
®

IBM Software Group

© 2007 IBM Corporation C++ Standard

C++17 & C++22: the future of C++11

Michael Wong
michaelw@ca.ibm.com

IBM, Canada C++ Standard
Chair of WG21 SG5 Transactional Memory

OpenMP CEO
IBM xlC compiler Senior Technical Lead

mailto:michaelw@ca.ibm.com�

IBM Software Group | Rational software

IBM Rational Disclaimer

 © Copyright IBM Corporation 2012. All rights reserved. The information contained
in these materials is provided for informational purposes only, and is provided AS IS
without warranty of any kind, express or implied. IBM shall not be responsible for
any damages arising out of the use of, or otherwise related to, these materials.
Nothing contained in these materials is intended to, nor shall have the effect of,
creating any warranties or representations from IBM or its suppliers or licensors, or
altering the terms and conditions of the applicable license agreement governing the
use of IBM software. References in these materials to IBM products, programs, or
services do not imply that they will be available in all countries in which IBM
operates. Product release dates and/or capabilities referenced in these materials
may change at any time at IBM’s sole discretion based on market opportunities or
other factors, and are not intended to be a commitment to future product or feature
availability in any way. IBM, the IBM logo, Rational, the Rational logo, Telelogic, the
Telelogic logo, and other IBM products and services are trademarks of the
International Business Machines Corporation, in the United States, other countries
or both. Other company, product, or service names may be trademarks or service
marks of others.

IBM 2

IBM Software Group | Rational software

3

IBM Rational Cafes – Connecting Communities
 Accelerate your enterprise modernization

efforts by becoming a member of the Cafe
communities

 Ask questions, get free distance learning,
browse the resources, attend user group
webcasts, read the blogs, download trials,
and share with others

 Cafes have forums, blogs, wikis, and more

 Languages covered:
C/C++, COBOL, Fortran, EGL, PL/I, and
RPG

 Products covered:
 • COBOL for AIX®

• Enterprise COBOL for z/OS®
• Enterprise PL/I for z/OS
• Host Access Transformation Services
• PL/I for AIX
• Rational® Business Developer
• Rational Developer for Power Systems Software™
• Rational Developer for i for SOA Construction
• Rational Developer for System z
• Rational Developer for System z Unit Test
• Rational Team Concert™
• XL C for AIX
• XL C/C++ for AIX/Linux ®
• XL Fortran for AIX/Linux
• XL C/C++ for z/VM
• z/OS XL C/C++

Become a member and join the conversation!
ibm.com/rational/café

Continue the conversation

facebook.com/IBMcompilers

@IBM_Compilers

xl_compiler@ca.ibm.com

IBM Software Group | Rational software

© 2011 International Business Machines Corporation 4

Enterprise Modernization: The Cornerstone of Smarter Computing

IBM Enterprise Modernization Sandbox
Realize the value of your investments in assets, skills and infrastructure within
minutes

Try it firsthand within minutes today!
ibm.com/playinthesandbox

 Learn how to revitalize applications, empower people,
unify teams and exploit infrastructure based on your

knowledge and experiences

 See firsthand the tangible value Rational tools can bring
to your business

 Get a fast start with scripted scenarios
and best practice education materials

at no cost available 24x7

 Access a low risk way to try several new offerings and
integrated solutions without

disturbing your existing environment

Deployed in
IBM’s own

data centers

Browser availability

through an easy
Citrix plug-in install!

http://www.ibm.com/developerworks/downloads/emsandbox/�

IBM Software Group | Rational software

Agenda

 The future of C++ Standard

 Bonus 1: Update from Feb C++ Std meeting

 Bonus 2: current C++11 compiler status

 Fragen?

5

IBM Software Group | Rational software

The future after ratification

 Adopt a bus/train delivery schedule
 2017, 2022

 The most successful test-run was a TR which was pretested by Boost
E.g. Boost.functional
Propose we have library and language TR

 New standard every 3-5 years, but not 11
 Invite /review proposals for 1.5 years (until 2014?)
 3 meetings: Hawaii, Portland, Italy?

 Refine and integrate accepted proposals for 1.5 years
 3 meetings

 C++1x?

IBM 6

IBM Software Group | Rational software

What is missing?

 We do not have a system
We (mostly) have an unordered sea of non-interoperable libraries
 The standard library was supposed to help
 Boost was supposed to help

IBM 7

IBM Software Group | Rational software

What do you want in the future?

 C++1x?
 stabilize for a few years until compilers catchup
 Start immediately on new work?

