-
Notifications
You must be signed in to change notification settings - Fork 185
/
kg_without_ds.py
604 lines (526 loc) · 20.9 KB
/
kg_without_ds.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
#! -*- coding:utf-8 -*-
from __future__ import print_function
import json
import numpy as np
from random import choice
from tqdm import tqdm
import pyhanlp
from gensim.models import Word2Vec
import re, os
mode = 0
char_size = 128
maxlen = 512
word2vec = Word2Vec.load('../word2vec_baike/word2vec_baike')
id2word = {i+1:j for i,j in enumerate(word2vec.wv.index2word)}
word2id = {j:i for i,j in id2word.items()}
word2vec = word2vec.wv.syn0
word_size = word2vec.shape[1]
word2vec = np.concatenate([np.zeros((1, word_size)), word2vec])
def tokenize(s):
return [i.word for i in pyhanlp.HanLP.segment(s)]
def sent2vec(S):
"""S格式:[[w1, w2]]
"""
V = []
for s in S:
V.append([])
for w in s:
for _ in w:
V[-1].append(word2id.get(w, 0))
V = seq_padding(V)
V = word2vec[V]
return V
total_data = json.load(open('../datasets/train_data_vote_me.json'))
id2predicate, predicate2id = json.load(open('../datasets/all_50_schemas_me.json'))
id2predicate = {int(i):j for i,j in id2predicate.items()}
id2char, char2id = json.load(open('../datasets/all_chars_me.json'))
num_classes = len(id2predicate)
if not os.path.exists('../random_order_vote.json'):
random_order = range(len(total_data))
np.random.shuffle(random_order)
json.dump(
random_order,
open('../random_order_vote.json', 'w'),
indent=4
)
else:
random_order = json.load(open('../random_order_vote.json'))
train_data = [total_data[j] for i, j in enumerate(random_order) if i % 8 != mode]
dev_data = [total_data[j] for i, j in enumerate(random_order) if i % 8 == mode]
predicates = {} # 格式:{predicate: [(subject, predicate, object)]}
def repair(d):
d['text'] = d['text'].lower()
something = re.findall(u'《([^《》]*?)》', d['text'])
something = [s.strip() for s in something]
zhuanji = []
gequ = []
for sp in d['spo_list']:
sp[0] = sp[0].strip(u'《》').strip().lower()
sp[2] = sp[2].strip(u'《》').strip().lower()
for some in something:
if sp[0] in some and d['text'].count(sp[0]) == 1:
sp[0] = some
if sp[1] == u'所属专辑':
zhuanji.append(sp[2])
gequ.append(sp[0])
spo_list = []
for sp in d['spo_list']:
if sp[1] in [u'歌手', u'作词', u'作曲']:
if sp[0] in zhuanji and sp[0] not in gequ:
continue
spo_list.append(tuple(sp))
d['spo_list'] = spo_list
for d in train_data:
repair(d)
for sp in d['spo_list']:
if sp[1] not in predicates:
predicates[sp[1]] = []
predicates[sp[1]].append(sp)
for d in dev_data:
repair(d)
def random_generate(d, spo_list_key):
r = np.random.random()
if r > 0.5:
return d
else:
k = np.random.randint(len(d[spo_list_key]))
spi = d[spo_list_key][k]
k = np.random.randint(len(predicates[spi[1]]))
spo = predicates[spi[1]][k]
F = lambda s: s.replace(spi[0], spo[0]).replace(spi[2], spo[2])
text = F(d['text'])
spo_list = [(F(sp[0]), sp[1], F(sp[2])) for sp in d[spo_list_key]]
return {'text': text, spo_list_key: spo_list}
def seq_padding(X, padding=0):
L = [len(x) for x in X]
ML = max(L)
return np.array([
np.concatenate([x, [padding] * (ML - len(x))]) if len(x) < ML else x for x in X
])
class data_generator:
def __init__(self, data, batch_size=64):
self.data = data
self.batch_size = batch_size
self.steps = len(self.data) // self.batch_size
if len(self.data) % self.batch_size != 0:
self.steps += 1
def __len__(self):
return self.steps
def __iter__(self):
while True:
idxs = range(len(self.data))
