
C++ Component

Extension for WinRT
Ale Contenti

Development Manager | Visual C++ | Microsoft

C++ now | may 2012

Agenda

• The Windows Runtime (aka WinRT)

• What is WinRT?

• Design principles (and a bit of history )

• Language “bindings” or “projections”

• WRL and C++/CX

• C++ has two language projections for WinRT

• Differences and goals

• Why two projections?

• ABI, C++, modules and libraries

• An open discussion about library packaging, best practices,
problems

Windows Runtime Architecture

Windows

Metadata &

Namespace

Language Projection (Generated from Metadata)

Windows Core

Windows Runtime Core

XAML Storage … Network

UI Pickers Media Controls

Windows 8 “Metro style” app

Runtime Broker

Language

Support (CLR,

WinJS, CRT)

Web Host

(HTML, CSS,

JavaScript))

The Windows Runtime (aka WinRT)

Windows Runtime (WinRT)

• The Windows Runtime is the solid, efficient foundation for

building Windows 8 Metro style apps

• A new API surface which replaces Win32

• Modern, object oriented, easier to use

Windows Runtime (WinRT)

• You’re in early 2010, and you want to revamp the developer

experience for Windows

• What do you do?

Windows Runtime (WinRT)

• You throw away the old “C” style based Win32

• You literally have tens of thousands of APIs with a lot of

duplication. It’s time to cleanup!

• You think hard about the developer experience and the

developer productivity

• IntelliSense, tooling, etc.

• You create a solid, clear, consistent and modern API surface

• Object oriented, namespace organization, async patterns

• You enable all major programming style to easily “bind” to

this API surface

• Native (C++), Managed (think C#, Java), Dynamic (think

JavaScript, Python)

Windows Runtime (WinRT)

• You (Windows) also call up all your friends from Visual

Studio…

• …and you end up putting a bunch of dudes from C++, C#,

CLR, .NET Framework and JavaScript in a room for a couple

of months

• …and, depending on many other factors, you might end up

with something like WinRT 

• Ah, you also invent a new string type

WinRT design principles

• Major improvement to developer experience

• Great IntelliSense and tooling

• Native, Managed, Dynamic all first-class citizens

• JavaScript, C#/VB and C++ initial targets

• Platform based Versioning

• Apps keep running on future Windows versions

• Simple low-level constructs; usability in projection

• Responsive and Fluid Apps

• Async APIs where they are needed

• Well-designed, consistent objects

• API surface is clear and consistent

WinRT implementation

• For each WinRT object:

• Interfaces

• No data members

• Factory “construction” pattern

• Described by metadata

• Each language projection can figure out the exact binary

contract just looking at the metadata

• Basic types are well specified

• A very small number of patterns are perused across the API

surface

• Async, Collections, Enumerators/Iterators/Ranges

Shell32.dll

Object

Activation Store Windows Metadata (Disk)

WinRT objects

WinRT Metadata
• Efficient binary format derived CLI Metadata

• Profile of ECMA 335, Partition II

• Same structures, different meanings

• Readable by existing tools

• Rich enough to allow multi-language projection generation

• Full IntelliSense on statically known information

Object

C++ App

P
ro

je
c
tio

n

Windows

Metadata

Projection

generated by

reading the

metadata

WinRT Basic Types

Basic Types INT32, UINT64, etc. Our usual friends

Strings HSTRING Avoids copying in

multiple languages

Enumerations enum AsyncStatus Flag or non-flag styles

Structures struct Rect; Can contain strings, but

not interfaces

Simple Arrays INT32 [] For very basic

collections

Interfaces IInspectable All methods are defined

as part of interfaces

Generic Interfaces IVector<T> Type-generic interface.

Not extensible

Runtime Class Windows::Storage::

StorageFile

Binds interfaces to make

a class

WinRT Patterns

Collections IVector<T>, IVectorView<T>,

IMap<T>,

IObservableVector<T>

Treat them like STL

collections

(begin()/end()/for()/etc.)

Delegates delegate

AsyncActionCompletedHandler

Encapsulate the context

to call back to an object

Events IApplicationLayout::

LayoutChanged

Lists of callback

recipients

PropertySet interface IPropertySet Collection of items with

varying types

Async

Operation

ReceivePropertiesOperation A way to get a delayed

result without blocking

DEMO

Windows 8

Face Recon demo

WRL and C++/CX

C++ projection(s)
• VC++ has two different ways to “project” WinRT metadata,

and thus consume WinRT constructs

• C++/CX (language component extensions)

• WRL (library solution + external tools)

Object

C++ App

W
R

L

Windows

Metadata

Projection

generated by

reading the

metadata

C++ App
C

+
+

/C
X

WRL – first look

1. #include <wrl.h>

2. #include <wrl\wrappers\corewrappers.h>

3. #include <windows.storage.pickers.h>

4. using namespace ABI::Windows::Storage::Pickers;

5. using namespace Microsoft::WRL;

6. using namespace Microsoft::WRL::Wrappers;

7. ComPtr<IFileOpenPicker> openPicker;

8. HString classid;

9. classid.Set(L"Windows.Storage.Pickers.FileOpenPicker");

10. CHECKHR(ActivateInstance(classid, &openPicker));

11. CHECKHR(openPicker->put_SuggestedStartLocation(
 PickerLocationId::PickerLocationId_PicturesLibrary));

12. CHECKHR(openPicker->put_ViewMode(
 PickerViewMode::PickerViewMode_Thumbnail));

WRL

• WRL stands for Windows Runtime Library

• Developed by VC++

• Part of the Windows SDK

• Used by Windows to build basically every WinRT object

offered by Windows 8

• Predates C++/CX and WinRT

• WRL was originally designed as a prototype (called nCOM)

• Modern way to create and consume light-COM objects

• Solve the ABI problem across C++ modules (.dll)

WRL – key characteristics

• No exceptions

• WRL constructs will not throw any exception

• Error codes (HRESULT) are used to return error codes

• Low level library

• Gives developer full control over the WinRT architecture (e.g.
out-of-proc servers, etc.)

• Library solution

• Does not require any extension to the C++ language

• Easier to re-target to a different C++ compiler

• Can be used to mix WinRT components and COM
components

• Does not hide WinRT and COM complexity

• Heavily templated library (error messages are a beauty… )

WRL – toolchain

• You need to build the “projection” from the metadata

• The compiler is a normal C++ compiler, so it cannot read or

interpret metadata files (.winmd)

• Use winmdidl + midlrt:

winmdidl

midlrt

Acme.winmd
Acme.idl

Acme.Utilities.idl

Acme.h

Acme.Utilities.h

WRL – toolchain

1. #include <wrl.h>

2. #include <wrl\wrappers\corewrappers.h>

3. #include <acme.h>

4. using namespace Microsoft::WRL;

5. using namespace Microsoft::WRL::Wrappers;

6. ComPtr<Acme::IWidget> w;

7. HString classid;

8. classid.Set(L“Acme.Widget");

9. CHECKHR(ActivateInstance(classid.Get(), &w));

10. CHECKHR(w->DoSomething());

WRL – under the hood

• Microsoft::WRL::ComPtr is a “modern” COM ref counted

smart pointer

• Classical COM smart pointers are not very safe

• operator& is usually very dangerous

WRL – under the hood

• For example, ATL::CComPtr looks like this:

1. template <class T>
2. class CComPtr
3. {
4. // …
5. T** operator&() throw()
6. {
7. ATLASSERT(ptr_ == NULL);
8. return &ptr_;
9. }
10. protected:
11. T* ptr_;
12. };

 • Returning the address to the bare pointer breaks the

encapsulation of the smart pointer class

• Also, it’s hard to get the address of the real CComPtr

WRL – under the hood

• In Microsoft::WRL::ComPtr, operator& returns the helper

class ComPtrRef

1. template <class T>
2. class ComPtr
3. {
4. // …
5. Details::ComPtrRef<ComPtr<T>> operator&() throw()
6. {
7. return Details::ComPtrRef<ComPtr<T>>(this);
8. }
9. protected:
10. T* ptr_;
11. };

 • ComPtrRef<ComPtr<T>> can convert to both ComPtr<T>*

and the classic T**

WRL – under the hood

• This way we maintain the usability of the classic T** COM

pattern like:
1. HRESULT get_FileTypeFilter(

 __FIVector_1_HSTRING **value);

2. ComPtr<__FIVector_1_HSTRING> filter;

3. CHECKHR(openPicker->get_FileTypeFilter(&filter));

• While enabling the “safer” version:
1. template<typename T>

2. HRESULT ActivateInstance(

3. HSTRING activatableClassId,

4. WRL::Details::ComPtrRef<T> instance) throw();

5. ComPtr<IFileOpenPicker> openPicker;

6. ActivateInstance(classid, &openPicker)

DEMO

WRL

C++/CX – first look

1. #using <Windows.winmd>

2. using namespace Windows::Storage::Pickers;

3. auto openPicker = ref new FileOpenPicker();

4. openPicker->SuggestedStartLocation =
 PickerLocationId::PicturesLibrary;

5. openPicker->ViewMode = PickerViewMode::Thumbnail;

C++/CX

• C++/CX stands for C++ Component Extensions

• Part of the VC++ compiler (in Dev11)