 Concepts?
 A full conservative Garbage Collector?
 Standardize dynamic libraries
 Improve compile time through Module?
 Advanced Concurrency Abstractions?
 Cilk++, Continuation (then, await), TBB/PPL, TM

 Other failed features from C++0x
 Contract programming
 Scoped preprocessor directives

IBM 8

IBM Software Group | Rational software

What new feature for C++1x?

 “People” don’t clearly distinguish between
 Library components
 Language features
 E.g., dynamic linking and loading support

 Tools
 E.g., leak detector

 Programming environment
 E.g., debugging support

 For many, those distinctions are artificial
 Solutions tend to cut across the distinctions
 E.g., is “lambda” a library or a language feature?

 But great libraries may require tool and/or language support

IBM 9

IBM Software Group | Rational software

Potential C++1x proposals

 Networking
 Threading
 Unicode
“much more than C++0x offers”

 Date and time
 File system
“more protocols than boost”

 Safe casts

IBM 10

IBM Software Group | Rational software

GUI

 GUI (gtkmm?)

 2D rendering (Cairo?) Bezier curves

 3D rendering (OpenGL?)

 2D layout engine

 Bridge to other systems/libraries

 Computational geometry

 Rational numbers, real, fixed-point math

IBM 11

IBM Software Group | Rational software

Business

 XML (parsing, generating, validating, transforming)
 Web programming (HTTP, HTTPS, email)
 Web services (SOAP, WSDL, UDDI)
 Bridge to other systems/libraries
 Pluginf ramework
 GUI
 Distribution (communications, serialization, resource discovery)
 Generic database connectivity and transactions
 Cryptography
 Authentication
 Generic scripting language interface (call, load and execute)
 Audio/video streams
 VB-like string manipulation

IBM 12

IBM Software Group | Rational software

Concurrency/distribution

 Concurrency “beyond locks and semaphores”
 lock-free, wait-free containers and algorithms

 Multi-core/throughput
 TBB, ArBB, C++AMP, PPL

 Generic database connectivity and transactions
 Transactional memory, hierarchical locking

 Web programming
 HTTP, HTTPS, email

 Distribution
 communications, serialization, resource discovery

 Web services
 SOAP, WSDL, UDDI

 Cryptography
 Authentication
 Shared memory
 Library for querying machine about hardware and OS resources
 Bridge to other systems/libraries

IBM 13

IBM Software Group | Rational software

Math/Science

 Matrix library
 Bigint, rational numbers, real, fixed-point math
 Numerical methods
 Computational geometry
 A Mathlab library
 Physical units
 Better formatting (“type-safe printf”)
 Bridge to other systems/libraries
 Math special functions (as in TR1)

IBM 14

IBM Software Group | Rational software

Other

 Generic database connectivity and transactions
 VB-like string manipulation
 Command-line parser
 Neural networks
 Library for querying machine about hardware and OS resources
 Plug-in framework
 C++ parser and transformer
 Memory mapped files, random-access

IBM 15

IBM Software Group | Rational software

Meta Evolution
 Features into 4 bins
1. Cleanup/small features for C++17
2. Stretch features for C++17
3. Features for C++22
4. Not considered at this time
 When a new feature is proposed, we should ask ourselves the following questions:

 What do we get from this proposal?
 Does it enable doing something that could not (reasonably) be done before?
 Does it complete another feature?
 Does it make life easier for beginners or teachers?
 Does it help avoid bugs?
 Guideline: A proposal should be rejected unless it provides clear benefits.

 What is the cost of the proposal?
 How much committee time will it take to refine and finish the wording?
 What is the ripple affect on the rest of the standard?
 How hard is it to implement?
 Guideline: cheap proposals might go into C++17, more costly proposals might go into our C++17 stretch goals or into C++22.
 Guideline: A very costly proposal should provide huge benefits, or else we should reject it.

 Would the proposed feature be included with or obsoleted by some larger feature (e.g., concepts or modules)?
 Would accepting a specific small feature now interfere with the specification of the larger feature later?
 Would waiting for the larger feature (e.g. until C++22) causes us to give up something that we really want in C++17?
 Can the proposed feature be structured so that it will be harmonious with the larger feature in the future?
 How certain are we that the larger feature will happen?
 Does the proposed feature fit with a principled solution to the larger problem?

 Etc.
 Does it fit with the rest of the language?
 Does it allow a programmer to write more type-safe code
 Does it interract well with exceptions and resource management.

Michael Wong 16

IBM Software Group | Rational software

Core Feature category
 control generalization

 multimethods (hard to do with libraries only)B 2
 pattern matching (advanced type switch) (simplifies lots of code, does not need linker

support)
 complex control flow (asynchronous)B

 more general continuationsB
 resumable functions

 call generalization
 f(x) finds x.f() (simplifies generic programming)
 multiple return values (library solutions, pattern matching will help more)
 named parameters (library solutions but not good)
 designators (C99) (few classes with that many constructor parameters)
 argument deduction for constructors, N2332

 call optimization?
 pure function qualifier (compilers can infer it, but not always)
 restrict

 Concurrency
 data/task parallelism (modern hardware requires them)
 transactional memory
 heterogenous execution (modern hardware)
 heterogenous memory (modern hardware, C has it as TR)

 lambda, et. al.
 polymorphic lambda (easy to get types wrong, redundant)
 deduce function return type (easy to get types wrong, redundant)
 move captures in lambdas

 Lexical
 digit separators

 syntactic/semantic
 exponentiation operator
 swap operator

 Misc
 inner classes with captures
 parameterized constant expressions
 ADL not finding unconstrained templates
 scoped operator new
 allow comparison to empty initializer list
 remove restrictions on converting pointers-to-members (CH 1 on FCD)
 local variables in member initializers of local classes

 numeric
 big int
 fixed-point (N3352)
 rational
 fixed-slash
 constructive reals
 linear algebra

 metaprogramming (small audience, working facility)
 metacode (better metaprogramming), N1471
 AST operator (access to expression tree)
 compile-time if

 Templates
 member templates of local classes/local templates (not commonly useful, just makes

some things more regular)
 cv templates (template over const, volatile status)
 parameter packs not in last position
 default arguments for partial specializations
 function partial specialization

 parameter pack interfaces (typelists)
 (want to pass packs around as objects,
 first-class parameter packs for multiple return values, ...)

 literal types
 generalizing constexpr function bodies
 literal types as template value arguments (type-rich prgmg)

 Reflection
 compile-time (remove boilerplate)
 run-time, rich pointers (possibly implementable with compile-time)

 automatic code
 implicit comparison operators

 large-scale abstraction
 modules (because of template pollution of headers)
 #nomacro
 namespace regions, remove namespaces
 #once
 dynamic libraries

 memory management
 garbage collection
 VLA/dynarray (performance, looks bad if C has it, experience in practice)

 proxies (wanted for a long time)
 overloaded operator
 operator auto (allow replacement of template argument deduction for a type)

 network
 async I/O - web
 XML
 email/sms
 compression

 other
 range
 database access
 Boost.Optional, Variant, Any

 interface specification
 concepts (improve experience of end-users) (maybe not for this standard)

 concept-based overloading
 concept-based optimization

 preconditions/postconditions (make concepts cleaner)
 contracts

 17

Michael Wong

IBM Software Group | Rational software

WG21 Study Groups

 SG1: Concurrency

 SG2: Modules

 SG3: Filesystems

 SG4: Networking

 SG5: Transactional Memory

Michael Wong 18

IBM Software Group | Rational software

C++ Advanced Parallel Summit May 7-9

 Asynchronous Operations
then, await

 Executors
Work Executors (N3378)

(Jeffrey Yasskin et al)

 Transactional Memory

 Task-Level Parallelism
Cilk (Robert Geva)
TBB and PPL (Artur

Laksberg?)
TLS interactions (Pablo

Halpern)

 Vector Parallelism
Based on Intel

 Completing the
synchronization library
Latches and Barriers

(Alasdair Mackintosh)
N3353-5 progress (Lawrence

Crowl)

 Voluntary cancellation

19

IBM Software Group | Rational software

Transactional Memory
 Addressing concerns expressed at Kona meeting. Locks are impractical for generic programming,

because ordering of locks is generally not visible. Transactional memory solves the problem. It also helps
for fine-grained locking on irregular data structures.

 Discussion on composability. Relaxed transaction can expose partial state. Discussion on interaction with
existing locks.

 Helps with read-mostly structures.

 Presentation of student-based study of error rates with transactions versus mutexes and condition
variables. Error rates fall from 50% to 10%.

 Presentation of longer-term study of graduate students on an indexing application. Overall 14%
improvement in overall programming effort with transactional memory. Good performance using
transactional memory.