np.random.shuffle(idxs)
T1, T2, S1, S2, K1, K2, O1, O2, = [], [], [], [], [], [], [], []
for i in idxs:
spo_list_key = 'spo_list' # if np.random.random() > 0.5 else 'spo_list_with_pred'
d = random_generate(self.data[i], spo_list_key)
text = d['text'][:maxlen]
text_words = tokenize(text)
text = ''.join(text_words)
items = {}
for sp in d[spo_list_key]:
subjectid = text.find(sp[0])
objectid = text.find(sp[2])
if subjectid != -1 and objectid != -1:
key = (subjectid, subjectid+len(sp[0]))
if key not in items:
items[key] = []
items[key].append((objectid,
objectid+len(sp[2]),
predicate2id[sp[1]]))
if items:
T1.append([char2id.get(c, 1) for c in text]) # 1是unk,0是padding
T2.append(text_words)
s1, s2 = np.zeros(len(text)), np.zeros(len(text))
for j in items:
s1[j[0]] = 1
s2[j[1]-1] = 1
k1, k2 = np.array(items.keys()).T
k1 = choice(k1)
k2 = choice(k2[k2 >= k1])
o1, o2 = np.zeros((len(text), num_classes)), np.zeros((len(text), num_classes))
for j in items.get((k1, k2), []):
o1[j[0]][j[2]] = 1
o2[j[1]-1][j[2]] = 1
S1.append(s1)
S2.append(s2)
K1.append([k1])
K2.append([k2-1])
O1.append(o1)
O2.append(o2)
if len(T1) == self.batch_size or i == idxs[-1]:
T1 = seq_padding(T1)
T2 = sent2vec(T2)
S1 = seq_padding(S1)
S2 = seq_padding(S2)
O1 = seq_padding(O1, np.zeros(num_classes))
O2 = seq_padding(O2, np.zeros(num_classes))
K1, K2 = np.array(K1), np.array(K2)
yield [T1, T2, S1, S2, K1, K2, O1, O2], None
T1, T2, S1, S2, K1, K2, O1, O2, = [], [], [], [], [], [], [], []
from keras.layers import *
from keras.models import Model
import keras.backend as K
from keras.callbacks import Callback
from keras.optimizers import Adam
def seq_gather(x):
"""seq是[None, seq_len, s_size]的格式,
idxs是[None, 1]的格式,在seq的第i个序列中选出第idxs[i]个向量,
最终输出[None, s_size]的向量。
"""
seq, idxs = x
idxs = K.cast(idxs, 'int32')
batch_idxs = K.arange(0, K.shape(seq)[0])
batch_idxs = K.expand_dims(batch_idxs, 1)
idxs = K.concatenate([batch_idxs, idxs], 1)
return K.tf.gather_nd(seq, idxs)
def seq_maxpool(x):
"""seq是[None, seq_len, s_size]的格式,
mask是[None, seq_len, 1]的格式,先除去mask部分,
然后再做maxpooling。
"""
seq, mask = x
seq -= (1 - mask) * 1e10
return K.max(seq, 1, keepdims=True)
def dilated_gated_conv1d(seq, mask, dilation_rate=1):
"""膨胀门卷积(残差式)
"""
dim = K.int_shape(seq)[-1]
h = Conv1D(dim*2, 3, padding='same', dilation_rate=dilation_rate)(seq)
def _gate(x):
dropout_rate = 0.1
s, h = x
g, h = h[:, :, :dim], h[:, :, dim:]
g = K.in_train_phase(K.dropout(g, dropout_rate), g)
g = K.sigmoid(g)
return g * s + (1 - g) * h
seq = Lambda(_gate)([seq, h])
seq = Lambda(lambda x: x[0] * x[1])([seq, mask])
return seq
class Attention(Layer):
"""多头注意力机制
"""
def __init__(self, nb_head, size_per_head, **kwargs):
self.nb_head = nb_head
self.size_per_head = size_per_head
self.out_dim = nb_head * size_per_head
super(Attention, self).__init__(**kwargs)
def build(self, input_shape):
super(Attention, self).build(input_shape)
q_in_dim = input_shape[0][-1]
k_in_dim = input_shape[1][-1]
v_in_dim = input_shape[2][-1]
self.q_kernel = self.add_weight(name='q_kernel',
shape=(q_in_dim, self.out_dim),
initializer='glorot_normal')
self.k_kernel = self.add_weight(name='k_kernel',
shape=(k_in_dim, self.out_dim),
initializer='glorot_normal')
self.v_kernel = self.add_weight(name='w_kernel',
shape=(v_in_dim, self.out_dim),
initializer='glorot_normal')
def mask(self, x, mask, mode='mul'):
if mask is None:
return x
else:
for _ in range(K.ndim(x) - K.ndim(mask)):
mask = K.expand_dims(mask, K.ndim(mask))
