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Agenda 

• The Windows Runtime (aka WinRT) 

• What is WinRT? 

• Design principles (and a bit of history ) 

• Language “bindings” or “projections” 

 

• WRL and C++/CX 

• C++ has two language projections for WinRT 

• Differences and goals 

• Why two projections? 

 

• ABI, C++, modules and libraries 

• An open discussion about library packaging, best practices, 
problems 
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The Windows Runtime (aka WinRT) 



Windows Runtime (WinRT) 

• The Windows Runtime is the solid, efficient foundation for 

building Windows 8 Metro style apps 

• A new API surface which replaces Win32 

• Modern, object oriented, easier to use 

 

 



Windows Runtime (WinRT) 

• You’re in early 2010, and you want to revamp the developer 

experience for Windows 

• What do you do? 



Windows Runtime (WinRT) 

• You throw away the old “C” style based Win32 

• You literally have tens of thousands of APIs with a lot of 

duplication. It’s time to cleanup! 

• You think hard about the developer experience and the 

developer productivity 

• IntelliSense, tooling, etc. 

• You create a solid, clear, consistent and modern API surface 

• Object oriented, namespace organization, async patterns 

• You enable all major programming style to easily “bind” to 

this API surface 

• Native (C++), Managed (think C#, Java), Dynamic (think 

JavaScript, Python) 

 



Windows Runtime (WinRT) 

• You (Windows) also call up all your friends from Visual 

Studio… 

• …and you end up putting a bunch of dudes from C++, C#, 

CLR, .NET Framework and JavaScript in a room for a couple 

of months 

• …and, depending on many other factors, you might end up 

with something like WinRT  

 

• Ah, you also invent a new string type 



WinRT design principles 

• Major improvement to developer experience 

• Great IntelliSense and tooling 

• Native, Managed, Dynamic all first-class citizens 

• JavaScript, C#/VB and C++ initial targets 

• Platform based Versioning 

• Apps keep running on future Windows versions 

• Simple low-level constructs; usability in projection 

• Responsive and Fluid Apps 

• Async APIs where they are needed 

• Well-designed, consistent objects 

• API surface is clear and consistent 

 



WinRT implementation 

• For each WinRT object: 

• Interfaces 

• No data members 

• Factory “construction” pattern 

• Described by metadata 

• Each language projection can figure out the exact binary 

contract just looking at the metadata 

• Basic types are well specified 

• A very small number of patterns are perused across the API 

surface 

• Async, Collections, Enumerators/Iterators/Ranges 
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WinRT Metadata 
• Efficient binary format derived CLI Metadata 

• Profile of ECMA 335, Partition II 

• Same structures, different meanings 

• Readable by existing tools 

• Rich enough to allow multi-language projection generation 

• Full IntelliSense on statically known information 
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WinRT Basic Types 

Basic Types INT32, UINT64, etc. Our usual friends 

Strings HSTRING Avoids copying in 

multiple languages 

Enumerations enum AsyncStatus Flag or non-flag styles 

Structures struct Rect; Can contain strings, but 

not interfaces 

Simple Arrays INT32 [] For very basic 

collections 

Interfaces IInspectable All methods are defined 

as part of interfaces 

Generic Interfaces IVector<T> Type-generic interface. 

Not extensible 

Runtime Class Windows::Storage:: 

StorageFile 

Binds interfaces to make 

a class 



WinRT Patterns 

Collections IVector<T>, IVectorView<T>, 

IMap<T>, 

IObservableVector<T> 

Treat them like STL 

collections 

(begin()/end()/for()/etc.) 

Delegates delegate 

AsyncActionCompletedHandler 

Encapsulate the context 

to call back to an object 

Events IApplicationLayout:: 

LayoutChanged 

Lists of callback 

recipients 

PropertySet interface IPropertySet Collection of items with 

varying types 

Async 

Operation 

ReceivePropertiesOperation A way to get a delayed 

result without blocking 
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WRL and C++/CX 



C++ projection(s) 
• VC++ has two different ways to “project” WinRT metadata, 

and thus consume WinRT constructs 

• C++/CX (language component extensions) 

• WRL (library solution + external tools) 
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WRL – first look 

1.  #include <wrl.h> 

2.  #include <wrl\wrappers\corewrappers.h> 

3.  #include <windows.storage.pickers.h> 

 

4. using namespace ABI::Windows::Storage::Pickers; 

5. using namespace Microsoft::WRL; 

6. using namespace Microsoft::WRL::Wrappers; 

 

7. ComPtr<IFileOpenPicker> openPicker; 

8. HString classid; 

9. classid.Set(L"Windows.Storage.Pickers.FileOpenPicker"); 

