o ettt 63

	Introduction
	About this document
	Platform/compiler notes
	KAI C++ for Linux/Unix
	Intel C++ for x86
	Microsoft VS.NET 2003 for Windows
	gcc for Linux/Unix/Darwin
	PathScale for x86_64
	PGI for Linux x86
	Absoft for Mac OS X
	Metrowerks for Mac
	Compaq Alpha
	IBM RS6000/IBM PowerPC
	SGI MIPSpro
	Sun SPARC
	Cray T3E/Cray T90/Cray C90/Cray J90
	Fujitsu

	How to download Blitz++
	Installation and porting
	Installation
	The Blitz++ directory tree
	Porting Blitz++

	Compiling with Blitz++
	Header files
	Linking to the Blitz++ library
	An example Makefile
	Explicit instantiation

	Licensing terms
	Mailing lists and support
	How to get help
	How to subscribe to a mailing list
	blitz-devel
	blitz-support

	Arrays
	Getting started
	Template parameters
	Array types
	A simple example
	Storage orders

	Public types
	Constructors
	Default constructor
	Creating an array from an expression
	Constructors which take extent parameters
	Constructors with Range arguments
	Referencing another array
	Constructing an array from an expression
	Creating an array from pre-existing data
	Interlacing arrays
	A note about reference counting

	Indexing, subarrays, and slicing
	Indexing
	Subarrays
	RectDomain and StridedDomain
	Slicing
	More about Range objects
	A note about assignment
	An example

	Debug mode
	Member functions
	A note about dimension parameters
	Why stop at eleven?

	Member function descriptions

	Global functions
	Inputting and Outputting Arrays
	Output formatting
	Inputting arrays

	Array storage orders
	Fortran and C-style arrays
	Row major vs. column major
	Bases

	Creating custom storage orders
	In higher dimensions
	Reversed dimensions
	Setting the base vector
	Working simultaneously with different storage orders
	Debug dumps of storage order information
	A note about storage orders and initialization

	Storage orders example

	Array Expressions
	Expression evaluation order
	Expression operands
	Array operands
	Using subarrays in an expression
	Mixing arrays with different storage formats

	Expression operators
	Assignment operators
	Index placeholders
	Type promotion
	Type promotion for user-defined types
	Manual casts

	Single-argument math functions
	ANSI C++ math functions
	IEEE/System V math functions

	Two-argument math functions
	ANSI C++ math functions
	IEEE/System V math functions

	Declaring your own math functions on arrays
	Tensor notation
	Array reductions
	Complete reductions
	Partial Reductions
	where statements

	Stencils
	Motivation: a nicer notation for stencils
	Declaring stencil objects
	Automatic determination of stencil extent
	Stencil operators
	Central differences
	Forward differences
	Backward differences
	Laplacian (@nabla ^2) operators
	Gradient (@nabla) operators
	Jacobian operators
	Grad-squared operators
	Curl (@nabla @times) operators
	Divergence (@nabla @cdot) operators
	Mixed partial derivatives

	Declaring your own stencil operators
	Applying a stencil object

	Multicomponent, complex, and user type Arrays
	Multicomponent and complex arrays
	Extracting components
	Special support for complex arrays
	Zipping together expressions

	Creating arrays of a user type

	Indirection
	Indirection using lists of array positions
	Cartesian-product indirection
	Indirection with lists of strips

	TinyVector
	Template parameters and types
	Constructors
	Member functions
	Assignment operators
	Expressions
	Global functions
	Arrays of TinyVector
	Input/output

	Parallel Computing with Blitz++
	Blitz++ and thread safety

	Random Number Generators
	Overview
	Note: Parallel random number generators
	Seeding a random number generator
	Detailed description of RNGs
	Template parameters
	Member functions
	Detailed listing of RNGs
	random/uniform.h
	random/normal.h
	random/exponential.h
	random/beta.h
	random/chisquare.h
	random/gamma.h
	random/F.h
	random/discrete-uniform.h

	Numeric properties
	Introduction
	Function descriptions

	Frequently Asked Questions
	Questions about installation
	Questions about Blitz++ functionality

	Blitz Keyword Index
	Concept Index