 Is transactional memory fast enough? Many different software transactional memory systems with
different performance characteristics, so probably one fits your needs. Recent work on adaptive
algorithms. Can change system without changing client code. Unknown about ABI changes.

 Performance study of a multiplayer game with >100k concurrent players. Requirement is atomicity and
consistency for all actions.

 Much discussion on appropriateness to standards, industry adoption, compatibility with existing code,
meaning of a Technical Specification, possibility of a Study Group, etc.

 No objection to creating a Study Group for transactional memory. We will create one. Chair to be selected.

20

IBM Software Group | Rational software

Asynchronous Operations

 Discussion of attributes of proposal. Much of the discussion
was around the right strategy for integrating something along
these lines into the standard. Is asynchrony better done with
changes to I/O operations?

 Futures may have limits to performance for large-scale
parallelism. See Space-efficient scheduling of multithreaded
computations.

 Straw polls to 'ask author to do more work'.

 Asynchronous library '.then' extension to futures.
22 SF, 9 WF, 1 N, 0 WA, 0 SA

 Asynchronous language 'await' extension to futures.
12 SF, 11 WF, 8 N, 0 WA, 0 SA

 21

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.48.9822&rep=rep1&type=pdf�
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.48.9822&rep=rep1&type=pdf�

IBM Software Group | Rational software

The Serial Equivalence of Cilk Plus

 Three keywords: cilk_spawn, cilk_sync, cilk_for. The serial elision of a Cilk program is well
defined. A Cilk program without a determinacy race behaves the same as its serial elision
when running on any number of threads.

 FIX: Needs definition of a determinacy race. Is it a data race?

 For most library solutions, and equivalent property is not well defined.

 Example with race. Correct by using a Cilk-provided abstraction, e.g.
cilk::reducer_list_append.

 Language support for serial equivalence.

 No language construct that breaks equivalence

 Parent stealing

 Arguments evaluated by parent

 Implicit sync to structured fork-join parallelism

 After Cilk became part of Intel, the implementation changed so that the ABI is the same
between spawnable and non-spawnable functions.

22

IBM Software Group | Rational software

Serial Equivalence's Impact on Space Bounds

 Example of quicksort. Regular approaches require more space and more threads. Do
depth-first serial execution and steal breadth first.

 Discussion of equivalence to async/future.

 Discussion of overhead of Cilk primitives on algorithms designed to be parallel.

 Discussion on modifying or extending the standard library with Cilk.

 Performance difference in that paper is unknown, but if inherent likely due to serial
equivalence property.

 Much discussion on performance tradeoffs, particularly with respect to additional
guarantees.

 Okay to call locks as long as they commute within the domain.

 Discussion on alternate implementations and the burden of implementation.

 Two basic tasks of compiler: injecting code around constructs and optimizing reducer
based on source.

 There is a macro/library equivalent of Cilk that is useful for evaluating and understanding
Cilk. But it is not the library you are looking for.

23

IBM Software Group | Rational software

PPL

 Heavily uses lambda to represent work passed to PPL. Has
task_group, structured_task_group, parallel_invoke, etc. Can
'.run' a lambda in a group. Can '.wait' for all runs to finish in a
group. Can '.run_and_wait' a lambda in a group.

 Parallel_for partitioning:
static: number of chunks == number of cores
simple: user-specified chunk size
auto: range stealing

24

IBM Software Group | Rational software

Concurrent objects

 Current standard library data structures are no concurrency safe.
 concurrent_queue, concurrent_priority_queue
 push, pop

 concurrent_unordered_set, concurrent_unordered_multiset, concurrent_unordered_map,
concurrent_unordered_multimap
 insert, find, iterate

 concurrent_vector (elements are not in contiguous memory)
 push_back, operator[], grow_by, grow_to_at_least

 extern concurrent_vector v; copy(u.begin(), u.end(), v.grow_by(u.size()));

 combinable objects provide reduction.

 Open Issues:
 value-oriented containers versus reference-oriented containers?
 separate "parallel" and "serial" views?
 selecting concurrent requirements more precisely?

 Much discussion on the specificity of data structures to patterns.

25

IBM Software Group | Rational software

Problems of Thread Local Storage

 Three use cases for thread-local storage.
 session-specific information

 one thread per session, store info in TLS
 dynamic cache

 cache previously computed values in TLS to avoid synchronization
 task-specific variables

 function receives one of its arguments or result through a global variable

 Fourth use case suggested: merge multiple single-threaded processes into a single multi-threaded
process.

 What should thread_local specify?
 There are at least three candidates.
 Should be associated with std::thread.

