
Fresh Paint
How to write exactly the same programs in C++11

1



Who Am I?

• Alisdair Meredith

• ISO committee member since 2003

• Current Library Working Group Chair

2



What is this session?

• C++11 goal: “remove embarrassments” 

• Syntax clean ups

• syntax extensions

• idiomatic libraries

3



Quick Quiz

• Can anyone spot the C++11 feature of the 
sample program?

• (switch to vim!)

4



Quiz Result

• C++11 <iostream> implicitly includes:

• <ostream>

• <istream>

• <ios>

• <streambuf>

5



Other header changes

• swap moves from <algorithm> to <utility>

• tr1 result_of moves from <functional> to 
<type_traits> 

• <bitset> no longer includes <stdexcept>

• all headers include <initializer_list>

6



Quick Quiz 2: strings

• Can anyone spot undefined behavior in the 
sample program?

• (switch to vim!)

7



COW strings outlawed

• Various exemptions to enable Copy-on-
write (ref counted) strings removed

• part of the concurrency effort

• New weasel words to allow short-string 
optimization

• ‘swap’ can invalidate string iterators

• (turns out this was added for 2003)

8



Functions that act as 
const for data races

• begin

• end

• rbegin

• rend

• front

• back

• at 

• data

• find

• lower_bound

• upper_bound

• equal_range

9



string conversions
• to_string

• stoi

• stol

• stoul

• stoll

• stoull

• stof

• stod

• stold

• also ‘w’ versions

10



Container cleanup

• cbegin/cend/crbegin/crend

• shrink_to_fit on vector/string/deque

• map::at for ‘const’ queries

• unordered_containers get operator==/!=

• list::size is constant time

11



Raw String Literals

• Raw string literals:

• ignore all escape codes

• embed newlines if spanning multiple lines

• retrieve the original text for trigraphs

• allow user-defined escape to close string

• ideal with the regex library!

12



C++11 Templates

• Did not get concepts

• Did not get function template specialization

• Lost ‘export’

• variadic templates are awesome, but a 
different session!

13



Angle Brackets

• C++03: ‘>>’ is always parsed as an operator

• requires an extra space closing templates

• C++11: Two (or more) adjacent ‘>’ symbols 
will be parsed as closing template 
parameter list

• e.g., vector<pair<int,int>>

• NO FIX for <: diagraph,

14



Troublesome typename

• Switch to VIM for example

15



Troublesome typename

• Spurious ‘typename’ keywords now ignored

• popular 03 compilers already did this

• Similar relaxation for .template / ::template

• NO relaxation where typename is required

• Did we notice the empty statement after 
main?

16



Local Classes

• C++03: Local classes have internal linkage

• C++11: Local classes have internal linkage

• but templates can instantiate such types!

• (see example)

• un-named namespace gets internal linkage

• static functions undeprecated

17



Extended SFINAE

• Substitution Failure Is Not An Error

• Widely abused technique to control 
overload resolution in templates

• C++03: SFINAE is a bullet list of things to 
check

• C++11: SFINAE is any compile fail, including 
access control (public/private)

18



Default function-
template parameters

• C++11 allows default template parameters 
on function templates

• C++03: Cannot control constructor 
overloading with SFINAE

• C++11: use (extended!) SFINAE with 
default template argument

• Note: even easier with ‘enable_if ’

19



Alias Templates

• (see quick code sample)

• Cleans up C++03 idioms like 
allocator<T>::rebind<U>

• Cannot specialize an alias

• but will pick up specializations of aliased 
template

• Non-template form can replace ‘typedef’

20



Uniform Initialization

• Too many different initialization syntaxes in 
C++03

• No one syntax that can be used universally 
in the grammar

• Some things cannot be explicitly initialized, 
e.g., arrays as data members

• Solution: generalize aggregate initialization

21



Uniform Initialization

• { } brace initializers can be used 
everywhere

• allows initialization of arrays/aggregates in 
more contexts, notably constructors

• side-steps “most vexing parse”

• narrowing conversions are a compile-error

22



initializer_list

• A new type, understood by the compiler

• represents a sequence of constant values

• differs from arrays as length is not part of 
the type

• allows constructors to initialize from a list 
of value

• applied consistently across the library

23



for loops

• new for-loop syntax to iterate over ranges

• native arrays

• containers

• any type that implements begin/end

• initializer_lists

• Use a reference to update original data

24



Function Declarations

• Inspired by need to declare certain 
template functions (see example)

• General syntax, not template specific

• Bonus: simple to line up function names in a 
header, picking out overload sets

• Does not deduce return type like lambdas

• But watch this space for C++17...

25



Alternate Syntax 
Summary

• using vs. typedef

• consistent brace initialization

• new function syntax

26



Features to simplify 
writing classes

• delegating constructors

• inheriting constructors

• member initializers

• deleted functions

• defaulted special functions

• explicit override keyword

27



Delegating 
Constructors

• C++03: Cannot share initialization lists 
between constructors

• C++11: delegate to another constructor

• What happens if constructor body throws?

28



Inheriting Constructors

• Re-implementing large constructor lists can 
be a burden

• e.g., idiom to derive from string, rather than 
use typedef, for compile-time type checks

• Warning: no known implementation at this 
time

29



Inheriting Constructor 
Issues

• How do we initialize new data members

• Member initializers!

• How do we inherit from multiple bases?

• What about default/copy constructors?

• What about private/protected constructors?

• What if this class wants a constructor with 
an inherited signature?

30



Deleted Functions

• All classes in C++ have a copy constructor

• whether you want one or not!

• ‘embarrassing’ idiom to declare copy 
constructor/assignment operator private

• and never define them!

• deleted functions express intent clearly

31



Defaulted Special 
Functions

• Sometimes we want the built-in definition 
of the default or copy constructor

• Better to explicitly state this, than rely on 
reader understanding the omission

• especially for default constructor, which is 
not present with any other constructor

32



Override Keyword

• Ask the compiler to check we actually 
override a virtual function!

• catches mis-typed function names

• catches bad argument lists

• highlights if base class changes

• Does not catch accidental overrides, where 
a virtual function added to the base class

33



explicit conversion 
operators

• Function similarly to explicit constructors

• bool conversions the most interesting case

• language *will* use for if/while/for tests

• replaces ‘unspecified boolean type’ idiom

• Commonly used for smart pointers

34



Basic Vocabulary Types

• function

• unique_ptr

• shared_ptr

35



function

• std::function a natural replacement for 
function pointers

• more flexible

• supports functors with state

• efficient if holding only a function pointer

36



unique_ptr

• drop in replacement for auto_ptr

• requires explicit syntax to transfer 
ownership, with std::move

• Supports arrays

• Basic form identical size to a native pointer

• Customized deleters supported, at compile 
time

37



shared_ptr

• shared ownership of a pointer

• ideal for use in a container

• custom deleter does not affect type

• custom allocator does not affect type

• atomic reference count pays a small price 
for the flexibility

38



Missing Algorithms

• copy_if

• all_of

• any_of

• none_of

• is_sorted

39