if mode == 'mul':
return x * mask
else:
return x - (1 - mask) * 1e10
def call(self, inputs):
q, k, v = inputs[:3]
v_mask, q_mask = None, None
if len(inputs) > 3:
v_mask = inputs[3]
if len(inputs) > 4:
q_mask = inputs[4]
# 线性变换
qw = K.dot(q, self.q_kernel)
kw = K.dot(k, self.k_kernel)
vw = K.dot(v, self.v_kernel)
# 形状变换
qw = K.reshape(qw, (-1, K.shape(qw)[1], self.nb_head, self.size_per_head))
kw = K.reshape(kw, (-1, K.shape(kw)[1], self.nb_head, self.size_per_head))
vw = K.reshape(vw, (-1, K.shape(vw)[1], self.nb_head, self.size_per_head))
# 维度置换
qw = K.permute_dimensions(qw, (0, 2, 1, 3))
kw = K.permute_dimensions(kw, (0, 2, 1, 3))
vw = K.permute_dimensions(vw, (0, 2, 1, 3))
# Attention
a = K.batch_dot(qw, kw, [3, 3]) / self.size_per_head**0.5
a = K.permute_dimensions(a, (0, 3, 2, 1))
a = self.mask(a, v_mask, 'add')
a = K.permute_dimensions(a, (0, 3, 2, 1))
a = K.softmax(a)
# 完成输出
o = K.batch_dot(a, vw, [3, 2])
o = K.permute_dimensions(o, (0, 2, 1, 3))
o = K.reshape(o, (-1, K.shape(o)[1], self.out_dim))
o = self.mask(o, q_mask, 'mul')
return o
def compute_output_shape(self, input_shape):
return (input_shape[0][0], input_shape[0][1], self.out_dim)
t1_in = Input(shape=(None,))
t2_in = Input(shape=(None, word_size))
s1_in = Input(shape=(None,))
s2_in = Input(shape=(None,))
k1_in = Input(shape=(1,))
k2_in = Input(shape=(1,))
o1_in = Input(shape=(None, num_classes))
o2_in = Input(shape=(None, num_classes))
t1, t2, s1, s2, k1, k2, o1, o2 = t1_in, t2_in, s1_in, s2_in, k1_in, k2_in, o1_in, o2_in
mask = Lambda(lambda x: K.cast(K.greater(K.expand_dims(x, 2), 0), 'float32'))(t1)
def position_id(x):
if isinstance(x, list) and len(x) == 2:
x, r = x
else:
r = 0
pid = K.arange(K.shape(x)[1])
pid = K.expand_dims(pid, 0)
pid = K.tile(pid, [K.shape(x)[0], 1])
return K.abs(pid - K.cast(r, 'int32'))
pid = Lambda(position_id)(t1)
position_embedding = Embedding(maxlen, char_size, embeddings_initializer='zeros')
pv = position_embedding(pid)
t1 = Embedding(len(char2id)+2, char_size)(t1) # 0: padding, 1: unk
t2 = Dense(char_size, use_bias=False)(t2) # 词向量也转为同样维度
t = Add()([t1, t2, pv]) # 字向量、词向量、位置向量相加
t = Dropout(0.25)(t)
t = Lambda(lambda x: x[0] * x[1])([t, mask])
t = dilated_gated_conv1d(t, mask, 1)
t = dilated_gated_conv1d(t, mask, 2)
t = dilated_gated_conv1d(t, mask, 5)
t = dilated_gated_conv1d(t, mask, 1)
t = dilated_gated_conv1d(t, mask, 2)
t = dilated_gated_conv1d(t, mask, 5)
t = dilated_gated_conv1d(t, mask, 1)
t = dilated_gated_conv1d(t, mask, 2)
t = dilated_gated_conv1d(t, mask, 5)
t = dilated_gated_conv1d(t, mask, 1)
t = dilated_gated_conv1d(t, mask, 1)
t = dilated_gated_conv1d(t, mask, 1)
t_dim = K.int_shape(t)[-1]
pn1 = Dense(char_size, activation='relu')(t)
pn1 = Dense(1, activation='sigmoid')(pn1)
pn2 = Dense(char_size, activation='relu')(t)
pn2 = Dense(1, activation='sigmoid')(pn2)
h = Attention(8, 16)([t, t, t, mask])
h = Concatenate()([t, h])
h = Conv1D(char_size, 3, activation='relu', padding='same')(h)
ps1 = Dense(1, activation='sigmoid')(h)
ps2 = Dense(1, activation='sigmoid')(h)
ps1 = Lambda(lambda x: x[0] * x[1])([ps1, pn1])
ps2 = Lambda(lambda x: x[0] * x[1])([ps2, pn2])
subject_model = Model([t1_in, t2_in], [ps1, ps2]) # 预测subject的模型
t_max = Lambda(seq_maxpool)([t, mask])
pc = Dense(char_size, activation='relu')(t_max)
pc = Dense(num_classes, activation='sigmoid')(pc)
def get_k_inter(x, n=6):
seq, k1, k2 = x
k_inter = [K.round(k1 * a + k2 * (1 - a)) for a in np.arange(n) / (n - 1.)]