 Conclusions
 No single concept sufficies.
 We will need a task formalisim and possibly a worker formalism
 All three candidates should be supported.

 Much discussion on "what is a thread", "what is a thread-local variable", "what about POD thread-local
variables", etc.

26

IBM Software Group | Rational software

Async and Thread-Local Storage

 Benchmarking fib(30) example. The std::async with default
launch policy is useful for parallel decomposition. The
std::async with launch::async policy is useful for "get this work
of my GUI thread".

 Microsoft implemented async(launch::async) with thread pools.
Reinitializes thread-locals. Does not handle destruction.

 Extensive discussion of semantics and implementation of
thread-local variables. Did I mention extensive?

 Straw Polls:
Shall we reconsider non-POD thread-local variables?
 SF 5, WF 5, N 5, WA 7, SA 3

27

IBM Software Group | Rational software

Vector Parallelism

 Core counts on servers will continue to grow. Core counts on
(mobile) clients are not likely to get much higher. Vectors are
getting wider.

 Ability to program tasks versus vectors explicitly. Ability to
express intent for parallel execution and let compiler map to
hardware resources.

 Several currently available technologies for vectorization.

 Discussion of appropriate syntax and semantics for
vectorization.

 Need language support for efficient code.

 Data parallelism is a programming pattern; vectorization is an
implementation.

 28

IBM Software Group | Rational software

Other discussions

 C++ AMP

 C++ Latches and Barriers

 Counters

 Concurrent Queues

 Stream mutexes

 Cancellation

 Blocking in future destructors

29

IBM Software Group | Rational software

Agenda

 The future of C++ Standard

 Bonus 1: Update from Feb C++ Std meeting

 Bonus 2: current C++11 compiler status

 Fragen?

30

IBM Software Group | Rational software

Herb Sutter’s presentation of plans for the future

Michael Wong 31

IBM Software Group | Rational software

Michael Wong 32

IBM Software Group | Rational software

Michael Wong 33

IBM Software Group | Rational software

Michael Wong 34

IBM Software Group | Rational software

Michael Wong 35

IBM Software Group | Rational software

Michael Wong 36

IBM Software Group | Rational software

Michael Wong 37

IBM Software Group | Rational software

Michael Wong 38

IBM Software Group | Rational software

Michael Wong 39

IBM Software Group | Rational software

Michael Wong 40

IBM Software Group | Rational software

Michael Wong 41

IBM Software Group | Rational software

Michael Wong 42

IBM Software Group | Rational software

Michael Wong 43

IBM Software Group | Rational software

Michael Wong 44

IBM Software Group | Rational software

Michael Wong 45

IBM Software Group | Rational software

Michael Wong 46

IBM Software Group | Rational software

Agenda

 The future of C++ Standard

 Bonus 1: Update from Feb C++ Std meeting

 Bonus 2: current C++11 compiler status

 Fragen?

47

IBM Software Group | Rational software

Updated page of C++0x support

 Bjarne’s C++0x FAQ:
http://www2.research.att.com/~bs/C++0xFAQ.html

 http://wiki.apache.org/stdcxx/C%2B%2B0xCompilerSupport
Maintained by Martin Sebor, me, and other compiler Tech leads

from other company

48

http://wiki.apache.org/stdcxx/C++0xCompilerSupport�
http://wiki.apache.org/stdcxx/C++0xCompilerSupport�
http://wiki.apache.org/stdcxx/C++0xCompilerSupport�

IBM Software Group | Rational software

XL Compiler status
 Our live C++0x status:
 http://www-01.ibm.com/software/awdtools/xlcpp/aix/features/?S_CMP=rnav
 https://www.ibm.com/developerworks/mydeveloperworks/blogs/5894415f-be62-4bc0-

81c5-3956e82276f3/entry/xlc_compiler_s_c_11_support50?lang=en

 C++ published:
 https://www.ibm.com/developerworks/mydeveloperworks/blogs/5894415f-be62-4bc0-

81c5-3956e82276f3/entry/c_11_standard_now_available_for_purchase9?lang=en

 C++ ratified:
 https://www.ibm.com/developerworks/mydeveloperworks/blogs/5894415f-be62-4bc0-

