You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
通过设置 TF_KERAS==1 , 切换至 tf.keras. 启动训练脚本后可正常编译模型, 但训练时报错.
报错信息如下: Traceback (most recent call last): File "train.py", line 94, in <module> train_generator.forfit(), steps_per_epoch=len(train_generator), epochs=1 File "/Users/yuxi/opt/anaconda3/envs/TrainingRobot/lib/python3.7/site-packages/tensorflow_core/python/keras/engine/training.py", line 728, in fit use_multiprocessing=use_multiprocessing) File "/Users/yuxi/opt/anaconda3/envs/TrainingRobot/lib/python3.7/site-packages/tensorflow_core/python/keras/engine/training_v2.py", line 224, in fit distribution_strategy=strategy) File "/Users/yuxi/opt/anaconda3/envs/TrainingRobot/lib/python3.7/site-packages/tensorflow_core/python/keras/engine/training_v2.py", line 547, in _process_training_inputs use_multiprocessing=use_multiprocessing) File "/Users/yuxi/opt/anaconda3/envs/TrainingRobot/lib/python3.7/site-packages/tensorflow_core/python/keras/engine/training_v2.py", line 606, in _process_inputs use_multiprocessing=use_multiprocessing) File "/Users/yuxi/opt/anaconda3/envs/TrainingRobot/lib/python3.7/site-packages/tensorflow_core/python/keras/engine/data_adapter.py", line 566, in __init__ reassemble, nested_dtypes, output_shapes=nested_shape) File "/Users/yuxi/opt/anaconda3/envs/TrainingRobot/lib/python3.7/site-packages/tensorflow_core/python/data/ops/dataset_ops.py", line 540, in from_generator output_types, tensor_shape.as_shape, output_shapes) File "/Users/yuxi/opt/anaconda3/envs/TrainingRobot/lib/python3.7/site-packages/tensorflow_core/python/data/util/nest.py", line 471, in map_structure_up_to results = [func(*tensors) for tensors in zip(*all_flattened_up_to)] File "/Users/yuxi/opt/anaconda3/envs/TrainingRobot/lib/python3.7/site-packages/tensorflow_core/python/data/util/nest.py", line 471, in <listcomp> results = [func(*tensors) for tensors in zip(*all_flattened_up_to)] File "/Users/yuxi/opt/anaconda3/envs/TrainingRobot/lib/python3.7/site-packages/tensorflow_core/python/framework/tensor_shape.py", line 1216, in as_shape return TensorShape(shape) File "/Users/yuxi/opt/anaconda3/envs/TrainingRobot/lib/python3.7/site-packages/tensorflow_core/python/framework/tensor_shape.py", line 776, in __init__ self._dims = [as_dimension(d) for d in dims_iter] File "/Users/yuxi/opt/anaconda3/envs/TrainingRobot/lib/python3.7/site-packages/tensorflow_core/python/framework/tensor_shape.py", line 776, in <listcomp> self._dims = [as_dimension(d) for d in dims_iter] File "/Users/yuxi/opt/anaconda3/envs/TrainingRobot/lib/python3.7/site-packages/tensorflow_core/python/framework/tensor_shape.py", line 718, in as_dimension return Dimension(value) File "/Users/yuxi/opt/anaconda3/envs/TrainingRobot/lib/python3.7/site-packages/tensorflow_core/python/framework/tensor_shape.py", line 193, in __init__ self._value = int(value) TypeError: int() argument must be a string, a bytes-like object or a number, not 'tuple'
通过设置 TF_KERAS==1 , 切换至 tf.keras. 启动训练脚本后可正常编译模型, 但训练时报错.
报错信息如下:
Traceback (most recent call last): File "train.py", line 94, in <module> train_generator.forfit(), steps_per_epoch=len(train_generator), epochs=1 File "/Users/yuxi/opt/anaconda3/envs/TrainingRobot/lib/python3.7/site-packages/tensorflow_core/python/keras/engine/training.py", line 728, in fit use_multiprocessing=use_multiprocessing) File "/Users/yuxi/opt/anaconda3/envs/TrainingRobot/lib/python3.7/site-packages/tensorflow_core/python/keras/engine/training_v2.py", line 224, in fit distribution_strategy=strategy) File "/Users/yuxi/opt/anaconda3/envs/TrainingRobot/lib/python3.7/site-packages/tensorflow_core/python/keras/engine/training_v2.py", line 547, in _process_training_inputs use_multiprocessing=use_multiprocessing) File "/Users/yuxi/opt/anaconda3/envs/TrainingRobot/lib/python3.7/site-packages/tensorflow_core/python/keras/engine/training_v2.py", line 606, in _process_inputs use_multiprocessing=use_multiprocessing) File "/Users/yuxi/opt/anaconda3/envs/TrainingRobot/lib/python3.7/site-packages/tensorflow_core/python/keras/engine/data_adapter.py", line 566, in __init__ reassemble, nested_dtypes, output_shapes=nested_shape) File "/Users/yuxi/opt/anaconda3/envs/TrainingRobot/lib/python3.7/site-packages/tensorflow_core/python/data/ops/dataset_ops.py", line 540, in from_generator output_types, tensor_shape.as_shape, output_shapes) File "/Users/yuxi/opt/anaconda3/envs/TrainingRobot/lib/python3.7/site-packages/tensorflow_core/python/data/util/nest.py", line 471, in map_structure_up_to results = [func(*tensors) for tensors in zip(*all_flattened_up_to)] File "/Users/yuxi/opt/anaconda3/envs/TrainingRobot/lib/python3.7/site-packages/tensorflow_core/python/data/util/nest.py", line 471, in <listcomp> results = [func(*tensors) for tensors in zip(*all_flattened_up_to)] File "/Users/yuxi/opt/anaconda3/envs/TrainingRobot/lib/python3.7/site-packages/tensorflow_core/python/framework/tensor_shape.py", line 1216, in as_shape return TensorShape(shape) File "/Users/yuxi/opt/anaconda3/envs/TrainingRobot/lib/python3.7/site-packages/tensorflow_core/python/framework/tensor_shape.py", line 776, in __init__ self._dims = [as_dimension(d) for d in dims_iter] File "/Users/yuxi/opt/anaconda3/envs/TrainingRobot/lib/python3.7/site-packages/tensorflow_core/python/framework/tensor_shape.py", line 776, in <listcomp> self._dims = [as_dimension(d) for d in dims_iter] File "/Users/yuxi/opt/anaconda3/envs/TrainingRobot/lib/python3.7/site-packages/tensorflow_core/python/framework/tensor_shape.py", line 718, in as_dimension return Dimension(value) File "/Users/yuxi/opt/anaconda3/envs/TrainingRobot/lib/python3.7/site-packages/tensorflow_core/python/framework/tensor_shape.py", line 193, in __init__ self._value = int(value) TypeError: int() argument must be a string, a bytes-like object or a number, not 'tuple'
使用 keras 可正常训练. 至于想要用 tf.keras训练的原因是, 想将 hdf5 格式保存的模型切换至 SavedModel. keras.model 无法直接转换.
The text was updated successfully, but these errors were encountered: