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Fig. 1: An example calculation step for the Monte-Carlo Redirected Walking (MCRDW) gain selection algorithm. For a given
virtual environment, a large number of virtual walks are generated. For each virtual walk, a physical walk is simulated under the
effect of one of a set of redirection strategies. Strategies are combinations of different levels and directions of virtual gain, varying
over the course of the virtual walk. Simulations are conducted by calculating the physical path a user must walk to follow the
generated virtual path when under the effects of these different levels of gain. Calculated physical paths are then scored and the
score for the corresponding strategy updated. Simulations can be conducted in parallel to a realtime virtual reality application. When
required, the current best scoring strategy can be used to provide gain levels and directions for redirected walking.

Abstract—We present Monte-Carlo Redirected Walking (MCRDW), a gain selection algorithm for redirected walking. MCRDW applies
the Monte-Carlo method to redirected walking by simulating a large number of simple virtual walks, then inversely applying redirection
to the virtual paths. Different gain levels and directions are applied, producing differing physical paths. Each physical path is scored
and the results used to select the best gain level and direction. We provide a simple example implementation and a simulation-based
study for validation. In our study, when compared with the next best technique, MCRDW reduced incidence of boundary collisions by
over 50% while reducing total rotation and position gain.

Index Terms—Virtual reality, human computer interaction, redirected walking.

1 INTRODUCTION

Virtual environments are three-dimensional spatial representations that
respond to user movement and interaction in real time. Virtual reality
(VR) systems allow a user to experience a virtual environment in a
way that feels closer to reality, where display and interaction are closer
to their physical counterparts. This involves combining display and
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tracking technologies to translate user movement in the physical space
(or track space) into movement in the virtual environment.

Typically this involves wearing a head-mounted display (HMD). The
tracking system provides information on HMD position and therefore
user head direction. This works well for looking around a virtual envi-
ronment. However, locomotion in VR is inherently difficult. Ideally,
we would like virtual movements to bear a close resemblance to a user’s
tracked physical movements. This reduces the potential for nausea and
helps create the illusion that the user is truly present within a virtual
environment. However, in the case of many VR systems, only a limited
space can be tracked. For other systems, users will instead be limited
by the physical space around them and cannot wander freely without
meeting obstacles.

This creates the motivation for artificial methods of locomotion;
approaches which match a user’s movement on some intuitive level
without requiring free movement in space. Navigation schemes have



been proposed and are in use today which are primarily driven by
head direction, or by an external device such as a joystick. These
schemes have proven to be less than ideal, increasing simulator sickness
and reducing presence, subjective measures of nausea and immersion
respectively. “Real walking”, i.e., physical locomotion within the track
space, more closely matches the virtual counterpart, and has been
shown to be greatly preferable [24].

Redirected walking (RDW) is a method for real walking in virtual
reality which can allow users to walk further than their physical en-
vironment allows [18]. This technique imperceptibly transforms the
virtual environment around the user, disrupting the mapping between
track space and virtual environment. Selecting the correct transforma-
tions leads to a favourable mapping, permitting exploration of virtual
environments larger than the track space.

Early RDW implementations were effective but inflexible. Users
were required to follow waypoints in the virtual environment, carefully
spaced to allow sufficient time for redirection [18]. Recent research has
focused on generalized RDW, extending the principles to allow free
exploration of arbitrary environments. However, without a guaranteed
user path, selecting good transformations becomes a difficult problem.
Simple heuristic techniques consider only the user’s current position
and typically attempt to steer towards a target (e.g., Steer-to-Center,
Steer-to-Orbit, Steer-to-Multiple [5, 9, 17]). These approaches require
very large track spaces and make no use of virtual environment layout.
In simple use cases (such as walking in a straight line) the limiting
factor on RDW performance is human perceptual thresholds so heuristic
techniques are effective. However, obstacle-rich virtual environments
encourage frequent changes of direction. Improved RDW performance
should be possible in these environments.

Optimization-based techniques can take virtual environment layout
into account by evaluating possible future paths and aiming to maxi-
mize some metric over a window (e.g., FORCE [28], MPCRed [13]).
Meanwhile, deep-learning based techniques use a pre-trained network
to estimate good future redirections (e.g., Steer-to-Optimal-Target [11],
Steering via Reinforcement Learning [21]). While developments in
optimisation and deep-learning based techniques are encouraging, the
authors of these techniques currently report only a small improvement
(at most around 15%) over Steer-to-Center (S2C) [11, 13, 21, 28].

This paper contains the design and evaluation of the Monte-Carlo
Redirected Walking (MCRDW) algorithm, a novel approach to gain
selection. The aim of this technique is to improve on existing redi-
rection selection algorithms while remaining applicable to any virtual
environment, simple to implement and computationally lightweight.
The algorithm uses simulated walks to anticipate future user trajecto-
ries. In our simulation-based experiment, MCRDW was significantly
more effective at keeping users within physical boundaries when com-
pared with existing RDW algorithms, particularly in VEs which are
obstacle-rich.

2 RELATED WORK

In its original form as proposed by Razzaque et al., RDW guides the
user through a series of waypoints in both the virtual environment and
the tracked space [18]. Only rotation gain is used. The magnitude
is adjusted dynamically based on user movement. The final rotation
applied is the maximum of three factors: scaled linear velocity, scaled
rotational velocity and a baseline rotation per second. The direction of
this rotation is calculated to send the user towards the next waypoint
in the track space based on the user direction in the virtual environ-
ment, assumed to be the direction towards the next virtual environment
waypoint.

In the general case, future positions and orientations are uncertain as
the user is free to move as they wish. This is known as generalised [9],
generic [20] or reactive [15] RDW. Early gain selection algorithms
make heavy use of heuristics. Steer-to-Center (S2C) redirects the user
to the center of the track space, and Steer-to-Orbit (S2O) redirects the
user to a circle around the edge of the track space [5, 17]. S2C has
proven to be preferable when users change direction frequently, while
S2O is more effective when users walk long distances in a straight
line [7].