81c5-3956e82276f3/entry/c_0x_c_11_standard_has_been_ratified2?lang=en

49

http://wiki.apache.org/stdcxx/C++0xCompilerSupport�
http://www-01.ibm.com/software/awdtools/xlcpp/aix/features/?S_CMP=rnav�
http://wiki.apache.org/stdcxx/C++0xCompilerSupport�
http://wiki.apache.org/stdcxx/C++0xCompilerSupport�
http://wiki.apache.org/stdcxx/C++0xCompilerSupport�
http://wiki.apache.org/stdcxx/C++0xCompilerSupport�
http://wiki.apache.org/stdcxx/C++0xCompilerSupport�
http://wiki.apache.org/stdcxx/C++0xCompilerSupport�
http://wiki.apache.org/stdcxx/C++0xCompilerSupport�
http://wiki.apache.org/stdcxx/C++0xCompilerSupport�

IBM Software Group | Rational software

IBM XL c/C++ and z/OS c/C++ compiler status (May, 2012)
https://www.ibm.com/developerworks/mydeveloperworks/blogs/5894415f-be62-4bc0-81c5-
3956e82276f3/entry/xlc_compiler_s_c_11_support50?lang=en

 Released in XL C/C++ for AIX/Linux V10.1 in mid 2008
 -qlanglvl=extended0x option (umbrella option for all

future 0x features)
 long long,
 sync C99 preprocessor (Empty macro arguments,

Variadic macros, Trailing comma in enum definition,
Concatenation of mixed-width string literals)

 Tested with Boost 1.34.1
 In C/C++ for AIX/Linux for V11.1, in 2Q 2010 (include all of above)
 Variadic template
 Auto
 Decltype
 Namespace association
 Delegating constructor
 Static assert
 Extern template
 extended friend
 -qwarn0x
 Tested with Boost 1.40

 In C/C++ for AIX/Linux for V12.1 in 2Q 2012
(include all of above)
 Explicit conversion operator
 Generalized const expr (phase1)
 Rvalue reference
 Right angle bracket
 Scoped enum
 Forward declaration of enum
 Trailing return
 C11 complex
 C11 _Noreturn
 C11 Anonymous structs
 Tested with Boost 1.47

50
All information subject to change without notice

in zOS XL C/C++ V1R11
Extern template
Extended friend
-qwarn0x

V1R12 (include all of above)
Long long
Sync C99 preprocessor (Empty macro arguments,
Variadic macros, Trailing comma in enum definition,
Concatenation of mixed-width string literals)
Auto
Decltype
Variadic template
Namespace association
Delegating constructor
Static assert

V1R13 (include all of above)
QOI message
Trailing Return

IBM Software Group | Rational software

GNU

 http://gcc.gnu.org/projects/cxx0x.html
 4.3/4.4/4.5/4.6 support:
 http://gcc.gnu.org/gcc-4.3/cxx0x_status.html
 http://gcc.gnu.org/gcc-4.4/cxx0x_status.html
 http://gcc.gnu.org/gcc-4.5/cxx0x_status.html
 http://gcc.gnu.org/gcc-4.6/cxx0x_status.html
 http://gcc.gnu.org/gcc-4.7/cxx0x_status.html

 -std=c++0x or -std=gnu++0x
 GNU will write their own C++0x library, libstdC++, as they have always done:
 http://gcc.gnu.org/onlinedocs/libstdc++/manual/status.html#id476343
 Possibly the biggest holdback from their completion

 Usually supports latest Boost (Boost 1.49)
 Additional Branch
 Concepts
 Lambda
 Delegating constructors
 Raw strings

51

All information based on publicly available data

http://gcc.gnu.org/projects/cxx0x.html�
http://gcc.gnu.org/gcc-4.4/cxx0x_status.html�
http://gcc.gnu.org/gcc-4.5/cxx0x_status.html�
http://gcc.gnu.org/gcc-4.6/cxx0x_status.html�
http://gcc.gnu.org/onlinedocs/libstdc++/manual/status.html�

IBM Software Group | Rational software

GNU 4.3/4.4/4.5/4.6/4.7 (120326)
 4.3: Rvalue Reference, Variadic Template, Static Assert, Decltype, Right

Angle Bracket, C99 Preprocessor, Extern Templates, __func__, Long long
 4.4:Extending variadic template template parameters, Auto, multideclarator

auto, removing auto as storage-class specifier, new function declarator
syntax, Propagating exceptions, Strongly-typed enums, New character
types, Unicode string literals, Standard Layout types, Default and deleted
functions, Inline namespaces

 4.5:Initializer lists, Lambdas, Explicit conversion, Raw string literals, UCN
Literals, Extending sizeof, Local and unamed types as template arguments

