-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathinference_custom.py
114 lines (88 loc) · 4.03 KB
/
inference_custom.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
import argparse
import os
from importlib import import_module
import logging
import json
import pandas as pd
import torch
from torch.utils.data import DataLoader
from dataset import TestDataset, MaskBaseDataset
import utils
from pprint import pprint
from dataset import MaskBaseDataset
def load_model(saved_model, device):
model_cls = getattr(import_module("model"), args.model)
model = model_cls()
# tarpath = os.path.join(saved_model, 'best.tar.gz')
# tar = tarfile.open(tarpath, 'r:gz')
# tar.extractall(path=saved_model)
# model_path = os.path.join(saved_model, 'Epoch40_accuracy.pth')
model.load_state_dict(torch.load(saved_model, map_location=device))
return model
@torch.no_grad()
def inference(data_dir, model_dir, output_dir, args):
"""
"""
use_cuda = torch.cuda.is_available()
device = torch.device("cuda" if use_cuda else "cpu")
num_classes = MaskBaseDataset.num_classes # 18
model = load_model(model_dir, device).to(device)
model.eval()
img_root = os.path.join(data_dir, 'images')
info_path = os.path.join(data_dir, 'info.csv')
info = pd.read_csv(info_path)
img_paths = [os.path.join(img_root, img_id) for img_id in info.ImageID]
dataset = TestDataset(img_paths, args.resize)
dataset_module = getattr(import_module("dataset"), args.dataset)
dataset = dataset_module(img_paths, args.resize)
loader = torch.utils.data.DataLoader(
dataset,
batch_size=args.batch_size,
# num_workers=8,
shuffle=False,
pin_memory=use_cuda,
drop_last=False,
)
log_logger.info("Calculating inference results..")
preds = []
with torch.no_grad():
for idx, images in enumerate(loader):
images = images.to(device)
out_age, out_mask, out_sex = model(images)
preds_age = torch.argmax(out_age, dim=-1)
preds_mask = torch.argmax(out_mask, dim=-1)
preds_sex = torch.argmax(out_sex, dim=-1)
preds += [MaskBaseDataset.encode_multi_class(preds_mask[i], preds_sex[i], preds_age[i]) for i in range(len(preds_age))]
preds = torch.stack(preds)
preds = preds.cpu().numpy()
info['ans'] = preds
exp_name = output_dir.split('/')[-1]
info.to_csv(os.path.join(output_dir, f'{exp_name}_output.csv'), index=False)
log_logger.info(f'== Inference Done! ==')
if __name__ == '__main__':
parser = argparse.ArgumentParser()
# Data and model checkpoints directories
parser.add_argument('--batch_size', type=int, default=1000, help='input batch size for validing (default: 1000)')
parser.add_argument('--dataset', type=str, default='TestDataset', help='dataset augmentation type (default: TestDataset)')
parser.add_argument("--resize", nargs="+", type=int, default=[128, 96], help='resize size for image when you trained (default: (96, 128))')
parser.add_argument('--model', type=str, default='BaseModel', help='model type (default: BaseModel)')
parser.add_argument('--config', default='./configs/model_custom_config.json', help='config.json file')
# Container environment
parser.add_argument('--data_dir', type=str, default=os.environ.get('SM_CHANNEL_EVAL', '/opt/ml/input/data/eval'))
parser.add_argument('--model_path', type=str, default=os.environ.get('SM_CHANNEL_MODEL', './model'))
parser.add_argument('--output_path', type=str, default=os.environ.get('SM_OUTPUT_DATA_DIR', './output'))
args = parser.parse_args()
config = utils.read_json(args.config)
parser.set_defaults(**config['inference'])
args = parser.parse_args()
data_dir = args.data_dir
model_dir = args.model_path
output_dir = args.output_path
# Setting up Logger
log_logger = logging.getLogger(__name__)
utils.setup_logging(output_dir, __file__)
log_logger.info('Inference Parameters')
log_logger.info(json.dumps(vars(args), indent=4))
log_logger.info('== Start Inference ==')
os.makedirs(output_dir, exist_ok=True)
inference(data_dir, model_dir, output_dir, args)