C++ Component
Extension for WInRT

Ale Contenti
Development Manager | Visual C++ | Microsoft
C++ now | may 2012

Agenda

* The Windows Runtime (aka WInRT)
* What is WinRT?
* Design principles (and a bit of history ©)
* Language “bindings” or “projections”

* WRL and C++/CX
« C++ has two language projections for WinRT
* Differences and goals
« Why two projections?

* ABI, C++, modules and libraries

* An open discussion about library packaging, best practices,
problems

Windows Runtime Architecture

(HTML, CSS,

e, [T
Metadata &

Namespace

Windows Runtime Core Runtime Broker

I

The Windows Runtime (aka WInRT)

Windows Runtime (WInRT)

« The Windows Runtime is the solid, efficient foundation for
building Windows 8 Metro style apps

* A new API surface which replaces Win32
* Modern, object oriented, easier to use

Windows Runtime (WInRT)

* You're in early 2010, and you want to revamp the developer
experience for Windows

« What do you do?

Windows Runtime (WInRT)

You throw away the old “C" style based Win32

* You literally have tens of thousands of APIs with a lot of
duplication. It's time to cleanup!

You think hard about the developer experience and the
developer productivity

* IntelliSense, tooling, etc.

You create a solid, clear, consistent and modern API surface
 Object oriented, namespace organization, async patterns

You enable all major programming style to easily "bind” to
this APl surface

* Native (C++), Managed (think C#, Java), Dynamic (think
JavaScript, Python)

Windows Runtime (WInRT)

You (Windows) also call up all your friends from Visual
Studio...

..and you end up putting a bunch of dudes from C++, C#,
CLR, NET Framework and JavaScript in a room for a couple
of months

..and, depending on many other factors, you might end up
with something like WinRT ©

Ah, you also invent a new string type

WINRT design principles

Major improvement to developer experience

* Great IntelliSense and tooling

Native, Managed, Dynamic all first-class citizens
* JavaScript, C#/VB and C++ initial targets
Platform based Versioning

* Apps keep running on future Windows versions
 Simple low-level constructs; usability in projection
Responsive and Fluid Apps

* Async APIs where they are needed
Well-designed, consistent objects

APl surface is clear and consistent

WINRT implementation

For each WInRT object:

* Interfaces

+ No data members

* Factory “construction” pattern
* Described by metadata

Fach language projection can figure out the exact binary
contract just looking at the metadata

Basic types are well specified

A very small number of patterns are perused across the API
surface

* Async, Collections, Enumerators/Iterators/Ranges

WINRT objects

Inspectable Shell32.dl

lUnknown

StorageltemInformation

Storageltem - FileInformation

|StoragekFile

Interfaces Runtime Class

Windows Metadata (Disk)

WInRT Metadata

* Efficient binary format derived CLI Metadata
* Profile of ECMA 335, Partition |l
 Same structures, different meanings
 Readable by existing tools
* Rich enough to allow multi-language projection generation

* Full IntelliSense on statically known information

Inspectable 3
("]
|Unknown 5
)
o< ' Projection
S I generated by
i reading the
___ 1 metadata

Windows
Metadata

WINnRT Basic Types

Basic Types INT32, UINT64, etc. Our usual friends

Strings HSTRING Avoids copying in
multiple languages

Enumerations enum AsyncStatus Flag or non-flag styles

Structures struct Rect; Can contain strings, but
not interfaces

Simple Arrays INT32 T[] For very basic
collections

Interfaces IInspectable All methods are defined

as part of interfaces

Generic Interfaces | ITVector<T> Type-generic interface.
Not extensible

Runtime Class Windows: :Storage: : Binds interfaces to make
StorageFile a class

WINnRT Patterns

Collections IVector<T>, IVectorView<T>, Treat them like STL
IMap<T>, collections
|ObservableVector<T> (begin()/end()/for()/etc.)

Delegates delegate Encapsulate the context
AsyncActionCompletedHandler | to call back to an object

Events |ApplicationLayout:: Lists of callback
LayoutChanged recipients

PropertySet interface IPropertySet Collection of items with

varying types

Async ReceivePropertiesOperation A way to get a delayed

Operation

result without blocking

Windows 8
Face Recon demo

DEMO

WRL and C++/CX

C++ projection(s)

« VC++ has two different ways to “project” WinRT metadata,
and thus consume WInRT constructs

« C++/CX (language component extensions)
« WRL (library solution + external tools)

Inspectable
|Unknown
3
L3 | I Projection
o< i I generated by
I} reading the
I metadata