Extended heuristic approaches exist in the literature, such as using
translation gain together with S2C to extend walkable distance when
heading directly away from the center point [1]. APF-RDW uses
artificial potential fields (APFs) to generate a steering target rather than
using the center in order to create a heuristic approach suitable for
more complicated physical environments [12]. Push/pull reactive (P2R)
redirection combines both APFs and translation gain [23].

Heuristic techniques are simple to compute, but frequently choose
sub-optimal redirections. S2O assumes that the user will never change
direction, while S2C assumes that the user may change direction at any
time with equal likelihood for each direction. This ignores valuable
sources of data. For example, walls and obstacles in the virtual environ-
ment provide bounds on walkable space. In constrained environments
S2C and S2O waste a great deal of the track space on these unwalkable
areas. Despite greater available information on user path, they perform
no better in constrained environments than open ones [8].

Gain selection can be viewed as an optimization problem over the
space of all possible combinations of redirections and user paths, as
with FORCE [28] and MPCRed [13]. Complexity is an issue with this
approach, as there are many combinations of virtual path and possible
redirection strategies. Both algorithms use a fixed maximum depth to
prevent exponential complexity growth.

More recently, machine learning techniques have been applied to
the gain selection problem. Steer-to-optimal-target (S2OT) uses re-
inforcement learning to train a model using the Deep Q-Learning ap-
proach [11]. The system divides the tracked or physical space evenly
into squares and places a target at each intersection point. For each
intersection, the predictor is run to determine the outcome were the
user to be redirected with the point as the target. The goal function
balances the likelihood of a physical collision against the amount of
rotational redirection required to redirect towards the target. Strauss et
al. propose Steering via Reinforcement Learning (SRL) [21]. Unlike
S2OT, SRL treats the physical space as continuous. Both techniques
use a Deep Q-Learning approach, though SRL uses a variant known as
Proximal Policy Optimisation (PPO).

Comparing redirection techniques directly is difficult because a
strategy that is effective in one environment may not be the most
effective for another. With this caveat, the above machine learning
approaches can demonstrate an improvement over heuristic techniques:
both S2OT and SRL are shown to reduce collisions when compared
with S2C. The effect size is, however, modest for both techniques.
SRL was able to increase mean distance covered by around 4% on
simulated paths when compared with S2C. No significant difference
was observed on real paths. S2OT demonstrated improvements in
both simulation and user study, reducing collisions by approximately
15% [11]. This performance improvement comes at the cost of higher
rotation gain. The goal function weighting in S2OT favours reducing
physical collisions over keeping redirection levels low. Overall, S2OT
applies significantly more rotational gain than other approaches, with
30% or more over S2C.

Gain selection for generalised redirected walking remains an open
problem. To build on existing work, the ideal gain selection algorithm
would be widely applicable to many virtual environments, and when
compared with older heuristic techniques would reduce the level of
gain applied to users and significantly reduce the incidence of boundary
collisions.

3 METHOD

In this section we describe gain selection through simulated walks at a
theoretical level. See Section 4 for a sample implementation of these
ideas and Section 5 for an evaluation of that implementation using
simulations.

To start we consider the redirection function f . As the user walks
in the physical space, we apply f to their movements (translation and
orientation) to calculate the resulting virtual world position. Without
redirection, f is the identity function, and the user’s movements there-
fore mapped 1 to 1. With redirection (or ‘gain’), the virtual rotation
and translation may be smaller or greater. Note that f only applies a
redirection strategy, rather than generating one:



vt = f (xt ,vt−1,wt ,wt−1) (1)

Where: xt is a 2-tuple containing rotation and translation gain at
time t; vt is the user’s virtual position and orientation at time t; wt is
the user’s track (physical) position and orientation at time t.

The aim of redirection selection algorithms is to generate the redirec-
tion strategy x. Any value of x is possible, but the ideal value is likely
to change frequently as the user moves around the environment, or as
the environment changes. At an abstract level the optimal redirection
selection algorithm has two goals when selecting x: 1) To maximize
boundary avoidance by selecting redirections that avoid physical
boundaries, and 2) To maximize subtlety by selecting redirections that
minimise disruption to the user.

The simulated-walk approach to redirected walking is to virtually
conduct many possible walks from the user’s position under different
redirection strategies. The walks are then scored in favour of those that
best satisfy the boundary avoidance and subtlety goals. Various metrics
can be applied during scoring. For example, walks could be weighted
in favour of those that apply the lowest gain levels, or maximise the
time to physical collision. The strategy with the highest score at a given
moment is provided to the redirection function in the form of x. The
proposed approach is iterative and can combine the results of previous
runs. As each simulation is computationally simple and standalone, this
algorithm suits real-time applications as it can be run as long as allowed
by the frame timing. An example diagram can be found in Figure 1.
The remainder of this section will consider theoretical approaches to
simulation (see Sections 3.1 and 3.2) and scoring (Sections 3.3 and 3.4).

3.1 Generating Potential Virtual Paths
The first step of any simulated walk is to calculate v, a path through
the virtual environment. The path must start at v0, the user’s current
position and orientation in the virtual space, and can end at any point.

The simulated-walk approach makes the assumption that a sample
of possible walks under different redirection strategies is representative
of the set of all possible walks under all possible redirection strategies.
To improve the quality of our sampling and bring us closer to a repre-
sentative sample, virtual paths can be selected based on a probability
distribution which favours more likely paths. The task of generating
good virtual paths is therefore analogous to the path prediction task
found elsewhere in redirected walking.

In theory, any long-term path predictor can be used, and a variety
exist in the literature [14,16,22,26,27]. Many path predictors only pro-
vide a single estimate of the user’s path. More useful for our purposes
are those that provide a range of possible paths with accompanying
probabilities; we will call these stochastic path predictors. Accurate
probabilities are to be preferred as less computation time will be wasted
on unlikely paths. Additionally, when scoring walks, it becomes possi-
ble to weight redirections in favour of those that perform best on more
likely paths.