k_inter = [seq_gather([seq, k]) for k in k_inter]
k_inter = [K.expand_dims(k, 1) for k in k_inter]
k_inter = K.concatenate(k_inter, 1)
return k_inter
k = Lambda(get_k_inter, output_shape=(6, t_dim))([t, k1, k2])
k = Bidirectional(CuDNNGRU(t_dim))(k)
k1v = position_embedding(Lambda(position_id)([t, k1]))
k2v = position_embedding(Lambda(position_id)([t, k2]))
kv = Concatenate()([k1v, k2v])
k = Lambda(lambda x: K.expand_dims(x[0], 1) + x[1])([k, kv])
h = Attention(8, 16)([t, t, t, mask])
h = Concatenate()([t, h, k])
h = Conv1D(char_size, 3, activation='relu', padding='same')(h)
po = Dense(1, activation='sigmoid')(h)
po1 = Dense(num_classes, activation='sigmoid')(h)
po2 = Dense(num_classes, activation='sigmoid')(h)
po1 = Lambda(lambda x: x[0] * x[1] * x[2] * x[3])([po, po1, pc, pn1])
po2 = Lambda(lambda x: x[0] * x[1] * x[2] * x[3])([po, po2, pc, pn2])
object_model = Model([t1_in, t2_in, k1_in, k2_in], [po1, po2]) # 输入text和subject,预测object及其关系
train_model = Model([t1_in, t2_in, s1_in, s2_in, k1_in, k2_in, o1_in, o2_in],
[ps1, ps2, po1, po2])
s1 = K.expand_dims(s1, 2)
s2 = K.expand_dims(s2, 2)
s1_loss = K.binary_crossentropy(s1, ps1)
s1_loss = K.sum(s1_loss * mask) / K.sum(mask)
s2_loss = K.binary_crossentropy(s2, ps2)
s2_loss = K.sum(s2_loss * mask) / K.sum(mask)
o1_loss = K.sum(K.binary_crossentropy(o1, po1), 2, keepdims=True)
o1_loss = K.sum(o1_loss * mask) / K.sum(mask)
o2_loss = K.sum(K.binary_crossentropy(o2, po2), 2, keepdims=True)
o2_loss = K.sum(o2_loss * mask) / K.sum(mask)
loss = (s1_loss + s2_loss) + (o1_loss + o2_loss)
train_model.add_loss(loss)
train_model.compile(optimizer=Adam(1e-3))
train_model.summary()
class ExponentialMovingAverage:
"""对模型权重进行指数滑动平均。
用法:在model.compile之后、第一次训练之前使用;
先初始化对象,然后执行inject方法。
"""
def __init__(self, model, momentum=0.9999):
self.momentum = momentum
self.model = model
self.ema_weights = [K.zeros(K.shape(w)) for w in model.weights]
def inject(self):
"""添加更新算子到model.metrics_updates。
"""
self.initialize()
for w1, w2 in zip(self.ema_weights, self.model.weights):
op = K.moving_average_update(w1, w2, self.momentum)
self.model.metrics_updates.append(op)
def initialize(self):
"""ema_weights初始化跟原模型初始化一致。
"""
self.old_weights = K.batch_get_value(self.model.weights)
K.batch_set_value(zip(self.ema_weights, self.old_weights))
def apply_ema_weights(self):
"""备份原模型权重,然后将平均权重应用到模型上去。
"""
self.old_weights = K.batch_get_value(self.model.weights)
ema_weights = K.batch_get_value(self.ema_weights)
K.batch_set_value(zip(self.model.weights, ema_weights))
def reset_old_weights(self):
"""恢复模型到旧权重。
"""
K.batch_set_value(zip(self.model.weights, self.old_weights))
EMAer = ExponentialMovingAverage(train_model)
EMAer.inject()
def extract_items(text_in):
text_words = tokenize(text_in.lower())
text_in = ''.join(text_words)
R = []
_t1 = [char2id.get(c, 1) for c in text_in]
_t1 = np.array([_t1])
_t2 = sent2vec([text_words])
_k1, _k2 = subject_model.predict([_t1, _t2])
_k1, _k2 = _k1[0, :, 0], _k2[0, :, 0]
_k1, _k2 = np.where(_k1 > 0.5)[0], np.where(_k2 > 0.4)[0]
_subjects = []
for i in _k1:
j = _k2[_k2 >= i]
if len(j) > 0:
j = j[0]
_subject = text_in[i: j+1]
_subjects.append((_subject, i, j))
if _subjects:
_t1 = np.repeat(_t1, len(_subjects), 0)