Windows [
Metadata

WRL - first look

1. #include <wrl.h>
#include <wrl\wrappers\corewrappers.h>
3. #include <windows.storage.pickers.h>

using namespace ABI::Windows::Storage::Pickers;
5. using namespace Microsoft::WRL;
using namespace Microsoft::WRL: :Wrappers;

7. ComPtr<IFileOpenPicker> openPicker;

8. HString classid;

S. classid.Set(L"Windows.Storage.Pickers.FileOpenPicker");
10. CHECKHR(ActivateInstance(classid, &openPicker));

11. CHECKHR(openPicker->put SuggestedStartLocation(
PickerLocationId::PickerLocationId PicturesLibrary));

12. CHECKHR(openPicker->put_ViewMode (
PickerViewMode: :PickerViewMode Thumbnail));

WRL

WRL stands for Windows Runtime Library
Developed by VC++
Part of the Windows SDK

Used by Windows to build basically every WIinRT object
offered by Windows 8

Predates C++/CX and WIinRT

WRL was originally designed as a prototype (called nCOM)
* Modern way to create and consume light-COM objects
* Solve the ABI problem across C++ modules (.dll)

WRL - key characteristics

No exceptions

« WRL constructs will not throw any exception

* Error codes (HRESULT) are used to return error codes
Low level library

* Gives developer full control over the WinRT architecture (e.qg.
out-of-proc servers, etc.)

Library solution
+ Does not require any extension to the C++ language
* Easier to re-target to a different C++ compiler

Can be used to mix WIinRT components and COM
components

Does not hide WinRT and COM complexity
Heavily templated library (error messages are a beauty... ©)

WRL - toolchain

* You need to build the “projection” from the metadata

* The compiler is a normal C++ compiler, so it cannot read or
interpret metadata files (.winmd)

« Use winmdidl + midlrt:

Acme.id|

Acme.winmd ——> winmdidl Acme. Utilities.idl

Acme.h
Acme.Utilities.h

WRL - toolchain

(U2 [N AN

O 00 N O

#include <wrl.h>
#include <wrl\wrappers\corewrappers.h>
#include <acme.h>

using namespace Microsoft: :WRL;
using namespace Microsoft::WRL: :Wrappers;

ComPtr<Acme: :IWidget> w;

HString classid;

classid.Set(L“Acme.Widget");
CHECKHR(ActivateInstance(classid.Get(), &w));
CHECKHR (w->DoSomething());

WRL — under the hood

* Microsoft:WRL::ComPtr is a “modern” COM ref counted
smart pointer

* Classical COM smart pointers are not very safe
* operator& is usually very dangerous

WRL — under the hood

* For example, ATL::CComPtr looks like this:

1. template <class T>

2. class CComPtr

3. |

4. /] .

5. T** operator&() throw()

6. {

7. ATLASSERT(ptr_ == NULL);
8. return &ptr_;

9. }

10. protected:
11. T* ptr_;
12. };

* Returning the address to the bare pointer breaks the
encapsulation of the smart pointer class

* Also, it's hard to get the address of the real CComPtr

WRL — under the hood

* In Microsoft:WRL::ComPtr, operator& returns the helper
class ComPtrRef

1. template <class T>

2. class ComPtr

3. |

4. // ..

5. Details: :ComPtrRef<ComPtr<T>> operator&() throw()
6. {

7. return Details::ComPtrRef<ComPtr<T>>(this);
8. }

9. protected:

10. T* ptr_;

11. };

o ComPtrRef<ComPtr<T>> can convert to both ComPtr<T>*
and the classic T**

WRL — under the hood

* This way we maintain the usability of the classic T** COM
pattern like:

1. HRESULT get FileTypeFilter(
__FIVector_1 HSTRING **value);

2. ComPtr< _FIVector 1 HSTRING> filter;
3. CHECKHR(openPicker->get FileTypeFilter(&filter));

* While enabling the “safer” version:
1. template<typename T>
2. HRESULT ActivateInstance(
3 HSTRING activatableClassId,
4. WRL: :Details::ComPtrRef<T> instance) throw();
5. ComPtr<IFileOpenPicker> openPicker;
6. ActivateInstance(classid, &openPicker)

WRL

DEMO

C++/CX —first look

1. #using <Windows.winmd>
2. using namespace Windows: :Storage: :Pickers;

3. auto openPicker = ref new FileOpenPicker();

openPicker->SuggestedStartLocation =
PickerLocationId::PicturesLibrary;

5. openPicker->ViewMode = PickerViewMode::Thumbnail;