Historical user virtual path is a previously used indicator of future
virtual path [16], optionally taking into account models of human
locomotion [27]. The layout of the virtual environment is also an
indicator which has been used in the form of a graph [26] or a navigation
mesh [2]. Previous work has also shown paths are predictable when
movement is goal-orientated [6]. Finally, as paths must be generated at
runtime, a very quick path predictor is also preferred. This provides as
much time as possible for simulations.

As the MCRDW approach is compatible with any stochastic path
predictor we provide no recommendations in this section, other than
to note that the ideal path predictor is computationally lightweight and
stochastic. The concrete implementation provided in Section 4 uses an
approach loosely based on that used by Peck [16], extended to provide
probabilities.

3.2 Simulating Physical Walks with RDW Strategies
Once the virtual path v has been generated, the next task is to work
back to the physical path that would have led the user round this virtual
path. The physical path is dependent on the redirection strategy in
use. Related to f (see Equation 1), we now need a new function which

calculates where a user would be in the track space if they were to walk
a virtual path with a certain set of redirections applied. As the user
subconsciously counters the redirections in the virtual environment,
we should then be able to calculate where those movements will place
them in the physical space. We will call this function g:

wt = g(xt ,wt−1,vt ,vt−1) (2)

For our simulations complete virtual paths are generated. All values
of v (and consequently w) are therefore known. Different approaches
to f are possible; for the sake of calculating physical paths, easily
invertible approaches are preferred. Example equations for f and g are
provided in Section 4.

3.3 Scoring with Boundary-Avoidance Metrics
The fundamental outcome that boundary avoidance metrics are trying
to minimise is boundary collisions. A good function will provide an
accurate estimate of the user’s future likelihood of a boundary collision.
It is also of benefit if they are simply expressed and computationally
efficient.

Hodgson et al. suggest a number of metrics for comparing the per-
formance of redirected walking techniques [7] that we may be able to
adapt into boundary avoidance metrics. Over the course of the entire
path, we could measure the mean and max distance from the track space
center (MDC and MaxDC), or the mean distance from the nearest track
boundary (MDNB).

MDC and MDNB are based on the concept that greater distance from
the track space center is an indication of poor redirection performance.
This is only sometimes the case. The heuristic technique Steer-To-
Orbit, which leads the user around the optimal path for straight-line
walking [5, 17]. The path used is circular with a high radius. For the
same path, Steer-To-Center would lead the user in a figure-of-eight
pattern with a much higher maximum radius, increasing the likelihood
of boundary collision. However, both techniques would score similarly
under MDC.

With MaxDC, Steer-To-Orbit will score better than Steer-To-Center
in straight-line walking. However, MaxDC has the same problem
as MDC for our purposes: distance from track space center is not
a problem if it does not lead to boundary collisons. A very large
maximum is equivalent to a small maximum if neither of these results
is larger than the track space radius.

The example implementation described in Section 5 uses the sim-
plest possible approach, time to first boundary collision (TTBC). A
possible hazard with this technique is its inability to capture near misses.
Approaching the boundary and only just avoiding collisions will be
scored highly by TTBC. However, as simulations will never be com-
pletely precise, in practice the strategy may lead to collision. However,
TTBC is very simple to implement, and as the implementation limits
simulations to a fixed length in time, results from TTBC are easily
normalised. This simplifies the process of combining boundary avoid-
ance and subtlety metrics into a single measure. As TTBC is also very
simple to calculate, more time is available for simulations.

3.4 Scoring with Subtlety Metrics
Re-orientation after a boundary collision is overt and constitutes a
significant disruption to user experience. It may be that high gain levels
are preferable to boundary collisions. The simulated walk approach
can allow for a balance to be found between boundary avoidance
and subtlety, as larger redirections are less subtle but more effective.
Redirection strategies can therefore include large redirections with a
score penalty, permitting somewhat perceptible redirection if it would
prevent a user from encountering a boundary.

Possible metrics could be Hodgson’s mean and max rate of unsigned
redirection (MRUR and MaxRUR) [7]. Short periods of high gain can
be obscured by MRUR but can overly skew MaxRUR. A metric could
combine both, to counteract these issues.

The example implementation described in Section 5 stays below the
prior thresholds found in [3] and [19]. This allows for straightforward
comparison with earlier techniques. So long as gains are imperceptible,
it is perhaps not helpful to reduce them further. However, we still apply



a very small score penalty based on the rate of gain (MaxRUR) for the
initial strategy. This encourages MCRDW to apply the minimum level
of gain required, partly for consistency; settling on a strategy when
differences in performance are small.

4 IMPLEMENTATION

This section includes our concrete implementation of the ideas in Sec-
tion 3: generate a virtual path; for all n strategies, apply the strategy
in inverse to the virtual path, yielding n physical paths; score all n
physical paths, and update the score table for their corresponding strat-
egy. Repeat until computation time elapses. Finally, return the current
best scoring strategy. Our implementation used 9 strategies: A 3×3
combination of different directions of rotation (left, none, right) and
translation (reduce, none, magnify) gain.

4.1 Implementing Virtual Path Generation
For each simulation we generate a walk using a path predictor following
a similar process to that described in [16]. For the purposes of path
prediction, the virtual environment is divided into evenly spaced nodes.
Edges are generated between nodes which can be directly walked
between. For a given path prediction query, the user is considered to
be at the closest current node. The predictor weighs the likelihood of
visiting any neighbouring nodes, then a node is picked randomly from
the (weighted) possibilities, and finally the predictor is updated with
the new information. This process repeats until the max path length is
exceeded.

The predictor used has two components. Each component outputs
a list of probabilities, one for each neighbouring node. The first com-
ponent, ‘history’, records visited nodes and decreases the likelihood
of visiting those which have been visited very recently. The second
component, ‘direction’, increases the likelihood of visiting nodes which
the user is heading towards. Direction is calculated by sampling the
user’s movements to generate a smoothed direction vector.

To weigh the two components against each other, the consistency of
the direction vector and the speed of the user are combined to create a
value, ‘confidence’. When confidence is low we rely on history. When
confidence is high, we rely on direction.

