
ustring
A Modern Alternative to std::string

Alan Talbot
14 May 2012

The Program

• Lecture

– The Problem

– The Solution

– The Objections

– The Proposal

• Feedback

– Wherein everyone gets to offer suggestions, ideas,
theories, criticisms, and ridicule

5/16/2012 ustring 2

The Problem
• Strings

– Almost every program deals with strings, and a large and important class of
programs require very efficient string processing

– Some programs have special string handling requirements
– In our polyglot global world, string handling has become all the more

challenging

• The venerable std::string
– Has served us well for many years
– Has some significant fundamental limitations
– Has some rather annoying quirks
– Lacks features that are common in other libraries and languages
– Is not sufficiently global
– Does not take advantage of modern C++ design (especially C++11)

• Therefore
– Most significant programs need more than one string type
– I typically use three in Windows programs: char arrays and pointers,

std::string, and CString
– This leads to kind of a mess

5/16/2012 3 ustring

Inflexible Memory Model

• Local memory usage is implementation defined
– Small string optimization is typically present
– No size vs. speed control
– Inefficient for small strings where memory is tight

• Growth behavior is implementation defined
– Typical growth is exponential
– Inefficient for small strings where memory is tight because of air
– Inefficient or even impossible for strings that are large in relation to

addressable memory size

• Not byte compatible with C-style char arrays
– C-style arrays are sometimes what you have, but then copies are required
– C-style arrays have advantages in some situations

• Cannot be used if a local-only (no heap) allocation is required
– Cannot be efficiently embedded in composite structures where size

optimization is desired

5/16/2012 4 ustring

Interaction With C Strings

• Interaction with char arrays
– To construct a std::string from a char array requires a copy
– To get a char array back out of a std::string requires a copy

• Interaction with char*s
– If you want to support both native strings and std::strings, you need (at least)

two overloads:
• void foo(const char* str);
• void foo(const string& str);

– If you have only the first, you can't use natural syntax—you have to use
std::string::c_str(), and hope that it's free

– If you have only the second, you'll get an extra construction, copy and
destruction

– Oh, by the way, all the Standard Library string manipulation routines are in C,
so they take char* only

5/16/2012 5 ustring

Functionality Limitations

• Many common operations are not directly supported
– Trim
– Make upper/lower
– Case-insensitive compare
– Token extraction
– Format (a la printf)

• Most string manipulations are handled by the CRT
– But the CRT is not well supported
– Functions are not composable, and they use conflicting metaphors

• Unicode
– std::string does not support Unicode
– std:: wstring does not really support Unicode
– No interoperability between these variants

5/16/2012 6 ustring

Functionality Limitations
• Building strings

– Building strings from other types (numbers, etc.) is not supported directly
– Using std::stringstream is extra code and often inefficient
– Using to_string is inefficient and inflexible
– Using sprintf is downright ugly (and inefficient and unsafe)
– Using non-portable OS code can be especially fun:

5/16/2012 7 ustring

string s("X = ");
int dec;
int sign;
char* res = _fcvt(x, 3, &dec, &sign);
if (sign) s += '-';
s.append(res, dec);
s += '.';
s += res + dec;

Options
• Change std::string

– This would necessarily mean backward compatibility
– Which would involve compromises in design and functionality
– There is strong resistance in the C++ Committee to changing std::string

• Add a layer on top of std::string
– For example: string_ref
– This would help a lot in some situations
– But it would not solve the memory problems

• Write a new string library from scratch
– This means a fresh start with no compromises due to backward compatibility
– C++11 should be widely available by the time the library is ready to use
– I believe the time is right for this to happen

5/16/2012 8 ustring

The Solution
• Efficient

– As with std::string, speed is a key consideration
– Unlike std::string, efficiency of memory is also a key consideration

• Powerful
– Programming should be intuitive and easy
– Support all common operations in convenient, modern ways
– Be very flexible without trying to do everything

• Compatible
– Strings in a program should work together with each other and with other

kinds of strings and existing functions
– Be as similar as possible to std::string without introducing compromises
– Have strong support for Unicode

• Useful
– Offer an alternative to string, wstring, and CRT string handling
– For most programs, all strings should be covered
– For almost all programs, most strings should be covered

5/16/2012 9 ustring

The Solution is Not
• A container—not quite

– Most container properties are supported
– It does not quite fully match an STL container concept due to some small

differences

• A drop-in replacement for std::string
– Full support of std::string functionality would mean supporting more than one

metaphor

• A general purpose tool
– The element type is not a parameter, it is an implementation-defined

character type specific to the encoding
– The size is limited (sort of) by the use of signed int size and position types

• Trying to be all things to all people
– The goal is to solve a large class of very common string problems
– Not trying to solve all text-related problems
– Not a superset of all other string classes; for instance, it is not a rope
– If you want a repository for your text editor, use a rope
– If you want to a general container, use std::string or some other container

5/16/2012 10 ustring

The Objections
• We don’t need more stinkin’ strings

– I agree: we need fewer strings
– To get there we need one that handles more situations more elegantly

• We have SGI Rope
– Ropes optimize modification of very large strings
– My concern is memory and speed efficiency for small strings or large, rarely modified

strings
• We’ve been doing OK with std::string

– std::string will probably never go away, but I believe std::string is no longer sufficient
– My goal is to make std::string obsolescent (new code would be better served by the new

string)
• But what about string_ref?

– The ideas behind string_ref are incorporated into the string_range class
– string_ref is not needed for this new string
– Would be very nice for maintaining std::string code

• Anyway, strings should be immutable
– Immutability has performance costs and is not compatible with embeddability

• So where’s the library?
– Did you see the first slide?

5/16/2012 11 ustring

namespace ustr

The Ustring Library

5/16/2012 ustring 12

std
Allocators

std
Containers

Codec

boost::range

std::string

std
Algorithms

std
Regex

ustr
Algorithms

ustr::string_range

ustr::ustring

What's in a name?
• Unicode string

– Too limiting

• Unified String
– Too unlimited

• Ultimate string
– Too pretentious

• Überstring
– Too cute
– Unless you speak German, in which case too pretentious

• Universal String
– Maybe

• Useful String
– That's the idea

• Got a better name?
– Doesn't have to start with U
– Let me know (but not now)

5/16/2012 13 ustring

The ustring Class Template
• Use a ustring wherever ownership of text is required
• One class template with several parameters

– You will typically typedef several different variants for your application

• Template Arguments
– Specify internal representation and encoding
– Dictate the memory management strategy: local vs. heap (nothing to

do with allocators)
– Allocators may need to be added for Standard compliance to handle

heap allocation

• Members
– All length-modifying operations (e.g. Trim)
– Some others are included for convenience (e.g. To Upper for simple

encodings)

5/16/2012 ustring 14

The ustring Class Template
• Internal representation

– Character type
• Specified by the Encoding parameter
• Implementation defined
• Not user defined because it is a low-level concept and this is a high-level

abstraction

– Character encoding scheme
• Specified by the Encoding parameter
• There are 5 choices—any others may require using a different tool

– Text Storage
• Contiguous
• Null terminated (embedded nulls are OK except for the zero-overhead version)

– Size type
• Both size and difference types are int
• This is very deliberate: should be the fastest native type
• If you need more characters, you probably need a different tool anyway

5/16/2012 ustring 15

The Template Parameters

• Encoding
– This parameter dictates both the assumed encoding and the underlying data type
– ASCII char native 8 bit encoding (e.g. CP-1252)
– UCS2 wchar_t native 16 bit encoding (e.g. UCS-2)
– UTF8 unsigned char UTF-8 encoding
– UTF16 char16_t UTF-16 encoding
– UTF32 char32_t UTF-32 encoding

• Fixed Size
– Specifies the size of the local (vs. heap) allocation in elements
– Includes the null terminator
– May be zero to indicate heap-only allocation

• Grow Type
– Controls the management of memory and the size vs. speed tradeoff
– ZERO_OVERHEAD, FIXED, LINEAR, EXPONENTIAL

• Grow Increment
– Specifies the amount to grow for Linear and Exponential growth
– Linear: capacity increases by the Grow Increment in elements
– Exponential: capacity increases by 1 / Grow Increment

5/16/2012 ustring 16

template<int ENCODING, int FIXED_SIZE, int GROW_TYPE, int GROW_INCREMENT>
class ustring;

Memory Management
• Zero Overhead

– Fixed size must be positive
– Byte compatible with C arrays
– No cached size
– Capacity = fixed size
– size(), end(), string_range() etc. are O(n)
– Cannot have embedded nulls
– Example: fixed size = 20, size = 19, capacity = 20

5/16/2012 ustring 17

W e l c

o m e space

t o space C

+ + space N

o w ! null

Memory Management
• Fixed

– Fixed size must be positive
– Includes a cached size
– Capacity = fixed size
– size(), end(), string_range() etc. are O(1)
– Example: fixed size = 20, size = 19, capacity = 20

5/16/2012 ustring 18

W e l c

o m e space

t o space C

+ + space N

o w ! null

size = 19

Memory Management
• Growable, zero fixed size

– Includes cached size and capacity
– Text elements are allocated on the heap
– size(), end(), string_range() etc. are O(1)
– Example: fixed size = 0, size = 19, capacity = 23

5/16/2012 ustring 19

W e l c

o m e space

t o space C

+ + space N

o w ! null

first

next

end

? ? ? ?

Memory Management
• Growable, positive fixed size

– Includes cached size and capacity
– Text elements are allocated locally or on the heap
– size(), end(), string_range() etc. are O(1)
– Example: fixed size = 16, size = 7, capacity = 15

5/16/2012 ustring 20

W e l c

o m e space

size = 7

Memory Management
• Growable, positive fixed size

– Includes cached size and capacity
– Text elements are allocated locally or on the heap
– size(), end(), string_range() etc. are O(1)
– Example: fixed size = 16, size = 19, capacity = 23

5/16/2012 ustring 21

W e l c

o m e space

t o space C

+ + space N

o w ! null

first

size = 19

end

? ? ? ?

Basic Members
• Constructors

ustring()

ustring(int count, char_type)

ustring(const char_type*)

ustring(string_range)

• Assignment
ustring& operator=(const char_type*)

ustring& operator=(string_range)

• Conversion
operator const char_type*() const

operator string_range<ENCODING, false>()

operator string_range<ENCODING, true>()

• Free function conversion
template<int SZ> ustring& ustring_cast(char (&a)[SZ])

5/16/2012 ustring 22

Access Members
• Size

size_type size() const excluding the null terminator

size_type capacity() const excluding the null terminator

bool empty() const

bool heap() const

• Iterator access
char_type* begin() const/non-const

char_type* last() const/non-const

char_type* end() const/non-const

etc… c versions

• Element access
char_type front() const/non-const

char_type back() const/non-const

char_type operator[](int i) const/non-const

char_type at(int i) const/non-const

 5/16/2012 ustring 23

Insertion Members
• Append

ustring& operator+=(.)

ustring& operator<<(.)

• Insert
char_type* insert(int position, char_type)

char_type* insert(char_type* where, char_type)

char_type* insert(int position, string_range)

char_type* insert(char_type* where, string_range)

• Erase
void clear()

char_type* erase(int position)

char_type* erase(char_type* where)

char_type* erase(string_range)

5/16/2012 ustring 24

Length Modifying Members
• Editing

– Trim
void trim(char_type char_to_remove)

void trim(const char_type* chars_to_remove)

void trim(string_range chars_to_remove)

– Trim Front, Trim Back

– Remove
• Same as Trim but throughout the string

– Replace

• Formatting
– Format

• printf vs. Python-like

• Implemented as a variadic template rather than a variadic function

– Field
• Expand to given length

• Text is positioned left, center, or right

• Encoding Conversions

5/16/2012 ustring 25

Other Members

• Search
– Find First, Find Last

• Stream
– Operator <<

– Operator >>

5/16/2012 ustring 26

Welcome

Welcome!

Welcome to C++ Now!

WELCOME to C++ Now!

