
More Useful Computations

in the Same Duration:

Optimizing Embedded Hard Real-Time

Code in C++

By Scott Schurr for C++ Now! 2012

A Travelogue of Sorts

What is Real-Time Software?

o Operations have a specific time deadline

3

What if I miss my deadline?

A continuum between…

o Hard real-time: missile guidance system

o Soft real-time: streaming audio

What is an Embedded System?

o Purpose-built: not a general-purpose

computer

o Often constrained by

 Heat dissipation

 I/O (e.g., no monitor)

 Power

 Size

 Memory

4

I Work On…

5

It Does Laser Cutting

6

human hair

The Hardware
Laser

7

X-Y linear stage

X-Y mirror

galvanometer X-Y acousto-optic

deflector

The Compute Platform

8

Windows Computer

Microcontroller Memory buffer

DSP 0 [50 μsec] DSP 1 [5 μsec]

FPGA [registers]

The Compute Platform

o Windows control computer

 C# and .NET (mostly)

 Very non-real-time

o Analog Devices Blackfin Microcontroller

o Two Analog Devices TigerSHARC DSPs

 600 MHz static superscalar

 Harvard architecture

 3 MB internal memory each

9

Two Embedded Build Targets

o It‟s all C++ (and a hair of assembly)

o Windows (about 95%)

 For a software-only simulation

 Allows breakpoints in “real-time” code

o Analog Devices Processors

 Part of VisualDSP++ tool kit

 Surprisingly compliant with C++98

 Includes a cycle-accurate processor

simulation

10

The Embedded Software Platform

o The simulation environment runs

entirely under Windows. No hardware.

o Requires about 95% of the code to

compile for Windows and TigerSHARC

o Only the TigerSHARC compiled code

needs to meet timing constraints

o Building for two compilers is a short-

term pain, but results in better code

11

Observation: Good Tools

If you use a great debugger…

…you‟ll write code that can only be

debugged with a great debugger

This is a serious problem when something

goes wrong, but only on the hardware

platform

12

Unusual Considerations

o No exceptions

o No operating system

o Limited memory [3 Mbytes per DSP]

o No breakpoints or debugger (except in

simulation)

13

No Exceptions

Understand the costs of exception handling
Scott Meyers More Effective C++ Item 15

 Execution time predictability

 Size of code and tables for exceptions

 Handling exceptions is slow

 No RTTI (often a good thing)

14

No Operating System, um, mostly

o No file I/O needed

o Heap management by C++ runtime

o No scheduler

 Improves interrupt response time

predictability

 Reduces interrupt overhead

o No built-in inter-thread communications

 Must be hand-built

15

Division of Labor in DSPs

o Both DSPs have a non-interrupt „thread‟

 Non-real-time commands

 Non-real-time responses

 Error notifications to Windows

o 50 μsec servo interrupt [DSP 0]

 Dispatch of real-time commands

 Servo code for linear stages

o 5 μsec servo interrupt [DSP 1]

 Servo code for galvanometers

16

5 μsec Is Not Very Much Time

o 3000 DSP1 clocks between interrupts

o Each interrupt must…

 Save processor state on the stack

 Read several sensors

 Handle the position commands

 Execute several filters

 Write control registers

 Restore processor state from stack, and

o Leave time for some non-real-time stuff

17

Goals for the Embedded Code

o Handle more hardware – acousto-optic

deflectors

o Increased coordination between

hardware – simultaneous use of stages,

galvos, and acousto-optic deflectors

o Increased feature resolution at high

beam velocity

o Increased reliability

o No additional embedded compute power

18

Observation: Start Slow

If you want to optimize a system for

speed…

…start with a system that was not

optimized for speed

o MATLAB generated servo code

o Commands streamed in XML

o Automatic recordability of computed

values in the control path

19

Kinds of Software Goodness

Kan Metrics and Models in Software Quality Engineering 2003 Figure 1.1

20

Early Questions

1. How to monitor servo interrupt health?

a. Time spent inside the interrupt?

b. Are there servo violations?

c. What is the servo jitter?

2. Why can we only get a command into

the embedded system every 200 μsec?

21

Observations

o Make tools

o Time is not the only important thing to

measure

o Consider Using Lazy Evaluation
Meyers More Effective C++ Item 17

22

DspHealthGauge

class DspHealthGauge { // Base class

public:

static void StreamAllGauges(ResultStream& rs);

static void ResetAllGauges();

virtual void Stream(ResultStream& rs) const = 0;

virtual void Reset() = 0;

protected:

void PushBack();

void Remove();

private:

DspHealthGauge* link_;

static DspHealthGauge* children_;

};

23

DspHealthGauge

o Construct, stream and reset from non-

interrupt “thread”

o Constructor adds to intrusive list

o Judicious use of virtual

o Low overhead setting in interrupt code

o Most processing postponed until

streaming

o Similar effects possible in plain C, but

with much more maintenance.
24

DspHealthGauge

o Permanent reports

 Servo interrupt characterization

 Galvo response

o Temporary measurements

 For focused characterization

o Add new health gauge types easily

 Policy based derived classes

 17 types currently defined in system

25

Observation: Make

Measurements

o Why can we only get a command into

the embedded system every 200 μsec?

o I knew where the problem was

 A piece of code that annoyed me

o I measured to prove my assertion

o I was wrong

o Further measurements showed the real

problem

26

The Culprit

27

Windows Computer

Microcontroller Memory buffer

DSP 0 [50 μsec] DSP 1 [5 μsec]

FPGA [registers]

The Culprit

o Message from microcontroller to DSP0

took 280 μsec – more than 200 μsec.

o Microcontroller was supposed to be so

simple it couldn’t be slow

o But, inside…

 A microkernel scheduler

 Three threads

 Code running in external memory

28

Observation: Memory Matters

o Step 1. Moving code to internal memory

in microcontroller removed 100 μsec.

o Lesson for non-embedded folks:

remember your processor caches.

o Consider reading What Every

Programmer Should Know About

Memory by Ulrich Drepper, 2007

29

Observation: Consider Removing

Threads

o Turned three threads into a single

polling loop

o Delivery times dropped from 150 μsec to

20 μsec.

o Removed microkernel. Now all code fits

in internal memory.

o Delivery time dropped under 5 μsec.

30

The First Goal

o Delivery times improved by more than

an order of magnitude. From 280 μsec

to under 5 μsec.

o (Much) less code

o Simpler code. No threads.

o Minimum command time is now 75 μsec

31

Collateral Damage

o Timing changes can reveal additional

problems

o Faster microcontroller exposed a timing

window in communication throttling

o Required an FPGA code change from

level sensitive to edge sensitive

32

The Next Question

o How can we execute several real-time

commands inside one 50 μsec interrupt?

 Several commands had big initial compute

spikes. Some compute spikes almost

consumed the interrupt. No way to afford 2.

 Command format was streamed. Each

command took 4 μsec to unstream.

33

Design for the Worst Case

o You can‟t design for every case

o Identify the most important worst case

o Get agreement from the team

o Don‟t lose focus

34

Simplify Algorithms

Compute spikes came from re-computing

stuff the control computer already knew

1. Convert algorithms from complicated to

simple

2. Pass all necessary data from control

computer

Turned the embedded system from

slightly autonomous into a pure slave
35

Use Old Fashioned Code

o Replaced stream with POD structs

 Unpacking time fell from 4 μsec to 0 ns

 Data size fell to 1/3 original

o Don‟t reformat data en route

 Taught the control computer to format for the
final destination

o Identify commands with a single enum

 Changed command dispatch from two run-time
searches through vectors to a single dispatch
through a switch

36

Ahem, POD Structs in C#?

o Um, well, no.

o But it can be done in C++/CLI

o We forced C++/CLI in safe mode to
produce something close to POD structs

o We used macros so C++98 and C++/CLI
could share the header files

o We got both speed and message type
safety between the DSPs and the control
computer

37

The Macros
#ifdef MANAGED_BUILD_FOR_SCC // For consumption by Control Computer/.NET

#define MIXED_USE_REF_STRUCT ref struct
#define MIXED_USE_VALUE_STRUCT value struct
#define MIXED_USE_REF_CLASS ref class
#define MIXED_USE_VALUE_CLASS value class
#define MIXED_USE_ENUM enum class
#define MIXED_HANDLE_OR_PTR ^
#define MIXED_USE_CONST
#define MIXED_USE_ABSTRACT abstract

#else // For consumption by DSP/DSP simulation

#define MIXED_USE_REF_STRUCT struct
#define MIXED_USE_VALUE_STRUCT struct
#define MIXED_USE_REF_CLASS class
#define MIXED_USE_VALUE_CLASS class
#define MIXED_USE_ENUM enum
#define MIXED_HANDLE_OR_PTR *
#define MIXED_USE_CONST const
#define MIXED_USE_ABSTRACT

#endif

38

Using the Macros
MIXED_USE_VALUE_STRUCT CcncyId

{

public:

MIXED_USE_ENUM AtlasCcncyEmbeddedId {

ccncyNone = 0,

ccncyLine,

ccncyArc

};

private:

AtlasCcncyEmbeddedId ccncyId_;

public:

inline AtlasCcncyEmbeddedId GetCcncyId() MIXED_USE_CONST {

return ccncyId_;

}

...
39

Fast Loops

o DSP0 produces 50 „points‟ in 50 μsec

o So each „point‟ must take significantly
fewer than 600 DSP clocks to compute

o I need fast loops

o How to get them?