4.2 Implementing Physical Walk Simulation
When we have the virtual path generated, we simulate the physical
path that the user would have to walk to follow that virtual path. As
described above, 9 strategies were a combination of rotation (left, none,
right) and translation (reduce, none, magnify) gain. More sophisticated
strategies are possible; these simply applied a fixed level of gain. The
base levels of gain applied followed the subtlety thresholds described
in [19].

We simulate one physical walk per strategy. First we divide the
walk into sections (‘legs’), each treated as a straight line. We use the
waypoints of the path as the start and end points of legs. For each leg,
we select a redirection strategy.

Early in the walkthrough, all legs use the same strategy: this is the
strategy that will have its score updated. Strategies for later legs are
selected randomly with no weighting. This is because the algorithm
is free to combine strategies. The best approach is almost certain to
be one strategy now and different strategies later. Randomly selecting
strategies for later legs helps to represent these combinations.

To simulate a leg, we calculate the angle the user must turn to face
the end point of the leg, and the distance the user must walk between
the start and end points. We call these the virtual turn delta and virtual
position delta. The user may turn more or move further should they
move on a curved path or back and forth, but we use the deltas for
our simulations as they can be considered the worst case; it gives the
algorithm the least opportunity to apply gain.

Typically in RDW physical movement is fixed; we apply redirection
to this physical movement to generate redirected virtual movement.
In these walkthroughs, the virtual movement is fixed. We are instead
interested in calculating what physical movement would have generated
this virtual movement given a particular redirection strategy. With a
sufficiently simple redirection formula, we can work back from virtual

turn and position deltas to calculate physical turn and position deltas.
We use the following physical-to-virtual equations for delta rotations
and positions:

∆vrot = ∆wrot ·

{
coro if sgn xrot = sgn ∆wrot

anti otherwise
(3)

∥∥∆vpos
∥∥=

∥∥∆wpos
∥∥ ·{magn if xpos > 0

redu otherwise
(4)

Where: x is a 2-tuple containing (rot and pos) redirection instruction;
v is a 2-tuple containing user’s virt rotation and position; w is a 2-
tuple containing user’s phys rotation and position; coro is the gain
when turning with redirection instruction ∈ [1,∞); anti is the gain
when turning against redirection instruction ∈ (0,1]; magn is the gain
when magnifying physical movement ∈ [1,∞); redu is the gain when
reducing physical movement ∈ (0,1].

We use coro, anti, magn and redu because earlier work has found
users have varying tolerances depending on the direction of redirec-
tion [3, 19]. Note that for positions, only the magnitude is modified
as position deltas are applied relative to the current facing vector in
the appropriate space (virtual or physical). Additionally, in practice,
redirection equations will also apply smoothing. We omit this when
performing walkthroughs to significantly simplify the process of simu-
lating legs. Finally, note the method is never required to apply these
forward transformations; we only use them to generate the following
corresponding virtual-to-physical equations:

∆wrot = ∆vrot ·

{
1

1+r·(coro−1) if sgn xrot = sgn ∆vrot
1

1+r·(anti−1) otherwise
(5)

∥∥∆wpos
∥∥=

∥∥∆vpos
∥∥ ·{ 1

1+r·(magn−1) if xpos > 0
1

1+r·(redu−1) otherwise
(6)

Where r is a random number ∈ [0,1]. The random term is included
to represent the possibility that the algorithm may change redirection
strategy partway through a leg. This is a real possibility as the MCRDW
is run continually, and the best strategy updated continually, so the
strategy in use could change at any time. During early development
of the technique the addition of this term led to a small but consistent
performance improvement.

In this implementation strategies are limited to fixed gain levels. We
can therefore assume sufficient subtlety, and do not calculate subtlety
metrics (see Section 3.4).

The walkthrough continues until encountering the end of the path or
a boundary in the (simulated) physical environment. Finally, the score
is recorded using the TTBC metric (see Section 3.3). The score is the
total time walked before encountering a boundary, divided by the max
path length for normalisation.

4.3 Finalising Scores

Finally, scores are merged with the scores from previous frames with the
following process. 1) For each strategy, divide all scores by the number
of walks to normalise; 2) apply a weighting to slightly disincentivize
those strategies which apply greater levels of redirection; 3) push the
new scores onto a queue along with a scalar value for the current time.
For each score in the queue, the score is given a weight based on its age,
with more recent scores weighted higher. To calculate the final score
for each strategy, we multiply each score in the queue by its weight,
then sum all the weighted scores, and finally we divide the result by the
sum of all weights. The highest scoring method using this approach
is the current redirection strategy. The weight values we used were:
0.995 for (Left, Magnify), (Left, Reduce), (Right, Magnify) and (Right,
Reduce). 0.9975 for (Left, None), (Right, None), (None, Magnify) and
(None, Reduce), and 1.0 for (None, None).



5 EVALUATION

This section contains information on the simulation-based experiment
conducted to validate the technique. This includes a concrete imple-
mentation of MCRDW and details on simulation methodology and
experimental setup. We conclude with the results of the experiment
and a discussion of these results.

5.1 Simulator
The simulator used in this section has uses a runner, a configurable
procedure for conducting simulations. The input to the runner has
two components: a layout, which is a virtual environment and path
around that environment; and a method, which is one of the redirection
techniques under evaluation. The runner applies the method to the
movements of a simulated user as they follow the path described in the
layout. The output from the runner is a set of performance statistics
gathered during the run.

We use a large number of procedurally generated layouts to represent
the population of possible virtual environments. For the sake of com-
parison we run through each layout once with each method. Optionally,
a scheduler can be used to queue up runs with the correct layout and
method, and a visualizer can provide a graphical output to help monitor
the simulations while in-progress.

5.2 Layouts
Layouts contain two elements: the virtual environment itself and a path
through the environment. The virtual environment is represented by
a set of walls which cannot be traversed, and the path by a series of a
waypoints.

We use a connected graph as an intermediate step to help generate
the layout. Note however that the layout itself is not graph based. The
inputs to our generation follow: 1) the size (n×m); the number of
nodes in each dimension, 2) the node spacing; the distance between
each node (evenly spaced), 3) the path length, 4) the edge factor (EF)
∈ [0,1]; overall connectedness of the layout, 5), a max straight length;
constraint on length of straight sections, and 6) a max straight path
length; constraint on length of straight sections of path.