_t2 = np.repeat(_t2, len(_subjects), 0)
_k1, _k2 = np.array([_s[1:] for _s in _subjects]).T.reshape((2, -1, 1))
_o1, _o2 = object_model.predict([_t1, _t2, _k1, _k2])
for i,_subject in enumerate(_subjects):
_oo1, _oo2 = np.where(_o1[i] > 0.5), np.where(_o2[i] > 0.4)
for _ooo1, _c1 in zip(*_oo1):
for _ooo2, _c2 in zip(*_oo2):
if _ooo1 <= _ooo2 and _c1 == _c2:
_object = text_in[_ooo1: _ooo2+1]
_predicate = id2predicate[_c1]
R.append((_subject[0], _predicate, _object))
break
zhuanji, gequ = [], []
for s, p, o in R[:]:
if p == u'妻子':
R.append((o, u'丈夫', s))
elif p == u'丈夫':
R.append((o, u'妻子', s))
if p == u'所属专辑':
zhuanji.append(o)
gequ.append(s)
spo_list = set()
for s, p, o in R:
if p in [u'歌手', u'作词', u'作曲']:
if s in zhuanji and s not in gequ:
continue
spo_list.add((s, p, o))
return list(spo_list)
else:
return []
class Evaluate(Callback):
def __init__(self):
self.F1 = []
self.best = 0.
self.passed = 0
self.stage = 0
def on_batch_begin(self, batch, logs=None):
"""第一个epoch用来warmup,不warmup有不收敛的可能。
"""
if self.passed < self.params['steps']:
lr = (self.passed + 1.) / self.params['steps'] * 1e-3
K.set_value(self.model.optimizer.lr, lr)
self.passed += 1
def on_epoch_end(self, epoch, logs=None):
EMAer.apply_ema_weights()
f1, precision, recall = self.evaluate()
self.F1.append(f1)
if f1 > self.best:
self.best = f1
train_model.save_weights('best_model.weights')
print('f1: %.4f, precision: %.4f, recall: %.4f, best f1: %.4f\n' % (f1, precision, recall, self.best))
EMAer.reset_old_weights()
if epoch + 1 == 50 or (
self.stage == 0 and epoch > 10 and
(f1 < 0.5 or np.argmax(self.F1) < len(self.F1) - 8)
):
self.stage = 1
train_model.load_weights('best_model.weights')
EMAer.initialize()
K.set_value(self.model.optimizer.lr, 1e-4)
K.set_value(self.model.optimizer.iterations, 0)
opt_weights = K.batch_get_value(self.model.optimizer.weights)
opt_weights = [w * 0. for w in opt_weights]
K.batch_set_value(zip(self.model.optimizer.weights, opt_weights))
def evaluate(self):
orders = ['subject', 'predicate', 'object']
A, B, C = 1e-10, 1e-10, 1e-10
F = open('dev_pred.json', 'w')
for d in tqdm(iter(dev_data)):
R = set(extract_items(d['text']))
T = set(d['spo_list'])
A += len(R & T)
B += len(R)
C += len(T)
s = json.dumps({
'text': d['text'],
'spo_list': [
dict(zip(orders, spo)) for spo in T
],
'spo_list_pred': [
dict(zip(orders, spo)) for spo in R
],
'new': [
dict(zip(orders, spo)) for spo in R - T
],
'lack': [
dict(zip(orders, spo)) for spo in T - R
]
}, ensure_ascii=False, indent=4)
F.write(s.encode('utf-8') + '\n')
F.close()
return 2 * A / (B + C), A / B, A / C
def test(test_data):
"""输出测试结果
"""
orders = ['subject', 'predicate', 'object', 'object_type', 'subject_type']
F = open('test_pred.json', 'w')
for d in tqdm(iter(test_data)):
R = set(extract_items(d['text']))
s = json.dumps({
'text': d['text'],
'spo_list': [
dict(zip(orders, spo + ('', ''))) for spo in R
]
}, ensure_ascii=False)
F.write(s.encode('utf-8') + '\n')
F.close()
train_D = data_generator(train_data)
evaluator = Evaluate()
if __name__ == '__main__':
train_model.fit_generator(train_D.__iter__(),
steps_per_epoch=len(train_D),
epochs=120,
callbacks=[evaluator]
)
else:
train_model.load_weights('best_model.weights')