40

Observation: Disassemble

o The TigerSHARC compiler manual

encourages looking at disassembly.

o It helped me. A lot.

o It‟s likely the best way to understand

your optimizer.

41

TigerSHARC Assembly Notes
for (int i = 0; i < pointCount; ++i)

{

SegmentPoint& nomPointOut = pointsOut->Next();

nomPointOut.aod = pointsIn[i].first;

interpolator.ExtractNominalGalvo(

i, pointsIn, &nomPointOut.x, &nomPointOut.y);

}

//--

// Loop at "AtlasBiLinearInterpCal.cpp" line 580

//--

// This loop executes 2 iterations of the original

// loop in estimated 32 cycles.

//--

// Trip Count = 24

//--
42

Const Loop Lengths

o Encourage hardware loop counters…

o Try this
const int pointCount = pointDest->Remaining();

for (int i = 0; i < pointCount; ++i) {

...

}

o Not this
while (pointDest->Full() == false) {

...

}

43

Cascade Small Loops

Not this
for (...) {

...

...

...

...

...

...

...

}

44

This
for (...) {

...

}

for (...) {

...

}

for (...) {

...

}

No Function Calls Inside Loop

o Non-linear flow puts a bubble in the

processor pipeline

o The compiler doesn‟t know what

happened to non-local variables

o There are function calls that don‟t look

like function calls

 Integer division

 Modulus

o Inlined function calls are okay

45

#pragma no_alias
#pragma no_alias

void myLoop (const int* in, int* out) {

while (*in) {

*out = *in;

}

}

o The optimizer must assume in* and

out* overlap…

o …unless you tell it they don‟t!

o Improves register scheduling and loop

unrolling
46

From the Loyal Opposition

“Noalias is an abomination”

“Noalias must go. This is non-

negotiable.”
Dennis Ritchie 1988

http://www.lysator.liu.se/c/dmr-on-noalias.html

47

Copy members to locals

o Declare constant locals of members that

will be constant for the loop

o Declare local non-consts for member

variables that will change in the loop.

o Use only locals inside the loop

o Remember to write back changed local

copies of member variables

48

Use Intrinsics

o A compiler Intrinsic is specific to that

compiler

o It looks like a function call…

o But (usually) the compiler turns it into a

single assembly instruction

o Check your compiler documentation

o Every cycle saved inside a loop is

multiplied by the loop count

49

Intrinsics for Multiple Targets

#ifdef _WIN32
static inline int builtin_min(int a, int b) { return a < b ? a : b; }
static inline int builtin_max(int a, int b) { return a > b ? a : b; }
static inline float fminf(float a, float b) { return a < b ? a : b; }
static inline float fmaxf(float a, float b) { return a > b ? a : b; }
static inline float copysignf(float dest, float signProvider)
{

const float sign = signProvider >= 0.0f ? 1.0f : -1.0f;
return (fabsf(dest) * sign);

}
#else
// TigerSHARC
static inline int builtin_min(int a, int b)

{ return(__builtin_min(a, b)); }
static inline int builtin_max(int a, int b)

{ return(__builtin_max(a, b)); }

// Note: fminf, fmaxf, and copysignf don’t require aliases
#endif // _WIN32

50

Results

For a specific for loop:

o Started with a non-hardware loop

 Changed to const loop length

o Got a hardware loop with 52 cycles per

iteration

 Applied other techniques

o Finished with a hardware loop with 18

cycles per iteration

51

Tell The Compiler Everything

o The compiler can‟t see the value of a

const member.

o But it can see a template parameter

52

Use Template Parameters…

To this
template <int chan_>

class TCB {

public:

inline void status()

{

switch (chan_)

{

case 0:

...

}

}

};

53

Turn this
Class TCB {

const int chan_;

public:

inline void status()

{

switch (chan_)

{

case 0:

...

}

}

};

…but, Use Templates Wisely

Factor parameter-independent code out of

templates
Scott Meyers Effective C++ Third Edition Item 44

Templates Without Code Bloat
Dave Gottner Dr. Dobb’s August 1, 1995

http://www.drdobbs.com/184403053

54

Managing Code Bloat
Class TCB_impl {

template<int chan> friend class TCB;

inline void status(int chan) { ... }

void source(int chan, int st) { ... }

};

template <int chan>

class TCB {

public:

inline void status() { impl_.status(chan); }

inline void source(int st) { impl_.start(chan, st); }

private:

TCB_impl impl_;

};

55

Inlining
Good:

o Reduces branching

o Informs the compiler

56

Bad:

o Increases code size

o Increases local

complexity

So Measure!