To generate the environment, we use the following four step process:
start with an n×m grid of evenly spaced nodes; randomly generate
a minimally connected graph of these nodes; randomly add edges as
required by the edge factor; wherever two nodes are not connected by
an edge, generate a wall.

For the path, we follow a three step process: randomly select a start
and destination node; generate the shortest possible path between start
and destination; if total path length would exceed desired length, cut
it short and return, otherwise, pick another destination node and go to
step 1.

After generation the path and layout are checked for compliance
with the max straight length and max straight path length constraints.
Should any constraint fail the check, the path and layout are discarded.
These constraints are included to make sure that boundary collisions
are theoretically avoidable by good gain selection; see Section 5.5 for
more on this topic.

The edge factor has the most significant effect on the overall layout.
With an edge factor of 0, the layout is minimally connected. With an
edge factor of 1, every node is connected to every neighboring node.
We can vary the edge factor to smoothly generate any point in between
these two extremes. For sample layouts at different levels of edge factor,
see Figure 2.

5.3 Runner
The runner is responsible for conducting the simulation using the envi-
ronment and the path defined by a layout, and the redirection technique
defined by a method.

The runner loads the environment described in the layout and ad-
vances the simulation at a fixed timestep, first updating the simulated
user’s position and orientation along the path found in the layout. The
runner then applies the method. The runner repeats this process until
the simulated user reaches the end of the layout’s path. Should a user

encounter a boundary in their simulated track space, a simulated ‘re-
set’ [25] occurs: the user is returned to the center of their track space
but their position in the virtual environment remains the same.

A very simple model of locomotion is used when following the
path; the simulated user turns to face their current waypoint and moves
towards it. When arriving at the waypoint, the process is repeated with
the next waypoint.

5.4 Redirection Methods
At each time step, methods are provided a delta time and the user’s
virtual and track space position and orientation. Methods are then
free to manipulate the virtual position and orientation. To do this,
all methods use a common ‘redirector’ to apply gain. The redirector
applies simple smoothing as is typical in RDW applications [4, 7, 17].
Methods are also notified of discontinuities (e.g., resets). This gives the
method an opportunity to reset smoothing and prediction variables.

In our simulations, the following methods were evaluated:
• S2C: Steer-to-Center, which guides the user towards the center of

their physical space [5, 17]. Rotation gain only.

• S2O: Steer-to-Orbit, which guides the user on a circular path
around the edge of their physical space [5, 17]. Rotation gain
only.

• S2T: Steer-to-temporary, as S2C but with temporary targets when
facing directly away from the center to ensure consistent gain
direction [7]. Rotation gain only.

• S2T-S: S2T with static magnification, as S2T but applying a
constant translation gain, effectively increasing the size of the
user’s physical space. Rotation and translation gain.

• S2T-D: S2T with dynamic magnification, as S2T but applying
a dynamic translation gain; magnifying user movement when
moving away from the center, and reducing it when moving
towards the center [1]. Rotation and translation gain.

• NoRDW: No redirected walking, control condition, map user
movements 1:1. No rotation or translation gain.

• MC: Monte-Carlo redirected walking (MCRDW, abbreviated for
space), as described in Section 4. Rotation and translation gain.

• MC-Fast: Monte-Carlo redirected walking with half compute
time, as MCRDW but reduce available compute time by half,
intended to help approximate computation requirements. Rotation
and translation gain.

• MC-Lo: Monte-Carlo redirected walking, over-threshold, low, as
MCRDW but when a boundary condition is likely the technique
is permitted to exceed perceptual thresholds by 10%. Rotation
and translation gain.

• MC-Med: Monte-Carlo redirected walking, over-threshold,
medium, as MC-Lo but instead exceed thresholds by 20%. Rota-
tion and translation gain.

• MC-Hi: Monte-Carlo redirected walking, over-threshold, high,
as MC-Lo but instead exceed thresholds by 30%. Rotation and
translation gain.

We aim to compare MCRDW with current top-performing gain
selection techniques for small tracking spaces. Direct comparisons
are difficult as performance depends on virtual environment and path.
We considered S2T-D a reasonable stand-in as it was fast to simulate
but still appears to improve on S2C by 20% [1], on a similar level to
APFs [12], and the reinforcement learning method, S2OT [11].

5.5 Experimental Setup
Using the procedure described in Section 5.2, we generate 1000 layouts
at 3 different levels of edge factors: .00, .15 and .30. This gives us 3000
layouts total. The generator had the following configuration: 8x8 nodes,
node spacing 1.3m, total path length 60m, max straight length and max
straight path length 4m. As the purpose of these simulations is to distin-
guish between methods, we use a 5m by 5m physical space to increase



(a) Edge-Factor 0 (b) Edge-Factor 0.15 (c) Edge-Factor 0.30

Fig. 2: Virtual environment layouts generated for evaluation purposes. The process followed for generating these environments is described
in Section 5.2. Solid lines are walls. The dotted line is the path followed by the virtual agent. Edge factor helps us evaluate how redirection
performance varies in more or less challenging environments. The higher the edge factor, the more branching.

the frequency of boundary collisions. With such a small physical space,
no redirection technique can make long-distance straight line walking
possible, so we constrain these two aspects to make each boundary col-
lision meaningful. For selected layouts from the experiment generated
with this configuration, see Figure 2.

We then simulated the walk generated for each layout with each
of the 11 methods described in Section 5.4. The recorded outcome
measures, summed across each simulation, were:

• Total boundary collisions

• Total position gain (in metres, absolute)

• Total rotation gain (in degrees, absolute)
For our simulations, the user walking speed is 1 meter per second.
The user turns at a rate of 90 degrees per second. As redirection gain
is applied multiplicatively, these speeds have minimal impact on the
outcome of a simulation. The time step used was 60 updates per second.

