-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsiftsvm.py
86 lines (61 loc) · 2.21 KB
/
siftsvm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
# import argparse as ap
import cv2
import utils
import pdb
import numpy as np
import os
from sklearn.svm import LinearSVC
from sklearn.externals import joblib
from scipy.cluster.vq import *
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import accuracy_score
# create feature extractor and keypoint detector objects
featuresDetector = cv2.FeatureDetector_create('SIFT')
descriptorExtractor = cv2.DescriptorExtractor_create('SIFT')
# This the list where all descriptor will be stored
descriptorAllList = []
trainingPath = "../../GTSRB/train/Final_Training/Images/"
trainingNames = os.listdir(trainingPath)
imagesPaths= []
imageClasses = []
classId = 0
for trainingName in trainingNames:
directory = os.path.join(trainingPath, trainingName)
classPath = utils.imlist(directory)
imagesPaths += classPath
imageClasses += [classId]*len(classPath)
classId += 1
# pdb.set_trace()
imageClassesList = []
for imagePath, imageClass in zip(imagesPaths, imageClasses):
#print imagePath
image = cv2.imread(imagePath)
image = cv2.resize(image, (40,40))
features = featuresDetector.detect(image)
features, descriptors = descriptorExtractor.compute(image, features)
if descriptors is not None:
descriptorAllList.append((imagePath, descriptors))
imageClassesList.append(imageClass)
# Stack all the descriptors vertically
imageClassesAll = np.vstack(imageClassesList)
descriptorAll = np.vstack(zip(*descriptorAllList)[1])
print "Descriptor Size: %s" %(descriptorAll.shape, )
print "Image classes Size: %s" %(imageClassesAll.shape, )
#pdb.set_trace()
# Perform k-means clustering
k = 400
voc, variance = kmeans(descriptorAll, k, 1)
# Calculate Image Features
imageFeatures = np.zeros((len(descriptorAllList), k), "float32")
for i in range(len(descriptorAllList)):
words, distance = vq(descriptorAllList[i][1], voc)
for w in words:
imageFeatures[i, w] += 1
print "Image Feature Size: %s" %(imageFeatures.shape,)
stdScaler = StandardScaler().fit(imageFeatures)
imageFeatures = stdScaler.transform(imageFeatures)
# Train a Linear SVM
clf = LinearSVC()
clf.fit(imageFeatures, np.array(imageClassesAll))
# Save SVM
joblib.dump((clf, trainingNames, stdScaler, k, voc), "bagOfFeatures.pkl", compress = 3)