10. CHECKHR(ActivateInstance(classid, &openPicker)); 

11. CHECKHR(openPicker->put_SuggestedStartLocation( 
 PickerLocationId::PickerLocationId_PicturesLibrary)); 

12. CHECKHR(openPicker->put_ViewMode( 
 PickerViewMode::PickerViewMode_Thumbnail)); 



WRL 

• WRL stands for Windows Runtime Library 

• Developed by VC++ 

• Part of the Windows SDK 

• Used by Windows to build basically every WinRT object 

offered by Windows 8 

• Predates C++/CX and WinRT 

• WRL was originally designed as a prototype (called nCOM) 

• Modern way to create and consume light-COM objects 

• Solve the ABI problem across C++ modules (.dll) 

 



WRL – key characteristics 

• No exceptions 

• WRL constructs will not throw any exception 

• Error codes (HRESULT) are used to return error codes 

• Low level library 

• Gives developer full control over the WinRT architecture (e.g. 
out-of-proc servers, etc.) 

• Library solution 

• Does not require any extension to the C++ language 

• Easier to re-target to a different C++ compiler 

• Can be used to mix WinRT components and COM 
components 

• Does not hide WinRT and COM complexity 

• Heavily templated library (error messages are a beauty… ) 

 



WRL – toolchain 

• You need to build the “projection” from the metadata 

• The compiler is a normal C++ compiler, so it cannot read or 

interpret metadata files (.winmd) 

• Use winmdidl + midlrt: 

winmdidl 

midlrt 

Acme.winmd 
Acme.idl 

Acme.Utilities.idl 

Acme.h 

Acme.Utilities.h 



WRL – toolchain 

1.  #include <wrl.h> 

2.  #include <wrl\wrappers\corewrappers.h> 

3.  #include <acme.h> 

 

4. using namespace Microsoft::WRL; 

5. using namespace Microsoft::WRL::Wrappers; 

 

6. ComPtr<Acme::IWidget> w; 

7. HString classid; 

8. classid.Set(L“Acme.Widget"); 

9. CHECKHR(ActivateInstance(classid.Get(), &w)); 

10. CHECKHR(w->DoSomething()); 

 

 



WRL – under the hood 

• Microsoft::WRL::ComPtr is a “modern” COM ref counted 

smart pointer 

• Classical COM smart pointers are not very safe 

• operator& is usually very dangerous 



WRL – under the hood 

• For example, ATL::CComPtr looks like this: 

 

 
1. template <class T> 
2. class CComPtr 
3. { 
4.   // … 
5.   T** operator&() throw() 
6.   { 
7.     ATLASSERT(ptr_ == NULL); 
8.     return &ptr_; 
9.   } 
10. protected: 
11.   T* ptr_; 
12. }; 

 

 • Returning the address to the bare pointer breaks the 

encapsulation of the smart pointer class 

• Also, it’s hard to get the address of the real CComPtr 

 

 



WRL – under the hood 

• In Microsoft::WRL::ComPtr, operator& returns the helper 

class ComPtrRef 

 

 
1. template <class T> 
2. class ComPtr 
3. { 
4.   // … 
5.   Details::ComPtrRef<ComPtr<T>> operator&() throw() 
6.   { 
7.     return Details::ComPtrRef<ComPtr<T>>(this); 
8.   } 
9. protected: 
10.   T* ptr_; 
11. }; 

 

 • ComPtrRef<ComPtr<T>> can convert to both ComPtr<T>* 

and the classic T** 

 



WRL – under the hood 

• This way we maintain the usability of the classic T** COM 

pattern like: 
1. HRESULT get_FileTypeFilter( 

  __FIVector_1_HSTRING **value); 

2. ComPtr<__FIVector_1_HSTRING> filter; 

3. CHECKHR(openPicker->get_FileTypeFilter(&filter)); 

 

• While enabling the “safer” version: 
1. template<typename T> 

2. HRESULT ActivateInstance( 

3.   HSTRING activatableClassId, 

4.   WRL::Details::ComPtrRef<T> instance) throw(); 

5. ComPtr<IFileOpenPicker> openPicker; 

6. ActivateInstance(classid, &openPicker) 

 



DEMO 
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C++/CX – first look 

1.  #using <Windows.winmd> 

 

2. using namespace Windows::Storage::Pickers; 

 

3. auto openPicker = ref new FileOpenPicker(); 

4. openPicker->SuggestedStartLocation = 
 PickerLocationId::PicturesLibrary; 

5. openPicker->ViewMode = PickerViewMode::Thumbnail; 