Results

o At the start of our travels we could
execute one real-time command every
250 μsec

o At the end we can execute an arbitrarily
long stream of 25 μsec commands.
Limited by hardware implementation.

o The servo interrupt would support an
arbitrarily long stream of 4 μsec
commands

57

The 25 μsec Limit

58

Windows Computer

Microcontroller Memory buffer

DSP 0 [50 μsec] DSP 1 [5 μsec]

FPGA [registers]

Removing Obstacles…

59

Only One

More

Obstacle!

Effects of I/O

60

Windows Computer

Microcontroller Memory buffer

DSP 0 [50 μsec] DSP 1 [5 μsec]

FPGA [registers]

I/O and Compute Time

o Internal memory access takes 1.66 ns

o External register write takes 60 ns

o External register read takes 160 ns

o Bus ownership change takes 140 ns

o External reads by the core stall the core

o A contended read by one core can stall…

140 + 160 + 140 + 160 = 600 ns

o That‟s over 1/10th a DSP1 servo cycle

61

I/O and Servo Jitter

o Register reads cause servo jitter

o The core must complete a read

o Interrupts are stalled until the read

completes

o That‟s 600 ns of jitter on the servo

interrupt (worst case)

o The worst case doesn‟t happen often, but

it does happen sometimes

62

What to Do About I/O?

o Allow only one DSP on the shared bus

o Keep the cores from doing I/O

o Keep the cores from register reads?

o Yes, with DMA [Direct Memory Access]

63

I/O with DMA
o DMA channels are coprocessors

o Their only purpose is to move data

o Once they are programmed they run
independent of the core

o DMA copies data from shared bus to
internal memory or vice versa

Downsides:

o They must be programmed (takes core time)

o They add yet another „thread‟

o Increased latency (time from read to use)

64

I/O with DMA

o The TigerSHARC has 14 DMA channels

o We use five DMA channels in DSP1:

1. DMA shared bus reads and writes

2. DMA data to DSP0

3. DMA data from DSP0

4. DMA commands from microcontroller

5. DMA command response to microcontroller

o All of these DMAs offload the core

65

The Core and DMA

1. Core starts DMA before it needs data

2. Together…

a) DMA runs in the background while

b) Core does other useful work

3. When core needs data it checks for

DMA completion by…

a) Polling (what we use) or

b) Interrupt

66

DMA Benefits

o Removed 0.5 to 1.5 μsec from DSP1

servo time (which we promptly used

elsewhere)

o Significantly reduced servo interrupt

jitter

67

Non-Embedded DMA (maybe)

o Intel I/O Acceleration Technology

o Intel "Virtualization Technology for

Directed I/O" (VT-d)

o AMD I/O Virtualization Technology,

"AMD-Vi"

o ARM DMA-230 and -330 Controllers

o Windows DMA API (kernel mode)

o Linux DMA API (kernel mode)

68

Thread Safety Options

Threads, it‟s never threads apocryphal ESI quote

Threads, on the other hand, are wildly

nondeterministic. The job of the

programmer is to prune away that

nondeterminism.
Edward A. Lee The Problem With Threads, Technical Report

No. UCB/EECS-2006-1, January 10, 2006

69

Thread Safety Options

o OS-level locks

 I have no OS. Spin locks also won‟t work

o Atomic instructions

 TigerSHARC has none

o Volatile

 Can guarantee order but not counts

o Atomic data arrival

 Use special (large) data types

o Disable interrupts

 Works for me, not for multi-core systems
70

Atomic Data Arrival

o Useful when a set of data must arrive

simultaneously

o Create a union in a large data type

o TigerSHARC supports 128-bit integers

o No locking of any sort required

o Imposes alignment requirements for

atomic arrival

71

Prefer Native Data Types

o The TigerSHARC does not natively

support…

 8-bit char

 16-bit short

 64-bit double

o They are synthesized in software

o Very inefficient

o TigerSHARC defaults to 32-bit chars

72

Summary

1. Big improvements take new algorithms.

2. Design for the worst case.

3. Make measurements. Make tools.

4. Know your optimizer. Read disassembly.

5. Tell the compiler everything.

6. Don‟t let fashion lead you to slow code.

7. Memory and I/O matter, sometimes lots.

73

Thanks To Coworkers…

o Rick Coates, Mr. DMA

o Alex Myachin, for Windows solutions

o Guang Lu, the controls master

o Serge Ioffe, hardware and FPGA ace

o Mark Unrath, system design

o Mike Tyler, boss and encouragement

74

Questions?

Thanks for attending

75

After Thoughts…

From Dan Saks Programming Pointers 5/2/2012

http://www.eetimes.com/discussion/programming-pointers/4372180/Unexpected-trends

76