 4.6: null pointer, forward declaration of enums, constexpr, unrestricted
unions, range-based for, noexcept, move special member functions,

 4.7: non-static data member init, template aliases, delegating
constructors, UDL, extended friend, explicit virtual overrides

52

IBM Software Group | Rational software

Intel and likely HP/Comeau (use EDG frontend)

 Intel C++ 12.0 has
 -qstd=c++0x (Linux/Mac OS X), /Qstd:c++0x

(Windows)
– rvalue references
– Standard atomics
– Support of C99 hexadecimal floating point

constants when in ―Windows C++ mode
– Right angle brackets
– Extended friend declarations
– Mixed string literal concatenations
– Support for long long
– Variadic macros
– Static assertions
– Auto-typed variables
– Extern templates
– __func__ predefined identifier
– Declared type of an expression (decltype)
– Universal character name literals
– Strongly-typed enums
– Lambdas

53
All information based on publicly available data

• Intel C++ Standard Library is based on
Microsoft on Windows (uses
Dinkwumare) and GNU on Linux
(uses GNU’s libstdC++), Boost 1.39

• HP aC++ V6 has been quiet about
their C++ support, but will likely peggy-
back on EDG as they move to new
versions, uses STLport 5.1.7 as C++
Library, libstd runtime library matches
Rogue Wave Version 1.2.1. , libstd_v2
runtime library matches Rogue Wave
Version 2.02.01. Boost 1.38

• Comeau is also very active in
delivering C++0x as soon as EDG
delivers it to them, runs on multiple
platforms, uses their own libcomo 36
based on an old SGI C++ Std Library

IBM Software Group | Rational software

MS VS C++ 2010
 http://blogs.msdn.com/vcblog/archive/2010/04/06/c-0x-core-

language-features-in-vc10-the-table.aspx
 Lambdas
 Auto
 Static_assert
 Rvalue references
 decltype
 Nullptr
 Extern templates
 Right angle brackets
 Local and unamed types as template arguments
 Long long
 Exception_ptr

 Supports Boost 1.40
 Traditionally bought from Dinkumware C++ Library

54
All information based on publicly available data

IBM Software Group | Rational software

VC++ & C++11(from Hern sutter)

VC11
Beta

VC11
RTM

OOB
CTP

OOB
RTM

Feb
2012

+ C++11
range-for,

final,
override

Out-Of-Band
Releases

+ progressively roll out
C++11 initializer lists,

template aliases, variadic
templates, constexpr,

noexcept,
=default/delete, …

VC11
DP

Sep
2011

+ complete
C++11 stdlib:
thread/mutex,

async, future, …
+ track changes

(lambdas, &&, …)

You are
heSe

VC10
RTM

Apr
2010

+ lambdas,
move/&&,

auto, decltype,
auto fn decls,

extern template,
nullptr, …

Survey: bit.ly/mscpp11

IBM Software Group | Rational software

Sun Studio (Version 13 and higher?)
 Steve Clamage’s post (080516):
http://forums.sun.com/thread.jspa?threadID=5296590
 “Right now, we are working on providing binary compatibility with g++ as an option in the next compiler release.

“
 “We won't release an official (stable, fully-supported) product with C++0X features until the standard is final.

Until then, any feature could change in unpredictable ways. “
 “Beginning some time next year, we expect to have Express releases with some C++0X features. Express

releases are our way of providing compilers with experimental features that might not be stable yet. It gives our
customers a chance to try them out and provide feedback before they become part of a stable release. “

 No known plans on C++0x Library based on Steve Clamage’s post (070917):
 http://forums.sun.com/thread.jspa?threadID=5165721
 Ships with libCstd, an ancient version of Rogue Wave C++ library from 1999 for binary compatibility
 Ships with STLport 4.5.3 for enhanced performance
 Boost 1.34.1
 Can work with open source Apache C++ Standard Library derived from Rogue Wave 4.1.2
 “A new C++ standard is in progress, planned for completion in 2009. We will release a new compiler, C++ 6.0,

conforming to the new standard, including a fully-conforming standard library as the default. The new library will
be shipped as part of Solaris.
We also plan to maintain compatibility with C++ 5.x and libCstd as an option. Details are still in the planning
stage. “