• Reuse the syntax of ECMA Standard C++/CLI

• Set of language extensions and libraries to allow direct

consumption and authoring of Windows Runtime types

• Strongly-typed system for Windows Runtime

• Automatically reference counted

• Exception-based

• Deep integration with STL

• Well defined binary contract across module boundaries

C++/CX

• No need for external tools

• The compiler can read and understand the metadata:

1. #using <Windows.winmd>

• The metadata in imported “on-demand”

• As the compiler needs definitions for types and constructs from

the metadata, it queries for more data

• This model is superior to processing the entire .h file: The

metadata is easier and faster to query

• The strong reference “^” (read “hat”) is basically a ComPtr

• But the compiler knows the semantics of ^

• And can optimize away redundant AddRef/Release and

QueryInterface

DEMO

C++/CX

Mix it up

• You can use WRL and C++/CX in the same TU

• Most useful when you need to reference some classic COM

components

• e.g. DirectX is still light-COM in Windows 8

• A Platform::Object^ reference is just a pointer to a WinRT

IInspectable interface

 1. Windows::Storage::Pickers::IFileOpenPicker^ GetOpenPickerWithWRL()
2. {
3. using namespace ABI::Windows::Storage::Pickers;
4. using namespace Microsoft::WRL;

5. ComPtr<IFileOpenPicker> openPicker;
6. // ...
7. return

 dynamic_cast<Windows::Storage::Pickers::IFileOpenPicker^>(
 reinterpret_cast<::Platform::Object^>(
 openPicker.Get()));

8. }

Why WRL and C++/CX?

• WRL was initially considered just for internal development in

Windows

• Just before the //build/ conference (in Sept 2011), we

decided to add WRL to the VC++ libraries

• Why? We wanted to target a small set of the C++ dev

population, which might have specific needs (e.g. no

exceptions)

• With the WRL offering, we have a “no compromise” (but also

not that pretty) option for coding against WinRT

C++/CX and WRL comparison

C++/CX WRL

Exception based No exception; HRESULT based

Return value is used in a natural way Return value is reserved for HRESULT

Extensions to C++ language Pure library solution

Reference counted Ref count via smart pointer

Can access low-level pointer Can access low-level pointer

Compact Verbose and complex

No need for external tools Need external tools

Hides COM complexity COM wiring is exposed

• General recommendation is to use C++/CX unless you are in an

exception-free environment.

• WRL can be useful to mix classic COM components and WinRT

components.

ABI, C++, modules and libraries

Libraries packaging

*.hpp

include only

*.hpp

source recompilation

*.cpp

full C++ power

*.hpp

separate compilation

.dll/.lib

.so/.a

• flat C

• COM?

• metadata?

Libraries packaging

• Include only model

• Full C++ power

• Easy distribution and packaging

• Slower code compilation

• Complexity with large libraries (central state, etc.)

• No code obfuscation

• User can modify the code

• ODR violation problems

Libraries packaging

• Source recompilation model

• Full C++ power

• More complex distribution and packaging (needs to add build

scripts, etc.)

• Faster code compilation (still need to compile at least once

though)

• Easier to maintain large libraries

• No code obfuscation

• User can modify the code

• ODR violation problems

Libraries packaging

• Separate compilation model

• Full C++ power in the separately compiled module “guts”, but
must to downgrade to flat “C” for interop

• Medium complexity in distribution and packaging

• Need to have import libs (for .dll)

• Need to redist the .dll/.so

• Faster code compilation

• Easier to maintain large libraries

• Code obfuscation, if needed

• User cannot modify the code

• ODR violation problems are minimized

• We should avoid C++ construct in the .hpp interface: prone to
errors, packing mis-alignements, etc.

What do you think?

• Which model do you like most?

• Which model do you use?

• Problems?

• What about the metadata?

• Aren’t we tired of .h/.hpp files? 

Questions?

Contacts

 • alecont@microsoft.com

• http://blogs.msdn.com/b/vcblog/

• http://channel9.msdn.com/tags/C++/

• http://www.buildwindows.com/

mailto:alecont@microsoft.com
http://blogs.msdn.com/b/vcblog/
http://blogs.msdn.com/b/vcblog/
http://channel9.msdn.com/tags/C++/
http://channel9.msdn.com/tags/C++/
http://www.buildwindows.com/
http://www.buildwindows.com/

PARTICIPATE IN C++

DEVELOPMENT USER

RESEARCH

TALK TO GEORGE

GRAB A CARD

MICROSOFT

DEVELOPER

DIVISION

DESIGN

RESEARCH

FILL IT ONLINE AT

http://bit.ly/VSUxResearch

MICROSOFTC++
2
0
12