C++/CX

C++/CX stands for C++ Component Extensions
Part of the VC++ compiler (in Dev11)
Reuse the syntax of ECMA Standard C++/CLI

Set of language extensions and libraries to allow direct
consumption and authoring of Windows Runtime types

* Strongly-typed system for Windows Runtime
Automatically reference counted
Exception-based

Deep integration with STL

Well defined binary contract across module boundaries

C++/CX

No need for external tools

The compiler can read and understand the metadata:
1. #using <Windows.winmd>

The metadata in imported “on-demand”

* As the compiler needs definitions for types and constructs from
the metadata, it queries for more data

* This model is superior to processing the entire .h file: The
metadata is easier and faster to query

The strong reference """ (read "hat”) is basically a ComPtr
* But the compiler knows the semantics of *

* And can optimize away redundant AddRef/Release and
QuerylInterface

C++/CX

DEMO

Mix 1t up

* You can use WRL and C++/CX in the same TU

* Most useful when you need to reference some classic COM
components

* e.g. DirectX is still light-COM in Windows 8

* A Platform::Object” reference is just a pointer to a WinRT
Inspectable interface

1. Windows::Storage::Pickers::IFileOpenPicker”® GetOpenPickerWithWRL ()
2. A

3. using namespace ABI::Windows::Storage::Pickers;

4. using namespace Microsoft::WRL;

5. ComPtr<IFileOpenPicker> openPicker;

6. /] ...

7. return

dvnamic cast<Windows::Storage::Pickers::IFileOpenPicker”>(
reinterpret cast<::Platform::0bject”>(
openPicker.Get()));

Why WRL and C++/CX?

« WRL was initially considered just for internal development in
Windows

* Just before the //build/ conference (in Sept 2011), we
decided to add WRL to the VC++ libraries

« Why? We wanted to target a small set of the C++ dev
population, which might have specific needs (e.g. no
exceptions)

 With the WRL offering, we have a "no compromise” (but also
not that pretty) option for coding against WinRT

C++/CX and WRL comparison

C++/CX WRL

Exception based No exception; HRESULT based
Return value is used in a natural way Return value is reserved for HRESULT
Extensions to C++ language Pure library solution

Reference counted Ref count via smart pointer

Can access low-level pointer Can access low-level pointer
Compact Verbose and complex

No need for external tools Need external tools

Hides COM complexity COM wiring is exposed

* General recommendation is to use C++/CX unless you are in an
exception-free environment.

« WRL can be useful to mix classic COM components and WIinRT
components.

ABI C++, modules and libraries

Libraries packaging

include only source recompilation separate compilation
. . . . = dll/*.lib
Npp Npp pp Npp % s0/* 2

o flat C

full C++ power « COM?Y
* metadata?

Libraries packaging

* Include only model
 Full C++ power
* Easy distribution and packaging
* Slower code compilation
« Complexity with large libraries (central state, etc.)
* No code obfuscation
* User can maodify the code
 ODR violation problems

Libraries packaging

* Source recompilation model
 Full C++ power

« More complex distribution and packaging (needs to add build
scripts, etc.)

* Faster code compilation (still need to compile at least once
though)

* Easier to maintain large libraries
+ No code obfuscation

* User can maodify the code

+ ODR violation problems

Libraries packaging

* Separate compilation model

* Full C++ power in the separately compiled module “guts”’, but
must to downgrade to flat “C" for interop

* Medium complexity in distribution and packaging
Need to have import libs (for .dll)
Need to redist the .dll/.so

* Faster code compilation

* Easier to maintain large libraries

» Code obfuscation, if needed

* User cannot modify the code

+ ODR violation problems are minimized

« We should avoid C++ construct in the .hpp interface: prone to
errors, packing mis-alignements, etc.

What do you think?

Which model do you like most?
Which model do you use?
Problems?

What about the metadata?
Aren't we tired of .h/.hpp files? ©

Questions?

Contacts

+ alecont@microsoft.com
http://blogs.msdn.com/b/vcblog/
 http://channel9.msdn.com/tags/C++/
http://www.buildwindows.com/

mailto:alecont@microsoft.com
http://blogs.msdn.com/b/vcblog/
http://blogs.msdn.com/b/vcblog/
http://channel9.msdn.com/tags/C++/
http://channel9.msdn.com/tags/C++/
http://www.buildwindows.com/
http://www.buildwindows.com/

PARTICIPATE IN C+ + DEVELOPER

DEVELOPMENT USER OESIGN
RESEARCH

TALK TO GEORGE FILL IT ONLINE AT
http://bit.ly/VSUxResearch
GRAB A CARD

