-
Notifications
You must be signed in to change notification settings - Fork 174
/
Copy pathutil.py
247 lines (200 loc) · 8.85 KB
/
util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
# ---------------------------------------------------------
# IOU Tracker
# Copyright (c) 2017 TU Berlin, Communication Systems Group
# Licensed under The MIT License [see LICENSE for details]
# Written by Erik Bochinski
# ---------------------------------------------------------
import numpy as np
import csv
import os
visdrone_classes = {'car': 4, 'bus': 9, 'truck': 6, 'pedestrian': 1, 'van': 5}
def load_mot(detections, nms_overlap_thresh=None, with_classes=True, nms_per_class=False):
"""
Loads detections stored in a mot-challenge like formatted CSV or numpy array (fieldNames = ['frame', 'id', 'x', 'y',
'w', 'h', 'score']).
Args:
detections (str, numpy.ndarray): path to csv file containing the detections or numpy array containing them.
nms_overlap_thresh (float, optional): perform non-maximum suppression on the input detections with this thrshold.
no nms is performed if this parameter is not specified.
with_classes (bool, optional): indicates if the detections have classes or not. set to false for motchallange.
nms_per_class (bool, optional): perform non-maximum suppression for each class separately
Returns:
list: list containing the detections for each frame.
"""
if nms_overlap_thresh:
assert with_classes, "currently only works with classes available"
data = []
if type(detections) is str:
raw = np.genfromtxt(detections, delimiter=',', dtype=np.float32)
if np.isnan(raw).all():
raw = np.genfromtxt(detections, delimiter=' ', dtype=np.float32)
else:
# assume it is an array
assert isinstance(detections, np.ndarray), "only numpy arrays or *.csv paths are supported as detections."
raw = detections.astype(np.float32)
end_frame = int(np.max(raw[:, 0]))
for i in range(1, end_frame+1):
idx = raw[:, 0] == i
bbox = raw[idx, 2:6]
bbox[:, 2:4] += bbox[:, 0:2] # x1, y1, w, h -> x1, y1, x2, y2
bbox -= 1 # correct 1,1 matlab offset
scores = raw[idx, 6]
if with_classes:
classes = raw[idx, 7]
bbox_filtered = None
scores_filtered = None
classes_filtered = None
for coi in visdrone_classes:
cids = classes==visdrone_classes[coi]
if nms_per_class and nms_overlap_thresh:
bbox_tmp, scores_tmp = nms(bbox[cids], scores[cids], nms_overlap_thresh)
else:
bbox_tmp, scores_tmp = bbox[cids], scores[cids]
if bbox_filtered is None:
bbox_filtered = bbox_tmp
scores_filtered = scores_tmp
classes_filtered = [coi]*bbox_filtered.shape[0]
elif len(bbox_tmp) > 0:
bbox_filtered = np.vstack((bbox_filtered, bbox_tmp))
scores_filtered = np.hstack((scores_filtered, scores_tmp))
classes_filtered += [coi] * bbox_tmp.shape[0]
if bbox_filtered is not None:
bbox = bbox_filtered
scores = scores_filtered
classes = classes_filtered
if nms_per_class is False and nms_overlap_thresh:
bbox, scores, classes = nms(bbox, scores, nms_overlap_thresh, np.array(classes))
else:
classes = ['pedestrian']*bbox.shape[0]
dets = []
for bb, s, c in zip(bbox, scores, classes):
dets.append({'bbox': (bb[0], bb[1], bb[2], bb[3]), 'score': s, 'class': c})
data.append(dets)
return data
def nms(boxes, scores, overlapThresh, classes=None):
"""
perform non-maximum suppression. based on Malisiewicz et al.
Args:
boxes (numpy.ndarray): boxes to process
scores (numpy.ndarray): corresponding scores for each box
overlapThresh (float): overlap threshold for boxes to merge
classes (numpy.ndarray, optional): class ids for each box.