For methods with a configurable run-time (MC, MC-Fast, MC-Lo,
MC-Med, MC-Hi), the reference calculation time was 10 milliseconds
across 6 threads on a Ryzen 7 5800H. However, to help gather results
more quickly, simulations were run across machines. To standardise
results, a small section of the simulations was performed with the
reference setup above and the total number of path sections recorded.
The result was a mean of ≈ 22500 and standard deviation of ≈ 2000.
This was our calibration value; the methods were therefore limited
to calculating no more than 22500 path sections, except for MC-Fast
which was instead limited to 11250.

5.6 Results
We consider the three independent variables separately. These variables
were total collisions, total position gain and total rotation gain. Each
was assessed with a 2-way mixed ANOVA. The within-subjects factor
was the condition, as each layout had each condition applied. The
between-subjects factor was the level of edge factor, as this generated
three different sets of layouts.

Unless otherwise stated, we look for significance at the 1% level
(p < 0.01), rather than the typical 5%. This to reflect the impact high
sample count has on p.

5.6.1 Total Boundary Collisions
The data was normally distributed as assessed by visual inspection
of Normal Q-Q Plots. The data included a small number (n ≤ 4) of
outliers (±4 standard deviations) among all methods. As the sample
size is large, we include these values regardless. We omit no values
from the dataset.

The data violated Levene’s and Box’s test for homogeneity of vari-
ance and covariance respectively. However, these tests are known to
be sensitive with large sample sizes, and with groups of equal size
mixed ANOVA is considered robust to heterogenity of variances and
covariances [10]. Additionally, visual inspection of scatter plots of
residuals showed the expected shape, so we conclude the assumptions
of the mixed ANOVA are not violated and perform no transformations
on the data.

There was a statistically significant interaction between
the method and level of edge factor on boundary collisions,
F(13.189,19763.341) = 62.045, p < .0005, partial η2 = .4.
Greenhouse-Geisser correction was used (ε = .659) as Mauchly’s test
of sphericity indicated that the assumption of sphericity was violated
for the two-way interaction, χ2 = 13.34, p < .0005.

Analysis of the simple main effect of method is used to determine
whether method had an effect on the number of boundary collisions
at each level of edge factor. EF .00: F(5.9,5905.4) = 5934.8, p <
.0001,η2 = .856; EF .15: F(6.7,6711.9) = 5560.7, p < .0001,η2 =
.848; EF .30: F(7.1,7094.0) = 5166.6, p < .0001,η2 = .838.

Pairwise comparisons follow. As is to be expected given the high
sample count, almost every pairwise comparison between methods
showed significant difference (p < 0.0001). So instead we here list the
exceptions; those comparisons which were not significant. MC × MC-
Fast: No significant comparison at any level of edge factor, p > 0.9999;
S2C × S2O: No significant comparison at edge factor level .00, or .15;
S2C × S2T: No significant comparison at edge factor level .00, or .30.

Analysis of the simple main effect of edge factor is used to deter-
mine whether edge factor had an effect on the number of boundary col-
lisions for each method. S2C, S2O, S2T: No significant effect; S2T-S:
F(2,2997) = 13.9, p < .001,η2 = .009; STS-D: F(2,2997) = 13.3,
p < .001,η2 = .009; NoRDW: F(2,2997) = 10.8, p < .001,η2 =
.007; MC: F(2,2997) = 551.6, p < .0001,η2 = .269; MC-Fast:
F(2,2997) = 597.6, p < .0001,η2 = .285; MC-Lo: F(2,2997) =
619.1, p < .0001,η2 = .292; MC-Med: F(2,2997) = 638.6, p <
.0001,η2 = .263; MC-Hi: F(2,2997) = 587.3, p < .0001,η2 = .282.
Pairwise comparisons summarized in Table 1.

5.6.2 Total Absolute Position Gained

The methods S2C, S2O, S2T and NoRDW do not apply gain to positions
so are excluded from this analysis. The remaining data was visually
inspected for normality via Normal Q-Q Plot. S2T-D, MC, MC-Half,
MC-Lo, MC-Med and MC-Hi appeared normally distributed. However,
S2T-S only fit the model very approximately. With large sample sizes,
ANOVA is considered robust to violations of normality so we include



Fig. 3: Mean total collisions by method across all simulations, grouped
by edge factor.

Method .00× .15 .00× .30 .15× .30 η2

S2C -
S2O -
S2T -

S2T-S * * .009
S2T-D * * .009

NoRDW * * .007
MC * * * .269

MC-Fast * * * .285
MC-Lo * * * .292

MC-Med * * * .263
MC-Hi * * * .282

Table 1: Pairwise comparisons for simple main effects of edge factor
on boundary collisions, by method. Edge factor had no significant
effect on S2C, S2O and S2T.

S2T-S [10].
The data included a small number (n ≤ 4) of outliers (±4 standard

deviations) among all included methods. As the sample size is large,
we include these values regardless. We omit no values from the dataset.

The data violated Levene’s and Box’s test for homogeneity of vari-
ance and covariance respectively. However, these tests are known to
be sensitive with large sample sizes, and with groups of equal size
mixed ANOVA is considered robust to heterogenity of variances and
covariances [10]. Additionally, visual inspection of scatter plots of
residuals showed the expected shape, so we conclude the assumptions
of the mixed ANOVA are not violated and perform no transformations
on the data.

There was a statistically significant interaction between the method
and the level of edge factor on total position gained, F(3.7,5542.7) =
222.7, p < .0005, partial η2 = .129. Greenhouse-Geisser correction
was used (ε = .308) as Mauchly’s test of sphericity indicated that the
assumption of sphericity was violated for the two-way interaction,
χ2 = 14201.9, p < .0005.

Analysis of the simple main effect of method is used to determine
whether method had an effect on the total absolute position gained
at each level of edge factor. EF .00: F(2.2,2243.8) = 15354.1, p <
.0001,η2 = .939; EF .15: F(1.9,1865.1) = 21492.3, p < .0001,η2 =
.956; EF .30: F(1.4,1413.9) = 26400.3, p < .0001,η2 = .964.