Ustring Examples

ustring<ASCII> us;

us << "Pi = " << precision(3.14159, 3) << " and UQ = " << 42;

cout << us;

Pi = 3.142 and UQ = 42

5/16/2012 ustring 27

char buff[64] = "Welcome";

auto& usc = ustring_cast(buff);

usc += '!';

usc.insert(usc.last(), " to C++ Now");

to_upper(substr(usc, 0, 7));

String Range
• Overview

– The link between the ustring class and the string algorithms

– Provides interoperability with other kinds of strings

– Is often all you need

• Template Arguments
template<int ENC, bool CONST = false> struct string_range;

template<int ENC> using const_string_range = string_range<ENC, true>;

– Encoding

• The same meaning as for ustring

– Const

• True if this range refers to const data

5/16/2012 ustring 28

String Range Members
• Constructors

string_range()
string_range(char_type*)
template<size_t SZ> string_range(char_type (&ar)[SZ])
string_range(const std::basic_string&)

• Content
operator bool()
bool empty()
size_type size()

• Iterator access
char_type* operator*()
char_type* begin()
char_type* last()
char_type* end()

• Element access
char_type front() const/non-const
char_type back() const/non-const
char_type operator[](int i) const/non-const
char_type at(int i) const/non-const

5/16/2012 ustring 29

String Range Members

• Shrink operations
string_range& operator++() (not safe)

string_range& operator++(int) (not safe)

string_range& operator+=(int distance)

string_range operator+(string_range, int distance)

etc…

5/16/2012 ustring 30

C + + space N o w ! null

R

R + 4

R - 5

String Range Members

• Shrink operations
string_range& operator-=(string_range)

string_range operator-(string_range, string_range)

5/16/2012 ustring 31

C + + space N o w ! null

R

S

R-S

R–(R+3)

String Range Members

• Shrink operations
string_range& fit()

5/16/2012 ustring 32

C + + null ? ? ? ? ?

R

R.fit()

string_range Example

string_range<ASCII, true> r = "Welcome to C++ Now!";

for (; r; ++r)

 cout << *r;

Welcome to C++ Now!

5/16/2012 ustring 33

Algorithms
• Goals

– Composability

– Compatibility

– Convenience

– Performance

• Design
– Conceptually take a string_range and (usually) other arguments

– Actually use TMP to generate a string_range from many types

– Return

• string_range

• bool

– May modify the target range

5/16/2012 ustring 34

Non-modifying Algorithms
• All

– Could also be called Make Range

• Substring
– substr From start to start + length
– substrp From start to stop

• Trim
– Takes either char_type or a string_range to match
– Defaults to white space
– Trim Front
– Trim Back

• Token
– Takes a string_range& and advances it as each token is found
– Returns a string_range that defines the token
– Takes either char_type or a string_range to match
– Non-destructive

• Divide
– Same as Token, but includes the delimiter in the returned token
– Nice for breaking text into lines

5/16/2012 ustring 35

substr

template<typename T>

typename string_range_traits

<typename std::remove_reference<T>::type>::type

substr(T&& t, int start, int length = std::numeric_limits<int>::max())

{

 typename string_range_traits

 <typename std::remove_reference<T>::type>::type

 str(std::forward<T>(t));

 str += start;

 str -= str.size() - length;

 return str;

}

 5/16/2012 ustring 36

substrp

template<typename T>

typename string_range_traits

<typename std::remove_reference<T>::type>::type

substr(T&& t, int start, int stop = std::numeric_limits<int>::max())

{

 typename string_range_traits

 <typename std::remove_reference<T>::type>::type

 str(std::forward<T>(t));

 str -= str.size() - stop;

 str += start;

 return str;

}

 5/16/2012 ustring 37

substr Calls
cout << substr("Maroon Bells", 7, 5) << endl;

char buff[64] = "Maroon Bells";
cout << substr(buff, 7, 5) << endl;

auto c = "Maroon Bells";
cout << substr(c, 7, 5) << endl;

const string s("Maroon Bells");
cout << substr(s, 7, 5) << endl;

wstring ws(L"Maroon Bells");
wcout << substr(ws, 7, 5) << endl;

string_range<ASCII, true> sr = "Maroon Bells";
cout << substr(sr, 7, 5) << endl

ustring<ASCII> us("Maroon Bells");
cout << substr(us, 7, 5) << endl;

5/16/2012 ustring 38

token Call

auto data = all("Welcome to C++ Now! in Aspen, CO");

while (data)

 cout << token(data, ' ') << endl;

Welcome

to

C++

Now!

in

Aspen,

CO

5/16/2012 ustring 39

Non-modifying Algorithms
• To First, From First

– Takes either char_type or a string_range to search for
– To in the sense of "up to", from in the sense of "starting from"
– so to_first(R, X) plus from_first(R, X) equals R

• To Last, From Last
• To First Not, From First Not
• To Last Not, From Last Not

5/16/2012 ustring 40

u s t r i n g

to_first(R, '.')