56
All information based on publicly available data

http://forums.sun.com/thread.jspa?threadID=5165721�

IBM Software Group | Rational software

Borland/CodeGear C++Builder Compiler 6.10 2009
 http://www.codegear.com/article/38534/images/38534/CBuilder2009Datasheet.pdf
 Rvalue references
 decltype
 Variadic templates (in testing)
 Scoped enumerations
 static_assert
 explicit conversion operators
 Attributes [[final]] and [[noreturn]]
 alignof
 Type traits
 Unicode character types and literals
 long long
 variadic macros
 Dinkumware C++Std Library
 Boost 1.35

57

All information based on publicly available data

http://www.codegear.com/article/38534/images/38534/CBuilder2009Datasheet.pdf�

IBM Software Group | Rational software

Clang/llvm
 Core language:http://clang.llvm.org/cxx_status.html
Very far from complete, can’t compile basic tests
Variadic template, rvalue ref, extern templ, inline namespace,

long long

 Library:http://libcxx.llvm.org/index.html

 On Mac OS X/i386/x86_64

 Writes its own library libc++.a:
About 98% complete
Only missing atomics

58

http://clang.llvm.org/cxx_status.html�

IBM Software Group | Rational software

Food for thought and Q/A
 This is the chance to get a copy before you have to pay for it:
 C++ : http://www.open-

std.org/jtc1/sc22/wg21/docs/papers/2011/n3291.pdf
C++ (last free version): http://www.open-

std.org/jtc1/sc22/wg21/docs/papers/2011/n3242.pdf
C: http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1570.pdf

 Participate and feedback to Compiler
What features/libraries interest you or your customers?
What problem/annoyance you would like the Std to resolve?
 Is Special Math important to you?
Do you expect 0x features to be used quickly by your customers?

 Talk to me at my blog:
http://www.ibm.com/software/rational/cafe/blogs/cpp-standard

59

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2011/n3291.pdf�
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2011/n3291.pdf�
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2011/n3242.pdf�
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2011/n3242.pdf�

IBM Software Group | Rational software

60

My blogs and email address

 OpenMP CEO: http://openmp.org/wp/about-openmp/
My Blogs: http://ibm.co/pCvPHR
C++11 status:
http://www.ibm.com/software/awdtools/xlcpp/aix/features/?S_CMP=rnav
Boost test results
http://www.ibm.com/support/docview.wss?rs=2239&context=SSJT9L&uid=swg27006911
C/C++ Compilers Support/Feature Request Page
http://www.ibm.com/software/awdtools/ccompilers/support/
http://www.ibm.com/support/docview.wss?uid=swg27005811
STM:
https://sites.google.com/site/tmforcplusplus/

 Tell us how you use OpenMP:
 http://openmp.org/wp/whos-using-openmp/

https://sites.google.com/site/tmforcplusplus/�

IBM Software Group | Rational software

61 IBM

Acknowledgement

 Some slides are borrowed from committee presentations by
various committee members, their proposals, and private
communication

	C++17 & C++22: the future of C++11
	IBM Rational Disclaimer
	IBM Rational Cafes – Connecting Communities
	IBM Enterprise Modernization Sandbox�Realize the value of your investments in assets, skills and infrastructure within minutes
	Agenda
	The future after ratification
	What is missing?
	What do you want in the future?
	What new feature for C++1x?
	Potential C++1x proposals
	GUI
	Business
	Concurrency/distribution
	Math/Science
	Other
	Meta Evolution
	Core Feature category
	WG21 Study Groups
	C++ Advanced Parallel Summit May 7-9
	Transactional Memory
	Asynchronous Operations
	The Serial Equivalence of Cilk Plus
	Serial Equivalence's Impact on Space Bounds
	PPL
	Concurrent objects
	Problems of Thread Local Storage
	Async and Thread-Local Storage
	Vector Parallelism
	Other discussions
	Agenda
	Herb Sutter’s presentation of plans for the future
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Agenda
	Updated page of C++0x support
	XL Compiler status
	IBM XL c/C++ and z/OS c/C++ compiler status (May, 2012)�https://www.ibm.com/developerworks/mydeveloperworks/blogs/5894415f-be62-4bc0-81c5-3956e82276f3/entry/xlc_compiler_s_c_11_support50?lang=en
	GNU
	GNU 4.3/4.4/4.5/4.6/4.7 (120326)
	Intel and likely HP/Comeau (use EDG frontend)
	MS VS C++ 2010
	VC++ & C++11(from Hern sutter)
	Sun Studio (Version 13 and higher?)
	Borland/CodeGear C++Builder Compiler 6.10 2009
	Clang/llvm
	Food for thought and Q/A
	My blogs and email address
	Acknowledgement