Pairwise comparisons follow. As is to be expected given the high
sample count, almost every pairwise comparison between methods
showed significant difference (p < 0.0001). So instead we here list the
exceptions; those comparisons which were not significant. MC × MC-
Fast: No significant comparison at any level of edge factor p > 0.9999;
S2T-D × MC, and S2T-D × MC-Fast: No significant comparison at

Fig. 4: Mean total absolute position gained by method, grouped by
edge factor. This is the sum of the absolute differences between virtual
and physical movements, averaged across trials.

Method .00× .15 .00× .30 .15× .30 η2

S2T-S * * * .026
S2T-D -

MC * * * .494
MC-Fast * * * .504
MC-Lo * * * .471

MC-Med * * * .422
MC-Hi * * * .418

Table 2: Pairwise comparisons for simple main effects of edge factor
on position gain, by method. S2C, S2O, S2T and NoRDW methods
applied no position gain so are not considered. Edge factor had no
significant effect on STS-D.

edge factor level .00.
Analysis of the simple main effect of edge factor is used to deter-

mine whether edge factor had an effect on the total absolute position
gained for each method. S2T-S: F(2,2997) = 40.5, p < .001,η2 =
.026; STS-D: No significant effect; MC: F(2,2997) = 1461.4, p <
.0001,η2 = .494; MC-Fast: F(2,2997) = 1521.8, p < .0001,η2 =
.504; MC-Lo: F(2,2997) = 1331.9, p < .0001,η2 = .471; MC-Med:
F(2,2997) = 1094.6, p < .0001,η2 = .422; MC-Hi: F(2,2997) =
1074.8, p < .0001,η2 = .418. Pairwise comparisons summarized in
Table 2.

5.6.3 Total Absolute Rotation Gained

The NoRDW method does not apply gain to rotations so is excluded
from this analysis. The remaining data was visually inspected for
normality via Normal Q-Q Plot. The MC techniques MC, MC-Half,
MC-Lo, MC-Med and MC-Hi appeared to fit a normal distribution
well. The heuristic techniques S2C, S2O, S2T, S2T-S and S2T-D,
were consistently slightly left-skewed, but still approximately normal.
With large sample sizes, ANOVA is considered robust to violations of
normality so we include the heuristic techniques [10].

The data included a very small number (n ≤ 1) of outliers (±4
standard deviations) among all included methods. As the sample size
is large, we include these values regardless. We omit no values from
the dataset.

There was homogeneity of variance for all methods except for MC-
Hi (p < 0.001). However, the data violated Box’s test for homogeneity
of covariance. These tests are known to be sensitive with large sample
sizes, and with groups of equal size mixed ANOVA is considered robust
to heterogenity of variances and covariances [10]. Additionally, visual
inspection of scatter plots of residuals showed the expected shape, so



we conclude the assumptions of the mixed ANOVA are not violated
and perform no transformations on the data.

There was a statistically significant interaction with a small effect
size between the method and the level of edge factor on total rotation
gain, F(12.5,18706.4)= 46.6, p< .001, partial η2 = .03. Greenhouse-
Geisser correction was used (ε = .694) as Mauchly’s test of sphericity
indicated that the assumption of sphericity was violated for the two-way
interaction, χ2 = 9838.7, p < .0001.

Analysis of the simple main effect of method is used to determine
whether method had an effect on the total absolute rotation gained
at each level of edge factor. EF .00: F(5.9,5878.4) = 129.6, p <
.001,η2 = .115; EF .15: F(6.3,6253.2) = 347.1, p < .0001,η2 =
.258; EF .30: F(6.5,6461.7) = 494.4, p < .0001,η2 = .331.

Pairwise comparisons follow. Unlike boundary collisions and po-
sition gain, many of these comparisons showed no significant differ-
ence. For reasons of space we summarise notable patterns below. MC
and MC-Fast: No significant comparison at any level of edge factor
p > 0.9999; MC-Lo, MC-Med and MC-High: Significant comparisons
with all other methods at all levels of edge factor.

Analysis of the simple main effect of edge factor is used to de-
termine whether edge factor had an effect on the total absolute rota-
tion gained for each method. S2C: F(2,2997) = 7.8, p < .001,η2 =
.005; S2O: F(2,2997) = 12.7, p < .001,η2 = .008; S2T: No sig-
nificant effect; S2T-S: F(2,2997) = 6.2, p ≈ .002,η2 = .004; STS-
D: F(2,2997) = 5.9, p ≈ .003,η2 = .004; MC: F(2,2997) = 127.9,
p < .001,η2 = .079; MC-Fast: F(2,2997) = 126.4, p < .001,η2 =
.078; MC-Lo: F(2,2997) = 304.0, p < .001,η2 = .171; MC-Med:
F(2,2997) = 402.6, p< .001,η2 = .212; MC-Hi: F(2,2997) = 445.8,
p < .001,η2 = .229. Pairwise comparisons summarized in Table 3.

5.7 Discussion

We loosely structure this discussion around the three independent vari-
ables. Where helpful we consider the variables together.

5.7.1 Total Boundary Collisions

Overall the family of MCRDW techniques significantly reduced colli-
sions when compared with the heuristic approaches (see Figure 3). At
edge factor 0 in our simulations, MCRDW reduced collisions by over
75% when compared with S2C and over 50% when compared with the
next best technique, S2T-S. While performance gains were still good at
higher levels of edge factor, there was a notable performance reduction.
As an environment becomes more open, path prediction becomes more
challenging, so we make less accurate guesses about which path a user
might take. However, MCRDW methods did continue to outperform
heuristic methods even with very open environments at edge factor 0.3.

The over-threshold MCRDW methods MC-Lo, MC-Med and MC-
Hi demonstrated a linear performance gain correlated with the level of
over-thresholding permitted. The effect was significant. However, as
covered later in this Section, these performance improvements came at
the cost of noticeably higher total gain overall.

