-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathutils.py
63 lines (53 loc) · 1.74 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
import os
import logging
import random
import yaml
from pathlib import Path
from os import PathLike
from typing import Any, List, Dict
import numpy as np
import torch
def set_random_seed(seed: int) -> None:
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
def init_logger(log_dir: str, log_file: str) -> None:
logger = logging.getLogger()
format_str = r'[%(asctime)s] %(message)s'
logging.basicConfig(
level=logging.INFO,
datefmt=r'%Y/%m/%d %H:%M:%S',
format=format_str
)
log_dir = Path(log_dir)
log_dir.mkdir(parents=True, exist_ok=True)
fh = logging.FileHandler(str(log_dir / log_file))
fh.setFormatter(logging.Formatter(format_str))
logger.addHandler(fh)
def load_yaml(path: PathLike) -> Any:
with open(path) as f:
obj = yaml.safe_load(f)
return obj
def dump_yaml(obj: Any, path: PathLike) -> None:
with open(path, 'w') as f:
yaml.dump(obj, f)
class AverageMeter(object):
def __init__(self, *keys: str):
self.totals = {key: 0.0 for key in keys}
self.counts = {key: 0 for key in keys}
def update(self, **kwargs: float) -> None:
for key, value in kwargs.items():
self._check_attr(key)
self.totals[key] += value
self.counts[key] += 1
def __getattr__(self, attr: str) -> float:
self._check_attr(attr)
total = self.totals[attr]
count = self.counts[attr]
return total / count if count else 0.0
def _check_attr(self, attr: str) -> None:
assert attr in self.totals and attr in self.counts