Returns:
(tuple): tuple containing:
boxes (list): nms boxes
scores (list): nms scores
classes (list, optional): nms classes if specified
"""
# # if there are no boxes, return an empty list
# if len(boxes) == 0:
# return [], [], [] if classes else [], []
# if the bounding boxes integers, convert them to floats --
# this is important since we'll be doing a bunch of divisions
if boxes.dtype.kind == "i":
boxes = boxes.astype("float")
if scores.dtype.kind == "i":
scores = scores.astype("float")
# initialize the list of picked indexes
pick = []
# grab the coordinates of the bounding boxes
x1 = boxes[:, 0]
y1 = boxes[:, 1]
x2 = boxes[:, 2]
y2 = boxes[:, 3]
#score = boxes[:, 4]
# compute the area of the bounding boxes and sort the bounding
# boxes by the bottom-right y-coordinate of the bounding box
area = (x2 - x1 + 1) * (y2 - y1 + 1)
idxs = np.argsort(scores)
# keep looping while some indexes still remain in the indexes
# list
while len(idxs) > 0:
# grab the last index in the indexes list and add the
# index value to the list of picked indexes
last = len(idxs) - 1
i = idxs[last]
pick.append(i)
# find the largest (x, y) coordinates for the start of
# the bounding box and the smallest (x, y) coordinates
# for the end of the bounding box
xx1 = np.maximum(x1[i], x1[idxs[:last]])
yy1 = np.maximum(y1[i], y1[idxs[:last]])
xx2 = np.minimum(x2[i], x2[idxs[:last]])
yy2 = np.minimum(y2[i], y2[idxs[:last]])
# compute the width and height of the bounding box
w = np.maximum(0, xx2 - xx1 + 1)
h = np.maximum(0, yy2 - yy1 + 1)
# compute the ratio of overlap
overlap = (w * h) / area[idxs[:last]]
# delete all indexes from the index list that have
idxs = np.delete(idxs, np.concatenate(([last],
np.where(overlap > overlapThresh)[0])))
if classes is not None:
return boxes[pick], scores[pick], classes[pick]
else:
return boxes[pick], scores[pick]
def save_to_csv(out_path, tracks, fmt='motchallenge'):
"""
Saves tracks to a CSV file.
Args:
out_path (str): path to output csv file.
tracks (list): list of tracks to store.
"""
os.makedirs(os.path.dirname(out_path), exist_ok=True)
with open(out_path, "w") as ofile:
if fmt == 'motchallenge':
field_names = ['frame', 'id', 'x', 'y', 'w', 'h', 'score', 'wx', 'wy', 'wz']
elif fmt == 'visdrone':
field_names = ['frame', 'id', 'x', 'y', 'w', 'h', 'score', 'object_category', 'truncation', 'occlusion']
else:
raise ValueError("unknown format type '{}'".format(fmt))
odict = csv.DictWriter(ofile, field_names)
id_ = 1
for track in tracks:
for i, bbox in enumerate(track['bboxes']):
row = {'id': id_,
'frame': track['start_frame'] + i,
'x': bbox[0]+1,
'y': bbox[1]+1,
'w': bbox[2] - bbox[0],
'h': bbox[3] - bbox[1],
'score': track['max_score']}
if fmt == 'motchallenge':
row['wx'] = -1
row['wy'] = -1
row['wz'] = -1
elif fmt == 'visdrone':
row['object_category'] = visdrone_classes[track['class']]
row['truncation'] = -1
row['occlusion'] = -1
else:
raise ValueError("unknown format type '{}'".format(fmt))
odict.writerow(row)
id_ += 1
def iou(bbox1, bbox2):
"""
Calculates the intersection-over-union of two bounding boxes.
Args:
bbox1 (numpy.array, list of floats): bounding box in format x1,y1,x2,y2.
bbox2 (numpy.array, list of floats): bounding box in format x1,y1,x2,y2.
Returns:
int: intersection-over-onion of bbox1, bbox2
"""
bbox1 = [float(x) for x in bbox1]
bbox2 = [float(x) for x in bbox2]
(x0_1, y0_1, x1_1, y1_1) = bbox1
(x0_2, y0_2, x1_2, y1_2) = bbox2
# get the overlap rectangle
overlap_x0 = max(x0_1, x0_2)
overlap_y0 = max(y0_1, y0_2)
overlap_x1 = min(x1_1, x1_2)
overlap_y1 = min(y1_1, y1_2)
# check if there is an overlap
if overlap_x1 - overlap_x0 <= 0 or overlap_y1 - overlap_y0 <= 0:
return 0
# if yes, calculate the ratio of the overlap to each ROI size and the unified size
size_1 = (x1_1 - x0_1) * (y1_1 - y0_1)
size_2 = (x1_2 - x0_2) * (y1_2 - y0_2)
size_intersection = (overlap_x1 - overlap_x0) * (overlap_y1 - overlap_y0)
size_union = size_1 + size_2 - size_intersection
return size_intersection / size_union