No significant difference was found between MC and MC-Fast
(p > 0.9999, see Figure 3). This is a good result and likely indicates
the method had more than enough time for computation for the envi-
ronments in our simulations. The available computation time could
likely have been reduced further to find the point at which it begins
affecting performance. However, the aim of this experiment is to dis-
cover whether simulations can be a robust and performant approach to
finding good redirection strategies, and this appears to be well demon-
strated. Any of the MCRDW techniques can operate as a lightweight
background process in the kind of machines capable of driving VR.
This constitutes a substantial improvement over a brute force approach
which would not be possible in real time.

Based on [7], we expected S2C to outperform S2O as S2O is unable
to lead a user around a large circle in a confined space. We also expected
S2T to slightly outperform S2C due to more consistent handling of
rotations. In practice, these expectations were met and can be observed
in the data. However, while the differences were statistically significant,

Fig. 5: Mean total absolute rotation gained by method, grouped by
edge factor. This is the sum of the absolute differences between virtual
and physical rotations, averaged across trials.

Method .00× .15 .00× .30 .15× .30 η2

S2C * * .005
S2O * * .008
S2T -

S2T-S * .004
S2T-D * .004

MC * * * .079
MC-Fast * * * .078
MC-Lo * * * .171

MC-Med * * * .212
MC-Hi * * * .229

Table 3: Pairwise comparisons for simple main effects of edge factor
on rotation gain, by method. The NoRDW method applied no rotation
gain so is not considered. Edge factor had no significant effect on S2T.

the effect size was very small and so the results largely similar. These
methods performed similarly across edge factor levels.

One surprising result was the performance difference observed be-
tween S2T-S and S2T-D. Theoretically S2T-D directs the user towards
the center of their space more efficiently than S2T-S, but overall S2T-S
performed significantly better. One possible explanation would be that
during long straight walks S2T-S maximized the overall physical space
while S2T-D had a more neutral effect.

Another surprising result is that these methods and NoRDW per-
formed differently across edge factor levels, despite using no form
of prediction. This likely indicates that edge factor is not a perfect
method for adding branching to environments. We can see why this
occurs from the path generation algorithm described in Section 5.2.
We only generate paths after already adding the branching edges from
edge factor. As a result, edge factor also has an effect on our path
generation, and the kind of paths generated. This is a methodological
flaw in our approach which could have been avoided by generating
paths before adding edge factor. However, it is unlikely to have effected
the results materially, as the effect size is notably very small when com-
pared with those techniques which do use path prediction: η2 < .009
vs η2 > .263.

5.7.2 Total Position Gain
MC reduced total position gain when compared with the best per-
forming heuristic method, S2T-S. However, S2T-S method applies the
maximum level of gain for the entire walk and MC only slightly reduces
the level of gain applied (see Figure 4). As a result, MC does appear
to favour position gain and used it a great deal in our simulations. As
with the other metrics, MC and MC-Fast had similar results.



The superior boundary collision performance of the over-threshold
methods MC-Lo, MC-Med and MC-Hi came with the cost of higher
position gain overall. There was a possibility that these over-threshold
methods would not dramatically increase total gain due to their scoring
mechanism favouring low gain strategies. However, this is not borne
out by the data, especially as in our simulations the MCRDW family
of methods appeared to select redirection strategies with position gain
frequently. This could perhaps be achieved through better weights, or
a more intelligent scoring mechanism. Another possible explanation
could be that due to the small tracking space, the user was almost
always encountering a boundary so gain was frequently required.

Edge factor had a notable impact on the level of position gain applied
(see Table 2 for effect sizes). However, this is likely a result of low
standard deviations among position gain results across techniques. The
difference in mean total position gain is small in practice. The likely
explanation is that those layouts with higher edge factor more frequently
placed the user in situations likely to lead to boundary collision. As a
result, the small bias in favour of not applying translation gain is more
frequently ignored.

5.7.3 Total Rotation Gain

Total rotation gain was similar across all heuristic techniques. MC had
the lowest rotation gain overall by a small but significant factor, though
this gap closed at higher edge factors. Interestingly at low edge factors,
the over-threshold methods MC-Lo, MC-Med and MC-Hi saw slightly
increased rotation gains overall, but significant performance gains. This
may be a good argument for allowing at least rotation gain to slightly
exceed established thresholds in challenging situations, as it is possible
that MCRDW is able to only apply it in situations where it is necessary.
However, confirming this would require additional outcome measures
that were not included in this experiment. Again as with position gain
and boundary collisions, no significant difference was found between
MC and MC-Fast p > 0.9999.

Edge factor had a less notable impact on the level of rotation gain
applied than it did with position gain (see Table 3 for effect sizes).
However, as with position gain, the effect was particularly notable for
the over-threshold methods. Likely this is for the same reason; layouts
with higher edge factor more frequently put the simulated user on path
towards boundary collision, overwhelming the small bias towards low
gain strategies.

6 CONCLUSION

This paper introduces the MCRDW algorithm, a method for selecting
redirection strategies which minimises boundary collisions through
simulated walks. We include an evaluation of MCRDW under a variety
of different conditions, and a comparison with existing methods. In
our evaluation, the MCRDW family of methods significantly reduce
boundary collisions when compared with the heuristic methods by over
50% while reducing total rotation or position gain. No significant dif-
ference was found between MC and MC-Fast on all metrics. MCRDW
can therefore make good decisions without needing as much compu-
tation time as allotted within our simulations. The technique can be
considered lightweight.

The over-threshold MCRDW methods MC-Lo, MC-Med and MC-
Hi significantly outperformed all other techniques. However, these
methods resorted to over-threshold gains too often, at the cost of signifi-
cantly increasing total rotation and position gain. This behaviour could
potentially be avoided by tweaking the associated ‘score’ penalties, or
by introducing a more intelligent subtlety metric.

While MCRDW methods significantly outperformed heuristic meth-
ods at all levels of edge factor, MCRDW performance was more closely
linked to the virtual environment than with heuristic methods. This is
likely due to simple environments having fewer potential routes. This
makes the simple path prediction used in our implementation more
reliable. Quality of available path prediction should be considered a
significant factor in MCRDW performance. Advanced path prediction
techniques would be a valuable avenue of future research.
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