. c p p

from_first(R, '.')

null

R

Modifying Algorithms
• Copy

– Takes two string_ranges, source and destination
– Only works within one encoding
– Safe copy

• Replace
– Takes two characters, replaces all occurrences of one with the other
– Only works within one encoding
– For cross-encoding replace, the ustring member is required because of

length changes

• Reverse
– Reverses the range in place

• To Upper / To Lower
– Makes changes in place
– Only works within one encoding
– For cross-encoding replace, the ustring member is required because of

length changes

5/16/2012 ustring 41

Comparison Algorithms
• Equal, Equal NC

– Binary equality

– NC uses simple (fast) conversion

• Less, Less NC, Greater, Greater NC

– Binary comparison

• Compare, Compare NC

– Binary comparison

– Returns -1, 0, 1

• Unicode and Locale

– Support for more intelligent comparison

5/16/2012 ustring 42

Extract File Title

auto path = all("D:\\Code\\Ustring\\Source\\Heaponly.h");

cout << (from_last(path - from_last(path, '.'), '\\') += 1);

Heaponly

5/16/2012 ustring 43

cout << to_last(from_last(path, '\\') += 1, '.');

Heaponly

Algorithm Composition

cout <<

 to_first(

 trim_front(

 from_first(

 from_first("Colorado rocky mountain high", 'k'), ' '

)

), ' '

);

mountain

5/16/2012 ustring 44

Switch on File Type (MFC)

CString ext(lpszPathName);

int ext_len = ext.ReverseFind('.');

ext = ext.Right(ext_len == -1 ? 0 : ext.GetLength() - (ext_len + 1));

if (ext.CompareNoCase("top") == 0) // If this is a TOP file.

{

}

else if (ext.CompareNoCase("rr") == 0) // If this is an RR file.

{

}

5/16/2012 ustring 45

Switch on File Type (STL)

string ext(lpszPathName);

ext = ext.substr(ext.find_last_of('.') + 1, ext.npos);

if (_stricmp(ext.c_str(), "top") == 0) // If this is a TOP file.

{

}

else if (_stricmp(ext.c_str(), "rr") == 0) // If this is an RR file.

{

}

5/16/2012 ustring 46

Switch on File Type (ustring)

5/16/2012 ustring 47

auto ext = ustr::from_last(lpszPathName, '.') += 1;

if (equal_nc(ext, "top")) // If this is a TOP file.
{
}
else if (equal_nc(ext, "rr")) // If this is an RR file.
{
}

Interoperability with std::string

std::string boostcon("BoostCon");

ustring<ASCII> cppnow("C++ Now!");

cout << greater(cppnow, boostcon);

5/16/2012 ustring 48

true

The Discussion

• Ground rules
– We have 45 minutes and n people, so each person gets t = 45/n

• Once everyone has been heard, people can have second turns
• Show of hands who might like to participate so we can calculate t

– The goal is to get lots of good ideas out on the table
• We do not need to solve every problem
• We do not need to convince anyone of anything
• We do not need to reach consensus

• Focus
– Big picture
– Architecture
– API design
– Use cases

• Examples
– I can show some real code examples as we go

5/16/2012 49 ustring

Acknowledgements and Thanks

• Beman Dawes
– Reviewed the library design in depth and made many helpful

suggestions about the library and this presentation

• Jeffrey Yasskin
– Presented proposals to the C++ Committee on string_ref and ranges,

discussed this library with me, and helped to convince me of the value
of the range-based design

• David Abrahams
– Discussed the idea with me and encouraged me to give a presentation

at this early stage in the library's development

• You
– For all the great ideas you are about to contribute

5/16/2012 ustring 50