 

 



C++/CX 

• C++/CX stands for C++ Component Extensions 

• Part of the VC++ compiler (in Dev11) 

• Reuse the syntax of ECMA Standard C++/CLI 

 

• Set of language extensions and libraries to allow direct 

consumption and authoring of Windows Runtime types 

• Strongly-typed system for Windows Runtime 

• Automatically reference counted 

• Exception-based 

• Deep integration with STL 

• Well defined binary contract across module boundaries  

 

 

 



C++/CX 

• No need for external tools 

• The compiler can read and understand the metadata: 

1. #using <Windows.winmd> 

• The metadata in imported “on-demand” 

• As the compiler needs definitions for types and constructs from 

the metadata, it queries for more data 

• This model is superior to processing the entire .h file: The 

metadata is easier and faster to query 

• The strong reference “^” (read “hat”) is basically a ComPtr 

• But the compiler knows the semantics of ^ 

• And can optimize away redundant AddRef/Release and 

QueryInterface 



DEMO 
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Mix it up 

• You can use WRL and C++/CX in the same TU 

• Most useful when you need to reference some classic COM 

components 

• e.g. DirectX is still light-COM in Windows 8 

• A Platform::Object^ reference is just a pointer to a WinRT 

IInspectable interface 

 1. Windows::Storage::Pickers::IFileOpenPicker^ GetOpenPickerWithWRL() 
2. { 
3.   using namespace ABI::Windows::Storage::Pickers; 
4.   using namespace Microsoft::WRL; 

 
5.   ComPtr<IFileOpenPicker> openPicker; 
6.   // ... 
7.   return 

    dynamic_cast<Windows::Storage::Pickers::IFileOpenPicker^>( 
      reinterpret_cast<::Platform::Object^>( 
        openPicker.Get())); 

8. } 

 

 



Why WRL and C++/CX? 

• WRL was initially considered just for internal development in 

Windows 

• Just before the //build/ conference (in Sept 2011), we 

decided to add WRL to the VC++ libraries 

• Why? We wanted to target a small set of the C++ dev 

population, which might have specific needs (e.g. no 

exceptions) 

• With the WRL offering, we have a “no compromise” (but also 

not that pretty) option for coding against WinRT 

 



C++/CX and WRL comparison 

C++/CX WRL 

Exception based No exception; HRESULT based 

Return value is used in a natural way Return value is reserved for HRESULT 

Extensions to C++ language Pure library solution 

Reference counted Ref count via smart pointer 

Can access low-level pointer Can access low-level pointer 

Compact Verbose and complex 

No need for external tools Need external tools 

Hides COM complexity COM wiring is exposed 

• General recommendation is to use C++/CX unless you are in an 

exception-free environment. 

• WRL can be useful to mix classic COM components and WinRT 

components. 



ABI, C++, modules and libraries 



Libraries packaging 

*.hpp 

include only 

*.hpp 

source recompilation 

*.cpp 

full C++ power 

*.hpp 

separate compilation 

*.dll/*.lib 

*.so/*.a 

• flat C 

• COM? 

• metadata? 



Libraries packaging 

• Include only model 

• Full C++ power 

• Easy distribution and packaging 

• Slower code compilation 

• Complexity with large libraries (central state, etc.) 

• No code obfuscation 

• User can modify the code 

• ODR violation problems 



Libraries packaging 

• Source recompilation model 

• Full C++ power 

• More complex distribution and packaging (needs to add build 

scripts, etc.) 

• Faster code compilation (still need to compile at least once 

though) 

• Easier to maintain large libraries 

• No code obfuscation 

• User can modify the code 

• ODR violation problems 



Libraries packaging 

• Separate compilation model 

• Full C++ power in the separately compiled module “guts”, but 
must to downgrade to flat “C” for interop 

• Medium complexity in distribution and packaging 

• Need to have import libs (for .dll) 

• Need to redist the .dll/.so 

• Faster code compilation 

• Easier to maintain large libraries 

• Code obfuscation, if needed 

• User cannot modify the code 

• ODR violation problems are minimized 

 

• We should avoid C++ construct in the .hpp interface: prone to 
errors, packing mis-alignements, etc. 

 



What do you think? 

• Which model do you like most? 

• Which model do you use? 

• Problems? 

 

• What about the metadata? 

• Aren’t we tired of .h/.hpp files?  



Questions? 



Contacts 

 • alecont@microsoft.com 

• http://blogs.msdn.com/b/vcblog/ 

• http://channel9.msdn.com/tags/C++/ 

• http://www.buildwindows.com/ 
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